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1. Introduction

Risk measures are used for both financial institutions’ internal risk management

and external regulation (e.g., in the Basel Accord for risk-based requirements for

regulatory capital [Chernobai et al., 2008]. Both academics and practitioners are

devoted to developing appropriate risk measures with good properties, including

robustness, elicitability, and backtesting [He et al., 2022, Gneiting, 2011]. Note

that risk measures are defined as functionals of the unknown porfolio loss distribu-

tions, and the particular difficulty in measuring risk is that the tail part of a loss

distribution bears substantial model uncertainty. On the other hand, estimation

or mis-specification errors in the portfolio loss distribution can have a considerable

impact on risk measures, and it is important to examine the robustness of risk

measures to these errors [Bernard et al., 2024, Cont et al., 2010]. In this work,

we focus on the three most common risk measures, Value-at-Risk, expectile and

expected shortfall, and examine how the tail of these risk measures varies in the

contamination field in terms of Huber [1964].

Value-at-Risk (VaR) measures the maximum loss which is not exceeded with

a given high probability. Given a portfolio return X ∼ F and its quantile function
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at probability level α ∈ (0, 1) as

qα = inf{x ∈ R : F (x) ≥ α},

we define parallelly the VaR as

VaRα = −qα, α ∈ (0, 1/2),

i.e., the maximum loss incurred by the portfolio not exceeded with a given high

probability 100(1−α)%. Although VaR has become some sort of standard measure

of financial market risk, it has been criticized for reporting only a tail probability,

and thus neglecting effects like the amount of loss beyond the quantile. Addition-

ally, VaR does not take diversification and risk aggregation effects into account.

Expected shortfall (ES), a natural coherent alternative to VaR, overcomes these

weaknesses, is becoming increasingly used in financial risk management, Artzner

et al. [1999], Delbaen [2002]. Specifically, ES is defined as the conditional expec-

tation of the portfolio given that its return is smaller than a certain value at some

probability level, i.e.,

ESα = −E (X|X < qα) = − 1

α

∫ qα

−∞
x dF (x) = − 1

α

∫ α

0

qβ dβ (1.1)

provided that the underlying distribution function F is continuous. Cont et al.

[2010] pointed out that ES appears to lack robustness with respect to small changes

in the underlying cdf. The recent contribution by Mihoci et al. [2021] provides

evidence on expected shortfall robustness through its link with expectile, which is
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given as the minimizer of the expected value of an asymptotic piece-wise quadratic

loss [Newey and Powell, 1987]:

eα = arg min
θ

E
(
|α− I{X − θ < 0}||X − θ|2

)
,

where I{·} stands for the indicator function. It is well-known that the expectile

is the only coherent risk measure possessing elicitability, a desirable property for

model selection, generalized regression, forecast ranking and comparative backtest-

ing, Nolde et al. [2017], Xu et al. [2018]. Further, the expectile is the so-called index

of prudentiality in financial set-up, i.e., the amount of money added to a position

with a pre-specified, sufficiently high gain-loss ratio, Bellini and Di Bernardino

[2017], Daouia et al. [2017].

To find the expectile-quantile transformation level is practically useful for the

regulators to set a proper level of quantile with the extreme loss taken into account,

Kuan et al. [2009], Borke and Härdle [2018]. Specifically, using Jones [1994] it is

not hard to verify that the expectile is obtainable through a one-to-one mapping

with VaR. In other words, if ewα = qα for some α given, then the corresponding

level wα is such that [Yao and Tong, 1996]

wα =
LPMα − qαα

2(LPMα − qαα) + qα − E (X)
. (1.2)

Here LPMα =
∫ qα
−∞ x dF (x) stands for the lower partial moment at α quantile. As

a consequence, we get an alternative expression of ES as follows [Taylor, 2008,

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0019



Mihoci et al., 2021].

ESα = −
{
qα +

qα − E (X)

1− 2wα

wα
α

}
. (1.3)

The aforementioned risk measures are widely useful in risk management and receive

continuous attention in financial practice in the determination of insurance pre-

mium and economic capital etc. However, financial asset returns and fundamental

factor exposure data often contain outliers, observations that are inconsistent with

the majority of the data. One might then be interested in the contamination case

as follows.

