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Abstract: In order to better forecast the volatility of underlying securities, this pa-

per proposes a new model to integrate three important information sources, high-

frequency and low-frequency historical observations, and options data, and the

extracted options-implied information, rather than the option prices themselves,

is used as an exogenous variable for simplicity. The quasi-maximum likelihood

estimation is considered, and its asymptotic properties, as well as a hypothesis

test, are further established. The proposed model is applied to the S&P 500

index as the underlying security, and the implied volatility index (VIX) is chosen

as the options-implied information. Its superior performance can be observed in

terms of out-of-sample forecast against many existing models.
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1. Introduction

Volatility analysis has significant importance in modern finance and eco-

nomics. A natural information source of the volatility is the historical data

of a security, and they can be further classified into high- and low-frequency

ones. Specifically, high-frequency data pertains to intra-day prices, such

as tick-by-tick, 1-second and 5-minute data. Scholars commonly employ

continuous-time Itô processes for high-frequency data, and the correspond-

ing estimation can also be established. Examples include two-time scale

realized volatility (TSRV) in Zhang et al. (2005), multi-scale realized volatil-

ity (MSRV) in Zhang (2006), kernel realized volatility (KRV) in Barndorff-

Nielsen et al. (2009), pre-averaging realized volatility (PRV) in Jacod et al.

(2009) and quasi-maximum likelihood estimation (QMLE) in Xiu (2010).

On the other hand, low-frequency data refer to observed prices of a security

over daily or longer time intervals, and many volatility models have been

developed and evaluated for them; see, e.g., the autoregressive conditional

heteroskedasticity (ARCH) in Engle (1982) and the generalized autoregres-

sive conditional heteroskedasticity (GARCH) in Bollerslev (1986).

Intuitively, the relationship between high- and low-frequency historical

data suggests the need of an integrated approach. In fact, many models have

already been proposed for such integration, and they include the heteroge-

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0020



4

neous autoregressive model for realized volatility (HAR-RV) in Corsi (2009),

the realized GARCH model (Hansen et al., 2012), the high-frequency-based

volatility model (Shephard and Sheppard, 2010), the multiplicative error

model (Engle and Gallo, 2006) and the GARCH-Itô model (Kim and Wang,

2016). The first four models incorporate daily realized volatility estima-

tors directly into low-frequency econometric models as exogenous variables,

while the GARCH-Itô model offers a more comprehensive approach to com-

bine both high- and low-frequency data. Specifically, it integrates a GARCH

model for low-frequency data at integer time points with a continuous-time

Itô process between two consecutive points. As a result, the GARCH-Itô

model is expected to be able to utilize the high-frequency data more effec-

tively than the other four models.

In the meanwhile, option prices are another important information

source for a security’s volatility. Different from historical data which pro-

vides information from the past, it is forward-looking as it reflects expecta-

tion for the future. The most renowned measure derived from option prices

is the implied volatility and, when being inputted in the Black-Scholes op-

tion pricing model, it yields a theoretical value equal to the current market

price of the options. The implied volatility index (VIX) is a weighted aver-

age of implied volatilities for certain options on a specific index. It serves
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as an indicator of investors’ expectation regarding future economic condi-

tions and market volatility. Numerous research efforts have been spent on

constructing volatility models that combine low-frequency data and implied

volatility information. For example, Blair et al. (2001) and Koopman et al.

(2005) integrated the implied volatility as well as the realized volatility into

low-frequency ARCH and GARCH models. Ni et al. (2008) and Chang et

al. (2010) integrated the net demand for volatility of non-market makers

and foreign institutional investors into linear volatility forecasting models.

More recently, Martin et al. (2021) demonstrated that the inclusion of the

VIX in GARCH models can improve the volatility forecasts; see also Pan

et al. (2019) and Pati et al. (2018).

On the other hand, many models are considered to combine all the

three information sources: high-frequency, low-frequency and options data.

Song et al. (2021) expanded the GARCH-Itô model to realized GARCH-Itô

models with options-implied information, based on the linear relationship

between the nonparametric volatility estimator (Todorov, 2019) and the

conditional daily integrated volatility. Moreover, Yuan et al. (2022) found

that there exists a dynamic equation between the options-implied infor-

mation and security’s conditional variance, leading to the GARCH-Itô-IV

model, which is a “complete” specification of the joint dynamics of returns,
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latent instantaneous volatilities and options-implied volatility.

Motivated by the aforementioned researches, we treat the options-implied

information as an exogenous variable, and hence a simpler volatility model,

named GARCH-Itô-OI model, is proposed in Section 2. Its volatility prop-

erties are also discussed, and the options-implied information is assumed

to have a positive and time-dependent influence on high-frequency instan-

taneous volatility in subsequent time intervals. Section 3 considers the

quasi-maximum likelihood estimation, and its asymptotic properties, as

well as a hypothesis test, are also established. Section 4 conducts simula-

tion experiments to evaluate the finite-sample performance of the proposed

methodology. Section 5 considers the S&P 500 index as the underlying se-

curity and utilizes the VIX as the implied information derived from options

on the S&P 500 index. The proposed model is demonstrated to outperform

existing volatility models in terms of forecasting accuracy and measured by

mean squared error and quasi-likelihood. Section 6 gives a short conclusion,

and all technical proofs are relegated to the Supplementary Material.

