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Abstract: The space-filling property and orthogonality are perhaps two most desirable design

properties for computer experiments. The space-filling property is appropriate for Gaussian

process models, while orthogonality allows the estimated effects to be uncorrelated. This paper

presents a general approach for constructing a rich class of orthogonal designs with attrac-

tive low-dimensional space-filling properties. This is apparently new in the literature. The

construction methods are straightforward to implement. Their theoretical supports are estab-

lished. Moreover, the resulting designs are flexible in the run sizes.

Key words and phrases: Computer experiment, orthogonal design, orthogonality, space-filling

property.

1. Introduction

Computer experiments are widely used in many fields to explore complex system-

s; whereas space-filling designs are popular for such experiments (see, for examples,

Fang, Li and Sudjianto (2006) and Santner, Williams and Note (2018)). A space-filling

design uniformly spreads its points in the design region. The uniformity can be e-
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A NEW CLASS OF ORTHOGONAL DESIGNS 2

valuated by distance or discrepancy criteria (see, for examples, Johnson, Moore and

Ylvisaker (1990); Fang et al. (2000); Joseph, Gul and Ba (2015) and Wang, Sun and

Xu (2022)). Many fruitful approaches have been proposed for constructing designs

with good space-filling properties. The Latin hypercube design was first introduced

by McKay, Beckman and Conover (1979). Owen (1992) and Tang (1993) proposed

randomized orthogonal arrays and orthogonal array-based Latin hypercube designs,

respectively. More recently, He and Tang (2013) introduced strong orthogonal arrays,

and such arrays have been further developed in He and Tang (2014), Liu and Liu

(2015), He, Cheng and Tang (2018), Zhou and Tang (2019), Shi and Tang (2020),

Tian and Xu (2022) and Wang, Yang and Liu (2022). Mukerjee, Sun and Tang (2014)

proposed mappable nearly orthogonal arrays. Note that both strong orthogonal ar-

rays and mappable nearly orthogonal arrays have better space-filling properties than

ordinary orthogonal arrays.

Orthogonality is another desirable property for designs of computer experiments.

It guarantees that the estimated effects are uncorrelated with each other. A number

of methods have been proposed to construct orthogonal designs; see, for examples, Ye

(1998), Steinberg and Lin (2006), Joseph and Hung (2008), Bingham, Sitter and Tang

(2009), Sun, Liu and Lin (2009), Pang, Liu and Lin (2009), Lin, Mukerjee and Tang

(2009), Georgiou and Stylianou (2011), Ai, He and Liu (2012), Yang and Liu (2012),

Georgiou et al. (2014), Sun and Tang (2017a) and Wang et al. (2018).

This paper presents a general approach for constructing orthogonal designs that en-

tertain attractive space-filling properties. This class of orthogonal space-filling designs
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is apparently new in the literature. Two appealing features of the new construction

method are their simplicity and generality: the proposed method is simple as it is

straightforward to implement (as will be shown below), and the method is also gen-

eral in the sense that the resulting designs can be either symmetric (equal-level) or

asymmetric (mixed-level). Additionally, the resulting designs are flexible in the run

sizes.

The remainder of this paper is organized as follows. Section 2 introduces the nota-

tion and preliminaries. Sections 3 and 4 propose methods for constructing s4-level and

s3-level symmetric orthogonal designs with desirable space-filling properties, respec-

tively. Section 5 is devoted to the case of mixed-level orthogonal designs. Concluding

remarks are provided in Section 6. All proofs and some tables are provided in the

Supplementary Material.

2. Definitions and Preliminaries

We first review relevant terminologies and provide two lemmas for future use. Let

D(n, s1×· · ·× sm) denote a mixed-level balanced design of n runs and m factors, with

each of the si levels from {0, 1, . . . , si − 1} replicated equally often in the ith column.

When all the sj’s are equal to s, the design becomes a symmetric balanced design

D(n, sm). A designD(n, s1×· · ·×sm) becomes a mixed-level (combinatorial) orthogonal

array of strength t and s1, . . . , sm levels, denoted as OA(n,m, s1 × · · · × sm, t), if all

possible level combinations for any t columns occur with the same frequency. When

all the sj’s are equal to s, the array is symmetric and denoted as OA(n,m, s, t).

A design D(n, p1 × · · · × pm) is said to achieve a stratification on an s1 × · · · × st
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grid in some t (t ≥ 2) dimensions, say {i1, . . . , it}, if the t columns can be collapsed

into an OA(n, t, s1×· · ·×st, t), where for k = 1, . . . , t, sk ≤ pik and the pik levels of the

ikth column are collapsed into sk levels by bz/(pik/sk)c for z = 0, 1, . . . pik − 1, therein

bϑc is the largest integer not exceeding ϑ. Take the following transposed array as an

example  4 7 5 6 7 4 6 5 3 0 2 1 0 3 1 2

0 6 5 3 7 1 2 4 7 1 2 4 0 6 5 3

 .

This array is aD(16, 82), and can be collapsed into the following transposed OA(16, 2, 2×

4, 2)  1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

0 3 2 1 3 0 1 2 3 0 1 2 0 3 2 1

 ,

where the 8 levels of the two factors are collapsed into two levels and four levels

according to

bz/4c =


0, z = 0, 1, 2, 3,

1, z = 4, 5, 6, 7,

and bz/2c =



0, z = 0, 1,

1, z = 2, 3,

2, z = 4, 5,

3, z = 6, 7,

respectively. Thus the array achieves a stratification on a 2×4 grid, as shown in Figure

1 (a). Similarly, the array achieves a stratification on a 4× 2 grid, as shown in Figure

1 (b).

The correlation between two centralized vectors a = (a1, . . . , an)T and b = (b1, . . . ,

bn)T is defined as aT b/(‖a‖‖b‖), where ‖z‖ represents the L2 norm of vector z. A design
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(a) Stratification on a 2×4 grid. (b) Stratification on a 4×2 grid.

Figure 1: Stratifications of the D(16, 82).