Fε(x) = (1− ε)F (x) + εH(x), x ∈ R, ε ∈ [0, 1], (1.4)

where ε reflects the amount of uncertainty in F , and H represents plausible devia-

tions from F . Note that (1.4) is a flexible mixture model if one takes H as another

mixture model.

Huber [1964] initially employed (1.4) for the robust estimation of a location pa-

rameter, Zhu and Fukushima [2009] considered generally mixture models concern-

ing the worst-case ES of robust portfolio management. In the spirit of (1.4), Ghosh

[2017], Vandewalle et al. [2007] established robust estimations of extreme value

index. We remark that model (1.4) is different from the model mis-specification

studied by Blanchet and Murthy [2020], Engelke and Ivanovs [2017], Escobar-Bach

et al. [2017] concerning the worst VaR and extreme dependence. We refer to Na-

taliya et al. [2010] for optimal robust estimations of risk measures under max-bias
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and max mean square error.

The aim of this paper is to study how the common risk measures vary as a func-

tion of the contamination neighbourhood. Basically, we investigate the sensitivity

of VaR, ES and the expectile-quantile transformation level for small α, indicating

a potential severe loss (or an extreme negative return) caused by a portfolio invest-

ment. In contrast with the easier robustness against outliers with moderate small

α, risk measures are more sensitive to potential high risks corresponding to extreme

small level α. We notice that, although very large losses are observed rarely, they

still have a tremendous effect. As a consequence, usually only few observations

will have an overwhelming impact on the computed regulatory capital. In realistic

modelling, it is hard to tell whether these events are singular outliers or contribute

valuable evidence for future losses. This question of relevance for future losses

gets even more severe in the common and Basel-II-recommended practice of data

pooling used to overcome the scarcity of very large loss data. This motivates our

asymptotic study on the sensitivity of risk measures with heavier contamination

distribution (see Eq.(1.5) specified below).

Our methodology is from extreme value theory, a powerful tool in financial

risk management. Therefore, a common assumption is thus that both F and

H belong to the max-domain attraction, i.e., the linear normalization of sample

maxima possesses a non-degenerate limit distribution [Resnick, 2007]. This enables

the possible extrapolation from moderate tail inference to extreme tail analysis
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in a semi-parametric framework ensuring the practical applications of our study

since little and even no information on the exact distribution involved is known

in reality [Ferreira et al., 2003]. We refer to Castillo et al. [1989], Embrechts

et al. [2013], Gomes and Guillou [2015] for the identification of the distribution

via probability plots, or the tail conditions on the max-domain attractions. In

addition, we consider that H has a heavier left tail than that of F (recall portfolio

return X ∼ F in our context). Namely,

lim
x→−∞

F (x)

H(x)
= 0. (1.5)

We refer to McNeil et al. [2015] for the monograph of heavy tail analysis in finance

and insurance fields.

The contributions of this paper are as follows: a) Sensitivities of common risk

measures including VaR, ES and expectile-quantile transformation level are sys-

tematically studied and compared; b) Effects on VaR, ES and expectile-quantile

transformation level of an infinitesimal contamination to a known F , are inves-

tigated by use of influence functions; c) Efficiency of the theoretical results is

illustrated by several typical examples and numerical study; d) As an application

of the sensitivity of VaR and ES, empirical study involved in the Royalton CRIX

index, the first scientifically-backed proxy to the crypto-market well studied by

Härdle and Trimborn [2015], Härdle et al. [2020], Trimborn et al. [2020], is given.

We expect our research would be beneficial to both financial practitioners and

theoretical experts focusing on risk management and extreme value statistics.
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The paper is outlined as follows. Section 2 is devoted to establishing the

sensitivity of tail-related risk measures in the framework of robustness analysis

of Huber [1964]. Numerical studies on several illustrating examples are given in

Section 3, followed by an empirical study concerning the CRIX in Section 4. We

give an overall discussion and conclusion of the sensitivity of risk measures in

Section 5. Proofs are postponed to Section 6.

2. Main Results

Throughout the paper, we keep VaRα for the Value-at-Risk of F and write VaRα(ε)

for the VaR of the contamination model Fε. The same understanding applies for

qα, eα, ESα, wα and LPMα involved in (1.2) and (1.3). Further, we write

h1 ∼ h2 or h1 = h2 {1 + O(1)}

if two functions hi(·), i = 1, 2 are such that h1/h2 goes to 1 as the argument takes

limits. Similarly, we write f ' g if f is asymptotically equal to g.