2. Unified GARCH-Itô-OI model

The GARCH-Itô model (Kim and Wang, 2016) unifies both high- and low-

frequency historical data. Specifically, it embeds a standard GARCH(1,1)
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model into a continuous-time Itô process:

dXt =µtdt+ σtdBt,

σ2
t =σ2

[t] + (t− [t])
{
ω + (γ − 1)σ2

[t]

}
+ β

(∫ t

[t]

σsdBs

)2

,

where Xt is the log price of an asset at time t ∈ [0,+∞), µt is a drift term,

[t] denotes the integer part of t except that [t] = t− 1 when t is an integer,

Bt is a standard Brownian motion with respect to a filtration {Ft}, and σ2
t

is a volatility process adapted to {Ft}.

Due to its strong predictive power in forecasting the volatility of a

security, the options-implied information is incorporated into the GARCH-

Itô model, and this leads to the following GARCH-Itô-OI model.

Definition 1. A log price Xt with t ∈ [0,+∞) is said to follow a unified

GARCH-Itô-OI model, if it satisfies that

dXt =µtdt+ σtdBt,

σ2
t =σ2

[t] + (t− [t])
{
ω + (γ − 1)σ2

[t] + αO[t]

}
+ β

(∫ t

[t]

σsdBs

)2

, (2.1)

where O[t] is the {F[t]}-adapted exogenous options-implied information at

integer time [t], and θ = (ω, β, γ, α) is the parameter vector.

Remark 1. The proposed model involves the options-implied information

at integer time points only, and we may alternatively consider the instan-

taneous version, i.e. O[t] is replaced by Ot. However, the options-implied
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information will be involved in a complicated form at the corresponding

low-frequency GARCH model at the forthcoming Proposition 1, while this

paper aims at a simple volatility model with the options-implied informa-

tion being involved as an exogenous variable. To this end, we keep the

proposed model at Definition 1 unchanged, while the model with instanta-

neous options-implied information is left for future research.

Remark 2. Based on practical considerations, we make certain assump-

tions on the options-implied information and its influence on the instanta-

neous volatility for the above model. Firstly, the options-implied informa-

tion is assumed to be positive. Secondly, both the options-implied informa-

tion and the past instantaneous volatility have time-dependent influences

on the instantaneous volatility in the next time interval. This assumption

acknowledges the fact that the impact of these variables may vary over time

and hence can capture the dynamic of volatility forecasting. Thirdly, as the

options-implied information is forward-looking, it is reasonable to assume

that it has more predictive power for the farther future, i.e. α > 0. Lastly,

the assumption that γ is less than one acknowledges the fact that, as time

moves forward, the predictive power of past volatility decreases.

Consider the integrated volatility over consecutive integers, i.e.
∫ i

i−1
σ2
t dt

with i ∈ N, where N is the set of all non-negative integers. We next state
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some of its properties.

Proposition 1. (a) Under the GARCH-Itô-OI model, it holds that, for any

i ∈ N and 0 < β < 1, ∫ i

i−1

σ2
t dt = gi(θ) +Di,

where

gi(θ) =ωg + γgi−1(θ) + βgZ2
i−1 + ηgOi−1 + ξgOi−2 (2.2)

with the parameters being given below

ωg =β−1(eβ − 1)ω, βg = β−1(γ − 1)(eβ − 1− β) + eβ − 1,

ηg =β−2(eβ − 1− β)α, ξg = {β−1(eβ − 1)− β−2(eβ − 1− β)}α,

θg =(ωg, γ, βg, ηg, ξg),

(2.3)

and

Di = 2

∫ i

i−1

(e(i−t)β − 1)

∫ t

i−1

σsdBsσtdBt,

is a martingale difference sequence.

(b) For any i ∈ N and 0 < β < 1, it holds that

E

[∫ i

i−1

σ2
t dt

∣∣∣∣Fi−1

]
= gi(θ).

(c) For 0 < βg + γ < 1 and i ∈ N, it holds that

E[gi(θ)] =
ωg + (ηg + ξg)E[Oi]

1− βg − γ
and

E[σ2
i ] =

ω(1− βg − γ) + βωg + {α(1− βg − γ) + β(ηg + ξg)}E[Oi]

(1− βg − γ)(1− γ)
,
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where ωg, βg, ηg and ξg are defined in (2.3).