D(n, sm) is said to be orthogonal, denoted as OD(n, sm), if the correlation between any

two columns is 0.

To facilitate the study of orthogonality, we center the s levels of design D(n, sm)

into

Ω(s) = {ω − (s− 1)/2|ω = 0, . . . , s− 1}. (2.1)

The operator ∗ represents the centralization of a column, which implies that for a

column d on GF (s), d∗ is obtained from d via the mapping in (2.1).

Let GF (s) denote the Galois field of order s. For two matrices A = (aij)m×n and

B = (bij)u×v with entries from GF (s), their Kronecker sum is defined as

A⊕B =


a11

·
+ B · · · a1n

·
+ B

...
...

am1

·
+ B · · · amn

·
+ B

 ,

where
·

+ is the addition defined on GF (s).
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We next present two indispensable lemmas for the construction methods in the

subsequent sections.

Lemma 1. Let αs = (0, . . . , s − 1)T and α0 = (0, . . . , 0)T be two s × 1 vectors on

GF (s).

(i) If (d1, d2) is an OA(n, 2, s, 2), then the arrays (α0 ⊕ d1, α0 ⊕ d2, αs ⊕ d2) and

(αs ⊕ d1, α0 ⊕ d2, αs ⊕ d2) are OA(sn, 3, s, 3)’s.

(ii) If (d1, d2, d3) is an OA(n, 3, s, 2), then the array (α0 ⊕ d1, α0 ⊕ d2, αs ⊕ d3) is an

OA(sn, 3, s, 3).

(iii) If (d1, d2, d3) is an OA(n, 3, s, 3), then the arrays (α0 ⊕ d1, α0 ⊕ d2, α0 ⊕ d3, αs ⊕

d3), (α0 ⊕ d1, αs ⊕ d2, α0 ⊕ d3, αs ⊕ d3) and (αs ⊕ d1, αs ⊕ d2, α0 ⊕ d3, αs ⊕ d3) are

OA(sn, 4, s, 4)’s.

Let A be an OA(n, g, p, 2) and B an OA(p,m, s, 2). In each column of A, replace the

vth level by the vth row of B for v = 1, . . . , p, then we get a matrix C = (C1, . . . , Cg),

where Ci represents the ith group of m columns obtained by replacing the levels in the

ith column of A by the rows of B. Hedayat, Sloane and Stufken (1999) (Section 9.3)

shows that C is an OA(n, gm, s, 2). Then we have the following lemma, which provides

a basis for the proposed construction method.

Lemma 2. Any four columns obtained by taking two columns from group Ci1 and two

columns from group Ci2 with i1 6= i2 must form an OA(n, 4, s, 4).

3. Orthogonal Space-filling Designs of s4 Levels
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In this section, we propose a construction method for orthogonal designs of s4 levels

and investigate their properties. The construction is given in Algorithm 1 below.

Algorithm 1 (Construction of s4-level orthogonal designs).

Input : An OA(n, g, p, 2), called A, and an OA(p,m, s, 2), called B.

Output : An OD(sn, (s4)4q) with q = bgk/2c and k = bm/2c, called X̃.

Step 1. In each column of A, replace the vth level by the vth row of B for v = 1, . . . , p,

then we get a matrix

C = (C1, . . . , Cg),

where Ci represents the ith group of m columns obtained by replacing the levels

in the ith column of A by the rows of B. For i = 1, . . . , g, partition each Ci into

k or k + 1 groups as

Ci = (Ci1, . . . , Cik) if m = 2k, or Ci = (Ci1, . . . , Cik, ιi) if m = 2k + 1,

where k = bm/2c and each Cij consists of two columns. Note that when m is

odd, the (k+1)th group of Ci has only one column ιi. Here ιi can be any column

of Ci, and it will be discarded in the later construction. Then order Cij’s as

C11, C21, . . . , Cg1, C12, C22, . . . , Cg2, . . . , C1k, C2k, . . . , Cgk.

Step 2. Take two successive Cij at a time in the order given in Step 1, then obtain

q = bgk/2c sets of four columns. Denote these sets as C(1), . . . , C(q) with C(l) =

(c(l1), . . . , c(l4)), where c(lr) represent the rth column of C(l) for l = 1, . . . q, r =

1, 2, 3, 4. Let

C̃ = (C(1), . . . , C(q)).

Statistica Sinica: Preprint 
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Step 3. For l = 1, . . . , q, obtain X(l) from C(l), where X(l) = (x(l1), x(l2), x(l3), x(l4)) and

x(l1) = s3(α0 ⊕ c(l1))
∗ + s2(αs ⊕ c(l2))

∗ + s(α0 ⊕ c(l2))
∗ + (α0 ⊕ c(l3))

∗,

x(l2) = s2(αs ⊕ c(l1))
∗ − s3(α0 ⊕ c(l2))

∗ + s(α0 ⊕ c(l1))
∗ + (α0 ⊕ c(l4))

∗,

x(l3) = s3(α0 ⊕ c(l3))
∗ + s2(αs ⊕ c(l4))

∗ + s(α0 ⊕ c(l4))
∗ − (α0 ⊕ c(l1))

∗,

x(l4) = s2(αs ⊕ c(l3))
∗ − s3(α0 ⊕ c(l4))

∗ + s(α0 ⊕ c(l3))
∗ − (α0 ⊕ c(l2))

∗,

therein α0 = (0, . . . , 0)T and αs = (0, . . . , s− 1)T are two s× 1 vectors on GF (s),

and ∗ is the centralization of the column, as given in Section 2. Combine X(l) by

column juxtaposition, and obtain

X̃ = (X(1), . . . , X(q)),

with q = bgk/2c. Reorganize the 4q columns of X̃ according to the order of their

leading columns in the original groups C1, . . . , Cg, and denote these new groups

as X1, . . . , Xg. Further, define

X = (X1, . . . , Xg), (3.1)

where Xi corresponds to Ci for i = 1, . . . , g. Here, the order of the columns of X

follows that of C while the order of the columns of X̃ follows that of C̃.