From (2.1), taking µt = 0 for simplicity, the low-frequency log return

Xi−Xi−1 will have a conditional variance equal to E[Z2
i |FLF

i−1], where Zi =∫ i

i−1
σtdBt and FLF

i = σ(Xi, Oi, Xi−1, Oi−1, · · · ). Through the link at (2.2)

between high- and low-frequency data, the above proposition implies that

Xi −Xi−1 follows a GARCH(1,1) model with two exogenous variables,

E[Z2
i |FLF

i−1] = ωg + γE[Z2
i−1|FLF

i−2] + βgZ2
i−1 + ηgOi−1 + ξgOi−2. (2.4)

Model (2.4) embeds the low-frequency GARCH model with implied volatil-

ity (GARCH-IV) model (Koopman et al., 2005), which has already been

shown by empirical studies to possess more accurate volatility forecasts

compared to the standard GARCH model. More importantly, Definition 1

provides a high-frequency dynamic structure for (2.4) and builds a bridge

between high-frequency and low-frequency parameters by (2.2) and (2.3).

3. Parameter estimation for GARCH-Itô-OI models

3.1 Quasi-maximum likelihood estimation

We first give the notations for the three information sources. Let Xt repre-

sent the underlying log price following the GARCH-Itô-OI model in Defini-

tion 1. The low-frequency data consist of observed true log prices at integer
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3.1 Quasi-maximum likelihood estimation 11

times, denoted by Xi with 0 ≤ i ≤ n. The options-implied information is

computed at integer times based on the true prices of options, and it is

denoted by Oi with 0 ≤ i ≤ n. Finally, the high-frequency data comprise

log prices observed at ti,j with 0 ≤ i ≤ n and j = 0, 1, . . . ,mi+1, and these

time points correspond to high-frequency intervals during the i-th period

satisfying i− 1 = ti,0 < ti,1 < . . . < ti,mi
< ti,mi+1 = ti+1,0 = i.

Different from low-frequency data and options-implied information, the

observed high-frequency log prices are contaminated by micro-structure

noise, making the true log prices unobservable. To address this issue, we

assume that the observed high-frequency log prices Yti,j follow a simple

additive noise model:

Yti,j = Xti,j + ϵti,j , (3.1)

where ϵti,j is the micro-structure noise independent of Xti,j , and for each i,

the noise sequence ϵti,j ’s with j = 1, · · · ,mi are independent and identically

distributed (i.i.d.) with mean zero and variance a2ϵ .

During the i-th period, the integrated volatility can be estimated by

using high-frequency financial data. From low-frequency viewpoints, the

estimated integrated volatilities can be treated as “observations” for in-

stantaneous volatility. Similar to the quasi-likelihood function in Kim and

Wang (2016), the quasi-likelihood function with options-implied informa-
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3.2 Asymptotic properties 12

tion can be defined as follows,

L̂n,m(θ) = − 1

2n

n∑
i=1

log(gi(θ))−
1

2n

n∑
i=1

RVi

gi(θ)
, (3.2)

where gi(θ) is given at (2.2), and the realized volatility RVi can be TSRV,

MSRV, KRV, PRV or QMLE. From Proposition 1, the integrated volatility

over the i-th period,
∫ i

i−1
σ2
t dt, equals to the sum of gi(θ0) and a martingale

difference Di, where θ0 = (ω0, β0, γ0, α0) is the true parameter vector. Since

the effect of martingale difference sequences are asymptotically negligible,

the terms with Di are dropped from the likelihood function L̂n,m(θ). More-

over, the initial values of σ2
0 and O0 are needed to calculate L̂n,m(θ). As a

result, the quasi-maximum likelihood estimator can be defined below,

θ̂ = argmax
θ∈Θ

L̂n,m(θ),

where Θ is the parameter space.

3.2 Asymptotic properties

This subsection establishes the consistency and asymptotic distribution for

the proposed estimator θ̂ = (ω̂, β̂, γ̂, α̂). We first give some notations. For

a matrix A = (Ai,j)i,j=1,...,k and a vector a = (a1, . . . , ak), their max norms

are defined as ||A||max = maxi,j |Ai,j| and ||a||max = maxi |ai|, respectively.

Given a random variable X, let its Lp norm be ||X||Lp = {E[|X|p]}1/p for
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3.2 Asymptotic properties 13

p ≥ 1. Moreover, let C be a generic positive constant with its value being

free of θ, n and mi, and it may change from lines to lines.

Assumption 1. (a) The parameter space Θ = {θ = (ω, β, γ, α) : ωl <

ω < ωu, βl < β < βu, γl < γ < γu, αl < α < αu, γ + βg < 1}, where

ωl, ωu, βl, βu, γl, γu, αl and αu are known positive constants, and βg is given

in (2.3).

(b) The options-implied information {Oi ≥ 0 : i ∈ N} is uniformly

bounded.

(c) One of the following two conditions is satisfied.

(c1) E [Z4
i |Fi−1]/g

2
i (θ0) ≤ C a.s. for any i ∈ N.

(c2) There exists a positive constant δ such that E
[
{Z2

i /gi(θ0)}2+δ
]
≤

C for any i ∈ N.

(d) {|Di| : i ∈ N} is uniformly integrable.

(e) {Di, Z
2
i } is a stationary and ergodic process.