For the resulting design, we have the following theorem.

Theorem 1. Design X obtained by Algorithm 1 is an OD(sn, (s4)4q), where q = bgk/2c

and k = bm/2c.

From Theorem 1, the design X obtained by Algorithm 1 is an orthogonal design

of s4 levels. Moreover, this design possesses strong space-filling properties, as shown in

the following theorem.
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Theorem 2. Design X obtained by Algorithm 1 has the following properties:

(i) any two distinct columns achieve stratifications on s× s2 and s2 × s grids;

(ii) any two columns from different groups in (3.1), say Xi1 and Xi2 with i1 6= i2,

achieve stratifications on s× s3, s2 × s2 and s3 × s grids;

(iii) any three distinct columns from two different groups in (3.1), say Xi1 and Xi2

with i1 6= i2, achieve a stratification on an s× s× s grid.

By Theorem 2, design X achieves stratifications on s × s2 and s2 × s grids in all

two dimensions, stratifications on finer s × s3, s2 × s2 and s3 × s grids in those two

dimensions given by two columns from different groups, and stratifications on s× s× s

grids in those three dimensions given by three columns from two different groups. Note

that in X, when gk is even, there are g groups with 2k columns in each group; when

gk is odd, there are g − 1 groups with 2k columns in each group and one group of

2k − 2 columns. If k = 1, then there are g groups with 2 columns in each group when

g is even, and there are g − 1 groups with 2 columns in each group when g is odd. If

k = 2, then gk must be even, and there are g groups with 4 columns in each group.

Therefore, for m = 2, 3, 4, 5, the proportion of two-tuples which achieve stratifications

on s× s3, s2 × s2 and s3 × s grids is in fact at least π with

π = (κ− 1)µ/(κµ− 1), (3.2)

if there are κ groups with µ columns in each group, where µ = 2k, (i) κ = g − 1 for

the case of k = 1and odd g, and (ii) κ = g for the other cases. An illustrative example

is shown below.
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Example 1. For s = 2, let A and B be the OA(32, 9, 4, 2) and OA(4, 3, 2, 2) listed

in Tables S.1 and S.2 respectively in the Supplementary Material. Here g = 9, k = 1

and q = 4. Following Algorithm 1, we need to delete the last column of each Ci for

i = 1, . . . , 8. The resulting design X, an OD(64, 1616), is shown in Table S.3 in the

Supplementary Material.

Note that X can be partitioned into eight groups with two columns in each group,

such that any two columns can be respectively collapsed into an OA(64, 2, 2×4, 2) and

an OA(64, 2, 4×2, 2), as displayed in Figure 2. Any two columns from different groups
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(b) Stratification on a 4×2 grid.

Figure 2: Stratifications of the first two columns of X in Example 1.

can be collapsed into an OA(64, 2, 2×8, 2), an OA(64, 2, 4, 2) and an OA(64, 2, 8×2, 2),

respectively, as displayed in Figure 3. Figure 4 shows the two-dimensional stratifica-

tions of the first four columns of X, where xij represents the jth column of ith group

Xi. Accordingly, X achieves stratifications on 2× 4 and 4× 2 grids in all two dimen-

sions, and achieves stratifications on 2×8, 4×4 and 8×2 grids in 112 out of all 120 two

dimensions, thus π = 93.33%. Further consider the three-dimensional stratification of

design X. It can be checked that any three columns from two different groups achieve
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Figure 3: Stratifications of the first and third columns of X in Example 1.
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Figure 4: Two-dimensional stratifications of the first four columns of X in Example 1.

a stratification on a 2× 2× 2 grid. In fact, the proportion of having three-tuples of X

with stratifications on 2× 2× 2 grids tends to be very high. Comprehensive examina-

tion reveals that X achieves stratifications on 2× 2× 2 grids in 542 out of all 560 (i.e.,

96.79%) three dimensions.
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The orthogonal arrays needed in Algorithm 1 are available in the library of orthog-

onal arrays maintained by Dr. N.J.A. Sloane (http://neilsloane.com/oadir/index.html)

and Hedayat, Sloane and Stufken (1999). Table 1 summarizes some orthogonal designs

constructed by Algorithm 1. Their space-filling properties are characterized by the

parameters κ (the number of groups), µ (the number of columns in each group) and π

in (3.2). As shown in Table 1, the values of π are very close to 1, indicating that nearly

all the two-tuples of these orthogonal designs achieve stratifications on s× s3, s2 × s2

and s3 × s grids. Moreover, these designs achieve a stratification on an s× s× s grid

in any three columns from two different groups.

Table 1: Some orthogonal designs from Algorithm 1 and their space-filling properties.

A: OA(n, g, p, 2) B: OA(p,m, s, 2) X: OD(sn, (s4)κµ)† κ µ π(%)

OA(16, 5, 4, 2) OA(4, 3, 2, 2) OD(32, 168) 4 2 85.71

OA(32, 9, 4, 2) OA(4, 3, 2, 2) OD(64, 1616) 8 2 93.33

OA(48, 13, 4, 2) OA(4, 3, 2, 2) OD(96, 1624) 12 2 95.65

OA(64, 21, 4, 2) OA(4, 3, 2, 2) OD(128, 1640) 20 2 97.44

OA(96, 23, 4, 2) OA(4, 3, 2, 2) OD(192, 1644) 22 2 97.67

OA(128, 41, 4, 2) OA(4, 3, 2, 2) OD(256, 1680) 40 2 98.73

OA(64, 8, 8, 2) OA(8, 7, 2, 2) OD(128, 1648) 8 6 89.36

OA(128, 16, 8, 2) OA(8, 7, 2, 2) OD(256, 1696) 16 6 94.74

OA(81, 10, 9, 2) OA(9, 4, 3, 2) OD(243, 8140) 10 4 92.31

OA(162, 19, 9, 2) OA(9, 4, 3, 2) OD(486, 8176) 19 4 96.00

OA(256, 17, 16, 2) OA(16, 5, 4, 2) OD(1024, 25668) 17 4 95.52

OA(512, 33, 16, 2) OA(16, 5, 4, 2) OD(2048, 256132) 33 4 97.71

OA(625, 26, 25, 2) OA(25, 6, 5, 2) OD(3125, 625156) 26 6 96.77

†OD(sn, (s4)κµ) from Algorithm 1, which consists of κ groups of µ columns each, where µ = 2k, k = bm/2c, and