(f) Let m =
∑n

i=1 mi/n. We have C1m ≤ mi ≤ C2m, and sup
1≤j≤mi

|ti,j −

ti,j−1| = O(m−1) and n2m−1 → 0 as m,n → ∞.

(g) sup
i∈N

∥∥∥RVi −
∫ i

i−1
σ2
t dt

∥∥∥
L1+δ

≤ C ·m−1/4 for some δ > 0.

(h) For any i ∈ N, E [RVi|Fi−1] ≤ C · E[
∫ i

i−1
σ2
t dt|Fi−1] + C a.s.

In comparison to Assumption 1 in Kim and Wang (2016), we add an

additional item (b) on the options-implied information, which is easily sat-
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3.2 Asymptotic properties 14

isfied in general, while item (a) and (c)-(h) have been used in Kim and

Wang (2016). Specifically, items (a)-(e) within Assumption 1 pertain to

the low-frequency aspect of the model, while items (f)-(h) are associated

with the high-frequency component.

Theorem 1. (a) Under Assumption 1 (a), (b), (d) and (f)-(g), there exists

a unique maximizer θ0 of

Ln(θ) = − 1

2n

n∑
i=1

log(gi(θ))−
1

2n

n∑
i=1

gi(θ0)

gi(θ)
,

and θ̂ → θ0 in probability as m,n → ∞.

(b) Under Assumption 1 (a)-(d) and (f)-(h), we have

∥∥∥θ̂ − θ0

∥∥∥
max

= Op

(
m−1/4 + n−1/2

)
.

Theorem 1 shows that θ̂ has the same convergence rate as the estimator

in GARCH-Itô model (Kim and Wang, 2016). In other words, the options-

implied information has no significant effect on the convergence rate.

Theorem 2. Suppose that Assumption 1 holds. If m,n → ∞, then

√
n(θ̂ − θ0)

d−→ N (0, B−1AB−1),
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3.3 Hypothesis test 15

where

A = E

[
∂g1(θ)

∂θ

∂g1(θ)

∂θT

∣∣∣∣
θ=θ0

g−4
1 (θ0)

∫ 1

0

(eβ0(1−t) − 1)2(Xt −X0)
2σ2

t dt

]
,

B =
1

2
E

[
∂g1(θ)

∂θ

∂g1(θ)

∂θT

∣∣∣∣
θ=θ0

g−2
1 (θ0)

]
.

The asymptotic variance presented in Theorem 2 bears a resemblance

to that of Kim and Wang (2016), with the inclusion of the options-implied

information influencing through g1(θ). Moreover, the proposed GARCH-

Itô-OI model in Definition 1 will reduce to a GARCH-Itô model when α = 0,

and it hence is of interest to check the significance of α̂, i.e. the estimator

of α. We may also construct a likelihood ratio test for it.

3.3 Hypothesis test

In financial practices, the primary focus of investors often lies on the low-

frequency parameter vector θg = (ωg, γ, βg, ηg, ξg) and their statistical in-

ferences, although Theorem 2 establishes the asymptotic normality for the

high-frequency parameter vector θ. Therefore, in this subsection, we discuss

hypothesis test for θg.

From (2.2) and (2.3), the parameters ωg, γ, βg, ηg and ξg are functions

of ω, β, γ and α. Let θg ≡ f(θ) = (f1(θ), f2(θ), f3(θ), f4(θ), f5(θ)), where

f1(θ) = β−1
(
eβ − 1

)
ω, f2(θ) = γ, f3(θ) = β−1(γ−1)

(
eβ − 1− β

)
+ eβ −1,
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f4(θ) = β−2
(
eβ − 1− β

)
α and f5(θ) = {β−1

(
eβ − 1

)
−β−2

(
eβ − 1− β

)
}α.

Denote f(θ̂) by θ̂g.

Building on the asymptotic distribution of θ̂ in Theorem 2, and with the

aid of Slutsky’s theorem and the delta method, when ∂f (θ)/∂θ|θ=θ0
̸= 0,

we can obtain that, for any constant vector c ∈ R5,

Zf =

√
n(c⊤θ̂g − c⊤θg0)√

c⊤∇f(θ̂)T (B̂−1ÂB̂−1)−1∇f(θ̂)c

d−→ N (0, 1), (3.3)

where ∇f(θ̂) = ∂f (θ)/∂θ|θ=θ̂. Matrices A and B can be consistently esti-

mated by

Â =
1

4n2

n∑
i=1

∂ℓ̂i (θ)

∂θ

∂ℓ̂i (θ)

∂θT
and B̂ = −∂2L̂n,m (θ)

∂θ∂θT
,

respectively, where ℓ̂i (θ) and L̂n,m (θ) are given in the Supplementary Ma-

terial. Then, using the Z-statistics Zf in (3.3), the hypothesis test for linear

combinations of θ̂g can be conducted based on the standard normal distri-

bution. For example, a hypothesis test for H0 : ωg = 0 can be conducted

by setting c = (1, 0, 0, 0, 0)⊤.