κµ = 4bgk/2c.
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For comparison, we consider the resulting orthogonal designs from Algorithm 1,

the mappable nearly orthogonal arrays (MNOAs) in Mukerjee, Sun and Tang (2014),

the orthogonal designs in Sun and Tang (2017b), and the orthogonal strong orthogonal

arrays (OSOAs) in Liu and Liu (2015). Mukerjee, Sun and Tang (2014) constructed

MNOAs using a kind of replacement method (Hedayat, Sloane and Stufken (1999)),

Sun and Tang (2017b) constructed orthogonal designs using rotation matrices, and Liu

and Liu (2015) constructed OSOAs using generalized rotation matrices. It is worth

noting that though the forms of the resulting designs are similar, the proposed method

is a new technique and has not been mentioned in the literature.

By definition, an MNOA(n, ((s2)u)φ, (su)φ) in Mukerjee, Sun and Tang (2014) has

s2 levels. It can be partitioned into φ groups with u columns in each group, where any

two columns achieve a stratification on an s×s grid, and any two columns from different

groups achieve a stratification on an s2×s2 grid. These space-filling properties also hold

for the orthogonal design, denoted as OD(n, (s4)m), in Sun and Tang (2017b), where

an OD(n, (s4)m) has s4 levels and is orthogonal. Recall that the resulting orthogonal

design from Algorithm 1 achieves stratifications on s × s2 and s2 × s grids in all two

dimensions, and stratifications on s×s3, s2×s2 and s3×s finer grids in any two columns

from different groups. It is clear that the proposed design enjoys better two-dimensional

space-filling properties compared with the MNOA(n, ((s2)u)φ, (su)φ) in Mukerjee, Sun

and Tang (2014) and OD(n, (s4)m) in Sun and Tang (2017b). Moreover, it outperforms

in terms of three-dimensional space-filling properties, as it achieves a stratification on

an s× s× s grid in any three dimensions from two groups.
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We next consider the OSOAs in Liu and Liu (2015), denoted as OSOA(n,m, s3, 3)

and OSOA(n,m, s4, 4) respectively. By the definition of strong orthogonal array (He

and Tang (2013)), an OSOA(n,m, s3, 3) has s3 levels and achieves stratifications on

s×s2 and s2×s grids in all two dimensions, while an OSOA(n,m, s4, 4) has s4 levels and

achieves stratifications on s×s3, s2×s2 and s3×s grids in all two dimensions. It is clear

that the proposed orthogonal design enjoys better one- and two-dimensional space-

filling properties than the OSOA(n,m, s3, 3). It can also be regarded as a generalized

version of the OSOA of strength 4, where the proportion π measures the degree of

proximity in terms of two-dimensional space-filling property. From Table 1, the values

of π are very close to one, i.e., the proposed designs have almost the same desirable two-

dimensional space-filling properties as those of the OSOAs of strength 4. In addition,

the proposed designs can accommodate much more columns.

Table 2 shows that the proposed designs enjoy much better two-dimensional space-

filling properties than the MNOAs in Mukerjee, Sun and Tang (2014), orthogonal

designs in Sun and Tang (2017b) and OSOAs of strength three in Liu and Liu (2015).

Moreover, they have almost the same desirable two-dimensional space-filling properties

as those of the OSOAs of strength 4 in Liu and Liu (2015), and they can accommodate

much more columns than the latter ones. Table 3 lists the sizes of some selected designs

for s = 2. It is clear that the proposed orthogonal designs are very competitive.

Example 2. Let (Xi, f(Xi)) be a computer experiment sample from the true model

f(X) = cos(0.02πx1x2x3/x4 − 1) at Xi ∈ Xtraining for i = 1, . . . , 64, where X =

(x1, x2, x3, x4)T ∈ R4 and Xtraining is the set of training points. Fit the data by the
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Table 2: Properties of the proposed orthogonal designs and related designs.

Stratification in two dimensions

Design Orthogonality From different groups From the same group

OD(n, (s4)κµ)† 1 s× s3, s2 × s2, s3 × s s× s2, s2 × s

MNOA(n, ((s2)u)φ, (su)φ)‡ δ s2 × s2 s× s

OD(n, (s4)m)] 1 s2 × s2 s× s

OSOA(n,m, s3, 3)[ 1 s× s2, s2 × s s× s2, s2 × s

OSOA(n,m, s4, 4)\ 1 s× s3, s2 × s2, s3 × s s× s3, s2 × s2, s3 × s

†OD(n, (s4)κµ from Algorithm 1; ‡MNOA(n, ((s2)u)φ, (su)φ) in Mukerjee, Sun and Tang (2014), achieving or-

thogonality in proportion δ = (φ− 1)u/(φu− 1); ]OD(n, (s4)m) in Sun and Tang (2017b); [OSOA(n,m, s3, 3) in

Liu and Liu (2015); \OSOA(n,m, s4, 4) in Liu and Liu (2015).

Table 3: Comparisons between the proposed orthogonal designs and related designs.