4. Simulation studies

4.1 Finite-sample performance of the proposed estimator

To assess the finite-sample performance of the proposed estimators, we

simulate the log prices Xti,j and instantaneous volatilities σ2
ti,j

from the

Statistica Sinica: Preprint 
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4.1 Finite-sample performance of the proposed estimator 17

GARCH-Itô-OI model, where ti,j = i − 1 + j/m with 1 ≤ i ≤ n and 1 ≤

j ≤ m. The number of high-frequency observations, m, in a trading day is

assumed to be the same throughout the whole period for simplicity (Shin et.

al., 2021). The true parameter vector is set to be θ0 = (0.2, 0.3, 0.4, 0.1)⊤.

The incremental positions ∆Bt of the Brownian motion Bt are generated

from normal distributions with mean zero and variance 1/m. Three cases

of distributions are considered for the options-implied information Oi: (a)

Oi ∼ N (0.6, 0.01), (b) Oi ∼ U(0, 0.5), and (c) Oi ∼log-normal (0.6, 0.01).

We further set the initial log price X0 = 10, and the initial options-implied

information O0 = 0.5 for case (a), O0 = 0.25 for case (b) and O0 = 1.2

for case (c), respectively. According to Proposition 1 (c), we can compute

the instantaneous volatilities σ2
0 = 0.87 for case (a), σ2

0 = 0.75 for case (b)

and σ2
0 = 1.67 for case (c). The observed high-frequency data Yti,j are ob-

tained through model (3.1) by simulating the micro-structure noise ϵti,j from

N (0, 0.0012). The sample size n varies in {125, 250, 500}, and the number

of observations m varies in {78, 390, 23400}. We generate 1000 replications

for each combination of n and m. The multi-scale realized volatility estima-

tor (MSRV) in Zhang (2006) is used to estimate the integrated volatility.
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4.1 Finite-sample performance of the proposed estimator 18

Table 1: Mean square errors (MSE) of θ̂ based on 1000 replications. The

options-implied information follows Oi ∼ N (0.6, 0.01), U(0, 0.5) or log-

normal(0.6, 0.01).

MSE×10−3

n m
Oi ∼ N (0.6, 0.01) Oi ∼ U(0, 0.5) Oi ∼ log-normal(0.6, 0.01)

ω β γ α ω β γ α ω β γ α

125 78 40.47 6.08 17.73 100.61 5.77 6.29 17.70 27.26 102.37 6.00 15.79 28.68

390 22.54 2.69 7.52 58.97 2.39 2.76 7.05 16.62 55.98 2.80 7.70 16.13

23400 9.44 0.90 2.20 24.59 0.87 0.89 2.39 6.00 19.58 0.89 2.44 5.74

250 78 18.28 3.66 6.79 45.62 3.31 3.89 7.29 15.21 59.82 4.10 7.40 16.04

390 12.22 1.48 3.23 30.87 1.27 1.47 3.32 8.65 34.66 1.51 3.41 10.15

23400 3.89 0.45 1.10 10.27 0.44 0.51 1.15 3.65 13.83 0.46 1.07 4.05

500 78 9.73 2.91 3.57 23.22 2.21 2.96 3.42 7.61 39.37 3.12 3.53 11.02

390 5.32 0.87 1.60 13.54 0.71 0.90 1.59 4.89 23.11 0.90 1.59 6.72

23400 2.06 0.25 0.56 5.31 0.23 0.23 0.57 1.84 8.38 0.26 0.61 2.50

Specifically, for the i-th period,

MSRVi =

[
√
m]∑

k=1

ak ·MSRVKk
i + ζ(MSRVK1

i −MSRV
K[

√
m]

i ),

where MSRVK
i = K−1

m∑
r=K

[Y(ti,r)− Y(ti,r−K)]
2 , Kk = [

√
m] + k, ak =

12(k+[
√
m[)(k−[

√
m]/2−1/2)

[
√
m](m−1)

, and ζ = 2[
√
m]([

√
m]+1)

(m+1)([
√
m]−1)

.

The mean square errors (MSE) of the parameter estimator θ̂ for different

combinations of n and m are presented in Table 1. It is worth noting
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Figure 1: Q-Q plots for θ̂ = (ω̂, β̂, γ̂, α̂) with (n,m) = (500, 23400). The

options-implied information Oi ∼ N (0.6, 0.01) in the upper panel, U(0, 0.5)

in the middle panel or log-normal(0.6, 0.01) in the lower panel.

that, as both n and m increase, the MSEs consistently decrease across all

three distributions of the options-implied information Oi. Moreover, for the

log-normal distribution, the MSEs are relatively larger compared to those

with the normal and uniform distributions, showing the influence of heavy-

tailedness on the estimator. These findings collectively demonstrate the

favorable finite-sample performance of the proposed estimator and provide

further validation for its asymptotic behaviors.
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Figure 1 gives the Q-Q plots of estimated parameters with n = 500

and m = 23400 for three cases of distributions. It can be seen that the

estimated parameters closely align with the normal theoretical quantiles,

indicating the desirable asymptotic normality.
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Figure 2: Q-Q plots for θ̂g = (ω̂g, γ̂, β̂g, η̂g, ξ̂g) with (n,m) = (500, 23400).

The options-implied information Oi ∼ N (0.6, 0.01) in the upper panel,

U(0, 0.5) in the middle panel or log-normal(0.6, 0.01) in the lower panel.

4.2 Testing performance

To check the asymptotic normality of θ̂g = (ω̂g, γ̂, β̂g, η̂g, ξ̂g), we calculate

the Z-statistics defined in Section 3.3. The data generating process is the
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same as that in the previous subsection with m = 23400 and n = 500, and

the Q-Q plots of each estimated parameter are presented in Figure 2. It can

be seen that all sample quantiles are close to the corresponding theoretical

ones, consistent with the theoretical conclusions in Section 3.3.

4.3 Prediction performance

This subsection evaluates the prediction performance of GARCH-Itô-OI

models under model misspecification. Specifically, the log prices obey the

following Heston model,

dSt = rStdt+
√
VtStdWt,

dVt = (a− bVt)dt+ γ
√

VtdW
∗
t ,

(4.1)

where Wt and W ∗
t are two standard Brownian motions with correlation

coefficient ρ, and the volatility Vt acts as the options-implied volatility. We

set r = 0, a = 0.01, b = 0.001, γ = 0.075, ρ = −0.2, S0 = 50, V0 = 0.05, and

the number of high-frequency data m = 78. We generate 1000 replications,

and there are 101 days in each replication. The first 100 days are used for

estimating parameters, and the 101st day is for evaluating the out-of-sample

forecast performance.

As a comparison, we also fit seven existing volatility models in the

literature: the GARCH-IV, realized GARCH-RV (RGARCH-RV), HAR-
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4.3 Prediction performance 22

Table 2: The AMAPE (×10−1) , MAE (×10−4), MSE (×10−8) and QLIKE

(×10−1) of eight models. Lowest values are highlighted in boldface.

Model AMAPE MAE MSE QLIKE

GARCH-Itô-OI 1.84 1.71 5.76 1.12

GARCH-Itô-IV 1.91 1.77 6.07 1.25

GARCH-Itô 1.93 1.79 6.14 1.27

HAR-RV 1.96 1.84 6.20 1.28

RGARCH-Itô-NV 2.01 1.94 6.38 1.29

RGARCH-Itô 2.08 2.02 6.46 1.31

RGARCH-RV 2.23 2.18 8.05 1.58

GARCH-IV 2.31 2.25 8.62 2.38

RV, GARCH-Itô, GARCH-Itô-IV, Realized GARCH-Itô (RGARCH-Itô),

and Realized GARCH-Itô with estimated options (RGARCH-Itô-NV). Four

evaluation metrics are considered: the adjusted mean absolute percentage

error (AMAPE), mean absolute error (MAE), mean squared error (MSE),

and quasi-likelihood (QLIKE),

AMAPE =
1

N

N∑
i=1

|Fi − RVi|
|Fi + RVi|

, MAE =
1

N

N∑
i=1

|RVi − Fi| ,

MSE =
1

N

N∑
i=1

(RVi − Fi)
2, QLIKE =

1

N

N∑
i=1

(
RVi

Fi

− log

(
RVi

Fi

)
− 1

)
,
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where N is the number of out-of-sample forecasts, RVi is the true daily

volatility, and Fi is the predicted volatility. The prediction results are listed

in Table 2, and it can be seen that the proposed GARCH-Itô-OI model has

the best performance among all competing models.

5. Empirical studies

This section applies the proposed GARCH-Itô-OI model to forecast the

volatility of S&P 500. Specifically, we utilize five-minute returns, since

five-minute is a commonly employed time interval in the literature (Liu

et al., 2015), and this corresponds to m = 78 intraday observations in

total. Overnight returns are excluded as they are often subject to jumps

influenced by external factors. The corresponding daily closing prices are

the low-frequency data, and the options-implied information is set to the

VIX, which is quoted at the market closing on each trading day, while

S&P 500 index is the underlying asset. The MSRV is used to estimate the

integrated volatility.

Our study encompasses three distinct time periods to comprehensively

evaluate the performance of GARCH-Itô-OI models. The first period spans

from January 2, 2015 to December 31, 2019, and it is exactly prior to the

COVID-19 outbreak. This period is further divided into two segments: an
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in-sample period running from January 2, 2015 to December 31, 2018, and

an out-of-sample period covering January 2, 2019 to December 31, 2019.

The second period is from January 2, 2020 to August 21, 2023, and it is

after the COVID-19 outbreak. The in-sample period is from January 2,

2020 to December 31, 2022, and the out-of-sample period is from January

2, 2023 to August 21, 2023. The third period encompasses the entire study

duration, including both pre- and post-COVID-19 periods, i.e. it spans

from January 2, 2015 to August 21, 2023. Within this period, the in-

sample segment covers January 2, 2015 to December 31, 2021, while the

out-of-sample segment is from January 2, 2022 to August 21, 2023.