OD(n, (s4)κµ)† MNOA‡ OD(n, (s4)m)] OSOA(3)[ OSOA(4)\

n κµ π(%) uφ δ(%) m m m

32 8 85.71 27 92.31 16 8 2

64 16 93.33 63 96.77 40 16 4

96 24 95.65 69 97.06 44 24 2

128 40 97.44 123 98.36 80 32 4

192 44 97.67 − − − 48 4

256 80 98.73 255 99.21 168 64 6

†OD(n, (s4)κµ from Algorithm 1, achieving stratifications on s × s3, s3 × s and s2 × s2 grids in proportion

π = (κ − 1)µ/(κµ − 1); ‡MNOA: MNOA(n, ((s2)u)φ, (su)φ) in Mukerjee, Sun and Tang (2014), achieving

orthogonality and stratifications on s2× s2 grids in proportion δ = (φ− 1)u/(φu− 1); ]OD(n, (s4)m) in Sun and

Tang (2017b); [OSOA(3): OSOA(n,m, s3, 3) in Liu and Liu (2015) \OSOA(4): OSOA(n,m, s4, 4) in Liu and

Liu (2015); Symbol − indicates that the corresponding array is not available.

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0046



A NEW CLASS OF ORTHOGONAL DESIGNS 16

second-order polynomial model

E(f(X)) = g(X) = β0 +
4∑
i=1

βixi +
∑

1≤i≤j≤4

xixj.

The mean squared error MSE(g) =
∑

X∈Xtest
(f(X)− g(X))2/N can be used to evalu-

ate the performance of g(X), whereXtest is the set of test points andN is the cardinality

of Xtest. Take five Xtraining’s to be (1) the first four columns of the OD(64, 1616) from

Algorithm 1, (2) the MNOA(64, (43)
21
, (23)

21
) from Mukerjee, Sun and Tang (2014),

(3) the OD(64, 1640) from Sun and Tang (2017b), (4) the OSOA(64,16,8,3) from Liu

and Liu (2015), and (5) the OSOA(64,4,16,4) from Liu and Liu (2015), respectively.

Let Xtest be the set of 10000 points K ×K ×K ×K, where K = {1, 2, 3, 4, 5, 6, 7, 8,

9, 10}. The MSEs for the five designs can be obtained as 3.86, 5.96, 8.76, 4.64, and

0.47, respectively. It is clear that the OSOA(64,4,16,4) has the minimum MSE, as the

OSOA of strength four enjoys the best space-filling properties among the five designs.

The OD(64, 1616) from Algorithm 1 produces the second smallest MSE, since it out-

performs the MNOA(64, (43)
21
, (23)

21
), OD(64, 1640), and OSOA(64,16,8,3) in terms of

space-filling properties. Note that even the OSOA of strength four outperforms the

newly proposed orthogonal design, it has too few columns and it will not work if X has

five or more variables; while the OD(64, 1616) always works for X having 16 or fewer

variables. In summary, the proposed OD(64, 1616) is a very competitive choice.

4. Orthogonal Space-filling Designs of s3 Levels

Section 3 constructs orthogonal designs of s4 levels. Another construction method

is proposed which is able to increase the number of factors, while decreasing the number
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of levels of each factor to s3. The detail is given in Algorithm 2 below.

Algorithm 2 (Construction of s3-level orthogonal designs).

Input : An OA(n, g, p, 2), called A, and an OA(p,m, s, 2), called B.

Output : An OD(sn, (s3)2gk) with k = bm/2c, called Y .

Step 1. Let matrices C and Cij be the same as in Algorithm 1. Then order Cij’s as

C11, C12, . . . , C1k, C21, C22, . . . , C2k, . . . , Cg1, Cg2, . . . , Cgk.

Take one Cij at a time in the order given in Step 1, then obtain gk sets of two

columns each. Denote these sets as C(1), . . . , C(gk) where C(l) = (c(l1), c(l2)) for

l = 1, . . . , gk.

Step 2. For l = 1, . . . , gk, obtain Y (l) from C(l), where Y (l) = (y(l1), y(l2)) and

y(l1) = s2(α0 ⊕ c(l1))∗ + s(αs ⊕ c(l2))∗ + (α0 ⊕ c(l2))∗,

y(l2) = s(αs ⊕ c(l1))∗ − s2(α0 ⊕ c(l2))∗ + (α0 ⊕ c(l1))∗,

therein α0 = (0, . . . , 0)T and αs = (0, . . . , s− 1)T are two s× 1 vectors on GF (s).

Step 3. Combine Y (l) by column juxtaposition to form Y = (Y (1), . . . , Y (gk)). Partition

Y into g disjoint groups with 2k columns in each group, and obtain

Y = (Y1, . . . , Yg). (4.1)

By similar arguments for developing Theorems 1 and 2, we can prove that design

Y has the following desirable properties.
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Theorem 3. Design Y obtained by Algorithm 2 is an OD(sn, (s3)2gk) with k = bm/2c,

and has the following properties:

(i) any two distinct columns achieve stratifications on s× s2 and s2 × s grids;

(ii) any two columns from different groups in (4.1), say Yi1 and Yi2 with i1 6= i2,

achieve stratifications on s× s3, s2 × s2 and s3 × s grids;

(iii) any three distinct columns from two different groups in (4.1), say Yi1 and Yi2 with

i1 6= i2, achieve a stratification on an s× s× s grid.

Compared with the orthogonal designs constructed in Algorithm 1, the obtained

designs from Algorithm 2 can accommodate more factors with fewer levels, while the

space-filling properties in two and three dimensions are the same as those designs via

Algorithm 1. An illustrative example is given below.

Example 3. Let matrices A and B be the ones used in Example 1. The resulting

design Y shown in Table S.4 in the Supplementary Material has two more columns

than design X in Example 1. It can be verified that Y is an OD(64, 818) and can be

partitioned into 9 groups with two columns in each group. Any two columns of Y

achieve stratifications on 2 × 4 and 4 × 2 grids, while any two columns from different

groups achieve stratifications on 2×8, 4×4 and 8×2 grids. Here we have π = 94.12%,

where π is the proportion of two-tuples which achieve stratifications on 2×8, 4×4 and

8×2 grids. Any three distinct columns from two different groups achieve a stratification

on a 2 × 2 × 2 grid. Furthermore, Y achieves stratifications on 2 × 2 × 2 grids in 788

out of all 816 (i.e., 96.57%) three dimensions by a comprehensive examination.
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Table 4 lists some orthogonal designs obtained from Algorithm 2. Compared with

the method in Algorithm 1, this method can increase the number of factors of the re-

sulting design while decreasing the number of levels. Both methods produce orthogonal

designs with attractive space-filling properties.