5.1 Model estimation

We first conduct the quasi-maximum likelihood estimation in Section 3.1

to the in-sample segment from each of three periods, and the resulting

estimator can be denoted by θ̂ = (ω̂, β̂, γ̂, α̂). Note that, when α = 0, the

GARCH-Itô-OI model will reduce to a GARCH-Itô model, i.e. the options-

implied information has no impact on forecasting the volatility. It hence

is of interest to check the significance of α, and Theorem 2 can be directly

used for it. As suggested by a reviewer, we alternatively consider a formal
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likelihood-ratio test (LRT) statistic,

λLR = −2n
(
L̂n,m(θ̂GI)− L̂n,m(θ̂)

)
,

where θ̂GI is a quasi-maximum likelihood estimator of the corresponding

GARCH-Itô model, L̂n,m(θ̂) is denoted by (3.2), and it follows a χ1 distri-

bution as n,m → ∞ under the null hypothesis of α = 0. Table 3 gives the

values of LRT statistics.

It can be seen that all LRT statistics have values greater than χ2
1,0.05 =

3.841, indicating that the options-implied information is significant at the

significance level of 0.05. In other words, the options-implied information

plays an important role in forecasting the volatility of S&P 500.

Table 3: Likelihood-ratio test statistics for the presence of options-implied

information at three time periods.

LRT statistics first period second period whole period

λLR 151.32 23.46 181.40

We next evaluate the significance of low-frequency parameters θg =

(ωg, γ, βg, ηg, ξg) in terms of predicted volatility, and a rolling-window pro-

cedure is employed. Specifically, the ending point of historical data iterates

in the out-of-sample period with the window size fixed at the number of
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in-sample period, and then one-step ahead prediction, denoted by y∗i , is

conducted for each iteration. With the help of (2.2), we then perform the

regression, y∗i = ωg + γy∗i−1 + βgZ2
i−1 + ηgOi−1 + ξgOi−2 + εi, and Table 4

presents the estimated parameters and their p-values.

It can be seen that almost all estimated parameters are significant.

Especially, the estimators of ηg and ξg have much smaller p-values, and this

further validate the necessity of involving options-implied information.

Table 4: Parameter estimation and p-values of the GARCH-Itô-OI model

for the three time periods.

parameter first period second period whole period

estimation p-value estimation p-value estimation p-value

ωg 3.02e-07 0.06 3.52e-07 0.05 8.39e-07 5.56e-08

γ 4.88e-01 < 2e-16 4.92e-01 < 2e-16 4.39e-01 < 2e-16

βg 8.02e-02 <2e-16 1.00e-01 < 2e-16 8.67e-02 < 2e-16

ηg 5.99e-02 < 2e-16 3.26e-02 < 2e-16 4.18e-02 < 2e-16

ξg 2.77e-02 1.39e-15 3.85e-02 < 2e-16 4.37e-02 < 2e-16

5.2 Prediction performance

This subsection compares the forecasting performance of the GARCH-Itô-

OI model with seven competing models: GARCH-Itô-IV, GARCH-Itô,
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HAR-RV, RGARCH-Itô-NV, RGARCH-Itô, RGARCH-RV, and GARCH-

IV models in the three periods. The same rolling-window procedure in the

previous subsection is used again. We utilize two robust loss functions,

MSE and QLIKE, to assess the prediction performance of these models,

as they provide a consistent ranking of volatility models with conditionally

unbiased volatility proxy for prediction performance in real data (Patton,

2011a,b). All results are summarized in Table 5.

Table 5: MSEs (×10−9) and QLIKEs (×10−1) of the eight models during

the three time periods. Lowest values are highlighted in boldface.

Model first period second period whole period

MSE QLIKE MSE QLIKE MSE QLIKE

GARCH-Itô-OI 0.94 5.19 1.38 3.14 5.82 3.22

GARCH-Itô-IV 1.28 5.87 1.55 3.32 6.07 3.45

GARCH-Itô 1.34 5.91 1.48 3.36 6.16 3.55

HAR-RV 1.35 5.95 1.48 3.28 5.88 3.34

RGARCH-Itô-NV 1.29 5.89 1.53 3.29 6.09 3.43

RGARCH-Itô 1.35 5.96 1.59 3.37 6.35 3.56

RGARCH-RV 2.62 8.89 1.73 4.27 7.95 5.09

GARCH-IV 4.01 11.23 8.59 6.74 8.33 5.28
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From Table 5, it is evident that the GARCH-Itô-OI model exhibits the

best prediction performance among all competing models. This highlights

the effectiveness of incorporating options information within the GARCH-

Itô-OI model. In comparison to the GARCH-Itô-IV model, the simple

structure of GARCH-Itô-OI models enables efficient utilization of the op-

tions information, leading to improved forecasting accuracy. By compar-

ing the GARCH-Itô-OI and GARCH-Itô-IV against GARCH-Itô models,

and RGARCH-Itô-NV against RGARCH-Itô models, we may conclude that

models incorporating options information outperform their respective base

models without options information. This demonstrates the advantage of

including options information in volatility modeling. It is worth noting that

the GARCH-IV model exhibits the worst forecasting performance, as it fails

to make use of high-frequency data effectively. Interestingly, despite its sim-

ple linear structure, the HAR-RV model demonstrates superior prediction

performance compared to most models. However, it still cannot beat the

proposed GARCH-Itô-OI model.

Although the advantages of our model in Table 5, we may wonder

whether such outperfromance is statistically significant. To this end, we

first conduct the Diebold-Mariano (DM) test (Diebold, 1995) for the com-

parison. Specifically, the squared prediction error is defined as e2i = (yi−ŷi)
2
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with 1 ≤ i ≤ N , where yi and ŷi are the realized volatility and its predicted

value, respectively. The DM test is to check whether the squared prediction

errors from one model is smaller than those from the baseline model. Table

6 lists the p-values of DM tests with the null hypothesis that the model has

a better forecasting performance than the proposed GARCH-Itô-OI model.

It can be seen that all tests are rejected, i.e. the prediction power of our

model is significantly higher than the seven competing models.

Table 6: p-values of the DM test with the null hypothesis that the model has

a smaller squared prediction errors than those from the proposed GARCH-

Itô-OI model.

Models first period second period whole period

GARCH-Itô-IV 4.73e-03 4.36e-02 2.49e-02

GARCH-Itô 3.39e-03 1.95e-02 2.48e-02

HAR-RV 2.09e-03 4.97e-02 4.49e-02

RGARCH-Itô-NV 4.42e-03 4.49e-02 4.54e-02

RGARCH-Itô 1.48e-03 1.05e-02 2.36e-02

RGARCH-RV 2.73e-10 6.10e-05 1.33e-08

GARCH-IV <2.2e-16 < 2.2e-16 2.25e-10
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We also conduct the Model Confidence Set (MCS) test (Hansen et al.,

2011) to compare the eight volatility models, and the forecasting perfor-

mance is evaluated by ℓi = (y2i − ŷ2i )
2. The full set contains the eight

competing model, and the MCS procedure will eliminate them one by one.

We also calculate the probability of each set of superior models, and the

results are presented in Table 7. It can be seen that our model has a com-

parable performance with GARCH-Itô-IV and RGARCH-Itô-NV model for

the first period of data, with HAR-RV models for the second period and

with RGARCH-Itô-NV models for the whole period. However, for all three

periods of data, the proposed GARCH-Itô-OI model is always the best one.

Finally, we may wonder whether a volatility model can interpret all

autocorrelation structure in the data. To this end, we first conduct a re-

gression of the actual volatility on the predicted volatility, and then the

autocorrelation function (ACF) plot can be used to check the autocorre-

lation dynamics in the residuals. The ACFs plots of residuals from each

model for three time periods are presented in Supplementary Material, and

it can be seen that all the eight models can well capture autocorrelation

structures within the S&P 500 index future’s volatility.
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Table 7: Model ranks and probabilities of model confidence sets, i.e. PMCS.

The full set includes all eight models, and they are eliminated one by one

according to model ranks. The GARCH-IV model can be eliminated with

probability one.

Model first period second period whole period

rank PMCS rank PMCS rank PMCS

GARCH-Itô-OI 1 1 1 1 1 1

GARCH-Itô-IV 2 1 4 0.84 4 0.60

GARCH-Itô 4 0.96 5 0.79 5 0.34

HAR-RV 5 0.88 2 1 3 0.99

RGARCH-Itô-NV 3 1 3 0.99 2 1

RGARCH-Itô 6 0.78 6 0.37 6 0.14

RGARCH-RV 7 0.62 7 0.18 7 0.13

GARCH-IV eliminated – eliminated – eliminated –

6. Conclusion

The GARCH-Itô-OI model proposed in this paper integrates three infor-

mation sources: high-frequency, low-frequency, and options data. In par-

ticular, the options-implied information is treated as an exogenous variable

and assumed to have a positive and time-dependent influence on the high-

frequency instantaneous volatility in next day with a clear and simple for-
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mat. The quasi-maximum likelihood estimation for parameters are derived,

and its asymptotic properties, as well as a hypothesis test, are also provided.

Simulation experiments are conducted to analyze the finite-sample perfor-

mance of the GARCH-Itô-OI model. It is demonstrated by the real analysis

that options-implied information is an important source for volatility fore-

casting, and the proposed GARCH-Itô-OI model has better out-of-sample

forecasting performances than all existing volatility models.

The proposed GARCH-Itô-OI model can be further extended in the

following two directions. First, jump components can be integrated into

the model to generate better volatility forecasts. Secondly, as different

financial market information such as asymmetry and overnight volatility

have been considered in the GARCH-Itô model (Kim et al. , 2022; Yuan

et al. , 2022), it is of interest to combine them with the options-implied

imformation into a more comprehensive GARCH-Itô model.

Supplementary Material

The online Supplementary Material contains the proofs of the proposition

and theorems, and autocorrelation function plots in empirical study.
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