Table 4: Some orthogonal designs from Algorithm 2 and their space-filling properties.

A: OA(n, g, p, 2) B: OA(p,m, s, 2) X: OD(sn, (s3)κµ)
‡

κ µ π(%)

OA(16, 5, 4, 2) OA(4, 3, 2, 2) OD(32, 810) 5 2 88.89

OA(32, 9, 4, 2) OA(4, 3, 2, 2) OD(64, 818) 9 2 94.12

OA(48, 13, 4, 2) OA(4, 3, 2, 2) OD(96, 826) 13 2 96.00

OA(64, 21, 4, 2) OA(4, 3, 2, 2) OD(128, 842) 21 2 97.56

OA(96, 23, 4, 2) OA(4, 3, 2, 2) OD(192, 846) 23 2 97.78

OA(128, 41, 4, 2) OA(4, 3, 2, 2) OD(256, 882) 41 2 98.77

OA(64, 9, 8, 2) OA(8, 7, 2, 2) OD(128, 854) 9 6 90.57

OA(128, 17, 8, 2) OA(8, 7, 2, 2) OD(256, 8102) 17 6 95.05

OA(81, 10, 9, 2) OA(9, 4, 3, 2) OD(243, 2740) 10 4 92.31

OA(162, 19, 9, 2) OA(9, 4, 3, 2) OD(486, 2776) 19 4 96.00

OA(256, 17, 16, 2) OA(16, 5, 4, 2) OD(1024, 6468) 17 4 95.52

OA(512, 33, 16, 2) OA(16, 5, 4, 2) OD(2048, 64132) 33 4 97.71

OA(625, 26, 25, 2) OA(25, 6, 5, 2) OD(3125, 125156) 26 6 96.77

‡OD(sn, (s3)κµ) from Algorithm 2, which consists of κ groups of µ columns each, where µ = 2k, k = bm/2c, and

κ = g.

5. Mixed-level Orthogonal Space-filling Designs

In this section, we consider the mixed-level orthogonal designs, which are useful

when some factors need more levels than others. The construction method is given in

Algorithm 3.
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Algorithm 3 (Construction of mixed-level orthogonal designs).

Input : An OA(n, g, p, 2), called A, and an OA(p,m, s, 2), called B.

Output : An OD(sn, (s4)4q1(s3)2q2) with q1 ≤ bgk/2c and 4q1 + 2q2 = 2gk, called W .

Step 1. Let matrices C and Cij be the same as in Algorithm 1. Then order the Cij’s

as

C11, C21, . . . , Cg1, C12, C22, . . . , Cg2, . . . , C1k, C2k, . . . , Cgk.

First, take two successive Cij’s in the above order a total of q1 times, where q1 ≤

bgk/2c. Then we obtain q1 sets of four columns each, denoted as C(1), . . . , C(q1),

where C(l) = (c(l1), . . . , c(l4)) for l = 1, . . . , q1. Take one Cij at a time in the

remaining list, then we obtain q2 = gk − 2q1 sets of two columns each, denoted

as C(1), . . . , C(q2), where C(l) = (c(l1), c(l2)) for l = 1, . . . , q2.

Step 2. For l = 1, . . . , q1, let W(l) be the X(l) in Algorithm 1. For l = 1, . . . , q2, let W (l)

be the Y (l) in Algorithm 2. Further let

W = (W(1), . . . ,W(q1),W
(1), . . . ,W (q2)).

Step 3. Rearrange the columns of W according to the order of their leading columns

in the original groups C1, . . . , Cg and denote these new groups as W1, . . . ,Wg.

Define

W = (W1, . . . ,Wg), (5.1)

where Wi corresponds to Ci for i = 1, . . . , g.

Similar to Theorem 3, we have the following theorem for the resulting design W .
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Theorem 4. Design W obtained by Algorithm 3 is an OD(sn, (s4)4q1(s3)2q2) with q1 ≤

bgk/2c and 4q1 + 2q2 = 2gk, and has the following properties:

(i) any two distinct columns achieve stratifications on s× s2 and s2 × s grids;

(ii) any two columns from different groups in (5.1), say Wi1 and Wi2 with i1 6= i2,

achieve stratifications on s× s3, s2 × s2 and s3 × s grids;

(iii) any three distinct columns from two different groups in (5.1), say Wi1 and Wi2

with i1 6= i2, achieve a stratification on an s× s× s grid.

Remark 1. From Theorem 4, if gk is even and q1 = gk/2, the resulting design is the

OD(sn, (s4)2gk) obtained in Algorithm 1; if gk is odd, then for q1 = bgk/2c, we can

get the OD(sn, (s4)4bgk/2c) obtained in Algorithm 1 by deleting the last two columns.

Taking the value of q1 to be the minimum value 0, the design OD(sn, (s3)2gk) is just

the one obtained via Algorithm 2.

Example 4. Let matrices A and B be the ones used in Example 1. If q1 = 3, the

resulting design W from Algorithm 3 is a mixed-level design with 18 columns, of which

12 factors are populated by 16 levels, and the other 6 factors are populated by 8 levels

(as shown in Table S.5 in the Supplementary Material). It can be verified that this is

an OD(64, 161286) which can be partitioned into 9 disjoint groups with two columns in

each group. Moreover, any two columns achieve stratifications on 2×4 and 4×2 grids,

any two columns from different groups achieve stratifications on 2× 8, 4× 4 and 8× 2

grids, and any three distinct columns from two different groups achieve a stratification

on a 2× 2× 2 grid. Furthermore, it can be verified that W achieves stratifications on
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2× 2× 2 grids in 788 out of all 816 (i.e., 96.57%) three dimensions.

6. Concluding Remarks

The space-filling property is perhaps the most popular design property for computer

experiments, as it results in good performance in terms of prediction accuracy over the

entire experimental region and minimizes the bias of the fitted model. Orthogonality

is also an important property for computer experiments since it allows the estimates of

the main effects to be uncorrelated with each other. Therefore, both the space-filling

property and orthogonality are desirable.

Here, we develop methods for constructing a new class of orthogonal designs with

attractive (two- and three-dimensional) space-filling properties. These designs are new

and can not be constructed by any existing methods. The resulting designs are very

flexible in the run sizes —e.g., they do not necessarily need to be prime powers. These

newly constructed orthogonal designs can be either symmetric (equal-level) or asym-

metric (mixed-level). This is particularly useful when some factors have more levels

than others. Compared with popular space-filling designs, specifically the mappable

nearly orthogonal arrays in Mukerjee, Sun and Tang (2014) and orthogonal designs in

Sun and Tang (2017b), the proposed designs have better space-filling properties in both

two and three dimensions as well as in one dimension for s4-level orthogonal designs

from Algorithm 1.

Algorithms 1 and 2 focus on the orthogonal designs of s4 and s3 levels, respectively;

while Algorithm 3 provides a construction for the mixed-level case of this class of

orthogonal designs, which are appealing for allocating factors with different numbers
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of levels. Table 5 summarizes some orthogonal designs constructed by Algorithms 1, 2

and 3 for practical needs.

Table 5: Some orthogonal designs from Algorithms 1, 2 and 3.

OD(sn, (s4)4q1 (s3)2q2 )]

A: OA(n, g, p, 2) B: OA(p,m, s, 2) OD(sn, (s4)4bgk/2c)†OD(sn, (s3)2gk)‡ Design Constraint

OA(16, 5, 4, 2) OA(4, 3, 2, 2) OD(32, 168) OD(32, 810) OD(32, 164q182q2 ) Q = 10, q1 ≤ 2

OA(32, 9, 4, 2) OA(4, 3, 2, 2) OD(64, 1616) OD(64, 818) OD(64, 164q182q2 ) Q = 18, q1 ≤ 4

OA(48, 13, 4, 2) OA(4, 3, 2, 2) OD(96, 1624) OD(96, 826) OD(96, 164q182q2 ) Q = 26, q1 ≤ 6

OA(64, 21, 4, 2) OA(4, 3, 2, 2) OD(128, 1640) OD(128, 842) OD(128, 164q182q2 ) Q = 42, q1 ≤ 10

OA(96, 23, 4, 2) OA(4, 3, 2, 2) OD(192, 1644) OD(192, 846) OD(192, 164q182q2 ) Q = 46, q1 ≤ 11

OA(128, 41, 4, 2) OA(4, 3, 2, 2) OD(256, 1680) OD(256, 882) OD(256, 164q182q2 ) Q = 82, q1 ≤ 20

OA(64, 9, 8, 2) OA(8, 7, 2, 2) OD(128, 1652) OD(128, 854) OD(128, 164q182q2 ) Q = 54, q1 ≤ 13

OA(128, 17, 8, 2) OA(8, 7, 2, 2) OD(256, 16100) OD(256, 8102) OD(256, 164q182q2 ) Q = 102, q1 ≤ 25

OA(81, 10, 9, 2) OA(9, 4, 3, 2) OD(243, 8140) OD(243, 2740) OD(243, 814q1272q2 ) Q = 40, q1 ≤ 10

OA(162, 19, 9, 2) OA(9, 4, 3, 2) OD(486, 8176) OD(486, 2776) OD(486, 814q1272q2 ) Q = 76, q1 ≤ 19

OA(256, 17, 16, 2) OA(16, 5, 4, 2) OD(1024, 25668) OD(1024, 6468) OD(1024, 2564q1642q2 ) Q = 68, q1 ≤ 17

OA(512, 33, 16, 2) OA(16, 5, 4, 2) OD(2048, 256132) OD(2048, 64132) OD(2048, 2564q1642q2 ) Q = 132, q1 ≤ 33

OA(625, 26, 25, 2) OA(25, 6, 5, 2) OD(3125, 625156) OD(3125, 125156) OD(3125, 6254q11252q2 ) Q = 156, q1 ≤ 39

‡ OD(sn, (s4)4bgk/2c) from Algorithm 1; ‡OD(sn, (s3)2gk) from Algorithm 2; ]OD(sn, (s4)4q1 (s3)2q2 ) from Algo-

rithm 3, where k = bm/2c, q1 ≤ bgk/2c and Q = 4q1 + 2q2 = 2gk.

Orthogonal space-filling designs are desirable for computer experiments. The pro-

posed designs are of great importance in both theory and practice. We hope that our

work will stimulate a greater research interest in space-filling orthogonal designs.

Supplementary Material

The online Supplementary Material includes the proofs of Lemma 1 and Theorems

1 and 2, as well as five tables, where Tables S.1, S.2 and S.3 lists the OA(32, 9, 4, 2),

OA(4, 3, 2, 2) and OD(64, 1616) in Example 1, respectively. Table S.4 lists the OD(64,

818) in Example 3, and Table S.5 lists the OD(64, 161286) in Example 4.

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0046



A NEW CLASS OF ORTHOGONAL DESIGNS 24

Acknowledgments

The authors thank Editor Rong Chen, an associate editor, and three referees for

their valuable comments and suggestions. This work was supported by the National

Natural Science Foundation of China (Grant Nos. 12131001, 12226343, 12371260 and

12301323), National Ten Thousand Talents Program of China, MOE Project of Key

Research Institute of Humanities and Social Sciences (22JJD110001), and National

Science Foundation of USA (Grant No. DMS-18102925). The authors would like to

thank Nicholas Rios for his valuable suggestions.

References

Ai, M., He, Y. and Liu, S. (2012). Some new classes of orthogonal Latin hypercube

designs. J. Statist. Plann. Inference 142, 2809–2818.

Bingham, D., Sitter, R. R. and Tang, B. (2009). Orthogonal and nearly orthogonal

designs for computer experiments. Biometrika 96, 51–65.

Fang, K. T., Li, R. and Sudjianto, A. (2006). Design and Modeling for Computer

Experiments. Chapman and Hall/CRC, New York.

Fang, K. T., Lin, D. K. J., Winker, P. and Zhang, Y. (2000). Uniform design: theory

and application. Technometrics 42, 237–248.

Georgiou, S. D. and Stylianou, S. (2011). Block-circulant matrices for constructing

optimal Latin hypercube designs. J. Statist. Plann. Inference 141, 1933–1943.

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0046



A NEW CLASS OF ORTHOGONAL DESIGNS 25

Georgiou, S. D., Stylianou, S., Drosou, K. and Koukouvinos, C. (2014). Construction

of orthogonal and nearly orthogonal designs for computer experiments. Biometrika

101, 741–747.

He, Y., Cheng, C. S. and Tang, B. (2018). Strong orthogonal arrays of strength two

plus. Ann. Statist. 46, 457–468.

He, Y. and Tang, B. (2013). Strong orthogonal arrays and associated Latin hypercubes

for computer experiments. Biometrika 100, 254–260.

He, Y. and Tang, B. (2014). A characterization of strong orthogonal arrays of strength

three. Ann. Statist. 42, 1347–1360.

Hedayat, A. S., Sloane, N. J. A. and Stufken, J. (1999). Orthogonal Arrays: Theory

and Applications. Springer, New York.

Johnson, M. E., Moore, L. M. and Ylvisaker, D. (1990). Minimax and maximin distance

designs. J. Statist. Plann. Inference 26, 131–148.

Joseph, V. R., Gul, E. and Ba, S. (2015). Maximum projection designs for computer

experiments. Biometrika 102, 371–380.

Joseph, V. R. and Hung, Y. (2008). Orthogonal-maximin Latin hypercube designs.

Statist. Sinica 18, 171–186.

Lin, C. D., Mukerjee, R. and Tang, B. (2009). Construction of orthogonal and nearly

orthogonal Latin hypercubes. Biometrika 96, 243–247.

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0046



A NEW CLASS OF ORTHOGONAL DESIGNS 26

Liu, H. and Liu, M. Q. (2015). Column-orthogonal strong orthogonal arrays and sliced

strong orthogonal arrays. Statist. Sinica 25, 1713–1734.

McKay, M. D., Beckman, R. J. and Conover, W. J. (1979). A comparison of three

methods for selecting values of input variables in the analysis of output from a

computer code. Technometrics 21, 239–245.

Mukerjee, R., Sun, F. and Tang, B. (2014). Nearly orthogonal arrays mappable into

fully orthogonal arrays. Biometrika 101, 957–963.

Owen, A. B. (1992). Orthogonal arrays for computer experiments, integration and

visualization. Statist. Sinica 2, 439–452.

Pang, F., Liu, M. Q. and Lin, D. K. J. (2009). A construction method for orthogonal

Latin hypercube designs with prime power levels. Statist. Sinica 19, 1721–1728.

Santner, T. J., Williams, B. J. and Notz, W. I. (2018). The Design and Analysis of

Computer Experiments (2nd Ed.). Springer, New York.

Shi, C. and Tang, B. (2020). Construction results for strong orthogonal arrays of

strength three. Bernoulli 26, 418–431.

Steinberg, D. M. and Lin, D. K. J. (2006). A construction method for orthogonal Latin

hypercube designs. Biometrika 93, 279–288.

Sun, F., Liu, M. Q. and Lin, D. K. J. (2009). Construction of orthogonal Latin hyper-

cube designs. Biometrika 96, 971–974.

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0046



A NEW CLASS OF ORTHOGONAL DESIGNS 27

Sun, F. and Tang, B. (2017a). A general rotation method for orthogonal Latin hyper-

cubes. Biometrika 104, 465–472.

Sun, F. and Tang, B. (2017b). A method of constructing space-filling orthogonal de-

signs. J. Amer. Statist. Assoc. 112, 683–689.

Tang, B. (1993). Orthogonal arrays based Latin hypercubes. J. Amer. Statist. Assoc.

88, 1392–1397.

Tian, Y. and Xu, H. (2022). A minimum aberration-type criterion for selecting space-

filling designs. Biometrika 109, 489–501.

Wang, C., Yang, J. and Liu, M. Q. (2022). Construction of strong group-orthogonal

arrays. Statist. Sinica 32, 1225–1243.

Wang, L., Sun, F., Lin, D. K. J. and Liu, M. Q. (2018). Construction of orthogonal

symmetric Latin hypercube designs. Statist. Sinica 28, 1503–1520.

Wang, Y., Sun, F. and Xu, H. (2022). On design orthogonality, maximin distance

and projection uniformity for computer experiments. J. Amer. Statist. Assoc. 117,

375–385.

Yang, J. and Liu, M. Q. (2012). Construction of orthogonal and nearly orthogonal

Latin hypercube designs from orthogonal designs. Statist. Sinica 22, 433–442.

Ye, K. Q. (1998). Orthogonal column Latin hypercubes and their application in com-

puter experiments. J. Amer. Statist. Assoc. 93, 1430–1439.

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0046



A NEW CLASS OF ORTHOGONAL DESIGNS 28

Zhou, Y. and Tang, B. (2019). Column-orthogonal strong orthogonal arrays of strength

two plus and three minus. Biometrika 106, 997–1004.

Chunyan Wang

Center for Applied Statistics, School of Statistics, Renmin University of China, Beijing

100872, China

E-mail: chunyanwang@ruc.edu.cn

Dennis K. J. Lin

Department of Statistics, Purdue University, West Lafayette, IN, 47907, USA

E-mail: dkjlin@purdue.edu

Min-Qian Liu

School of Statistics and Data Science, LPMC & KLMDASR, Nankai University, Tianjin

300071, China

E-mail: mqliu@nankai.edu.cn

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0046