Our first result below concerns the approximations of VaRα, ESα and wα when

the underlying cdf is contaminated by a heavier tail loss H with a fixed level

ε ∈ (0, 1], in terms of (1.4).

Theorem 1. Consider the contamination model (1.4) with ε ∈ (0, 1] given. Sup-

pose that F and H satisfying (1.5) are continuous with infinite left endpoint and
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finite means. We have as α→ 0

VaRα(ε) ∼ VaRα′(1), ESα(ε) ∼ −
∫ qα(ε)
−∞ x dH(x)

α′
with α′

def
= α/ε.

Further, if the α quantile equals the wα(ε) expectile, then

wα(ε) ∼ ε

{∫ qα(ε)
−∞ x dH(x)

qα(ε)
− α′

}
.

Remark 1. a) We see that once the reference model F is contaminated by a

heavier tail distribution H, the tail event involved will be completely determined

by the contamination model H with a scaled probability level α/ε. This should

be taken as a caveat for the practitioners when they take the underlying cdf for a

lighter left-tailed cdf F .

b) If ∫ qα(ε)

−∞
x dH(x) ∼

∫ qα′ (1)

−∞
x dH(x)

def
= LPMα′(1), (2.1)

then

ESα(ε) ∼ ESα′(1), wα(ε) ∼ εwα′(1)

implying that the ratio wα/α satisfies that

wα(ε)

α
∼ wα′(1)

α′
.

c) Since LPMα → 0 as α→ 0, the ratio wα/α satisfies that

wα
α
∼ LPMα − qαα

qαα
= E ((X/qα − 1)|{X < qα})
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depicting the relative distance of the underlying loss X from the α quantile at the

left tail. Therefore, the heavier the underlying loss is, the bigger the ratio wα/α

becomes for sufficiently small α.

Note that (2.1) holds for instance when H exhibits considerably heavier tail

than typically selected distributions in practice such that H(x) = |x|−τ`(x), τ > 1

with `(·) a slowly varying function, that is, `(tx) ∼ `(t), x > 0 as t → −∞, see

Example 3 below.

According to the latest revisions of the Basel Accords, the risk level α should

be determined by the risk measure without changing too much its resulting value

and the corresponding capital requirements, Bellini and Di Bernardino [2017]. To

this end, one may shrink the contamination neighbourhood to reduce the influence

of the outliers. In other words, we consider ε = εα → 0 as α → 0. This is similar

to the common approach in asymptotic robust statistics, shrinking neighbourhood

so as to protect against deviations which can not be detected. More specifically,

we expect that the potential risk measures based on the contamination model Fε

deviate little from the one according to the reference model F . A natural idea is

to restrict the distribution difference of εH(x) (in comparison of F (x)) for small

x. This motivates our investigation stated in Theorem 2 below. We will keep the

same notation aforementioned when considering ε to vary in α.

Theorem 2. Under the same assumptions of Theorem 1, suppose further that

ε = εα → 0 as α→ 0.
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a). If H is much heavier than F and/or ε = εα → 0 very slowly, such that

F (qα(ε)) = O(1)εH(qα(ε)), i.e., F (qα(ε))/{εH(qα(ε))} → 0 as α → 0, then

we have limα→0 α/ε = 0, and with α′
def
= α/ε

VaRα(ε) ∼ VaRα′(1), ESα(ε) ∼ −
∫ qα(ε)
−∞ x dH(x)

α′
, wα(ε) ∼ ε

{∫ qα(ε)
−∞ x dH(x)

qα(ε)
− α′

}
.

b). If H is heavier than F and/or ε = εα → 0 with certain convergence, such

that F (qα(ε)) ∼ c′εH(qα(ε)) with some c′ > 0, then

VaRα(ε) ∼ VaRα/{(c′+1)ε}(1) ∼ VaRαc′/(c′+1),

ESα(ε) ∼ −
(1 + 1/c′)

∫ qα(ε)
−∞ x dF (x)

α
∼ −

(1 + c′)
∫ qα(ε)
−∞ x dH(x)

α′
,

wα(ε) ∼
(1 + 1/c′)

∫ qα(ε)
−∞ x dF (x)

qα(ε)
− α ∼

(1 + c′)
∫ qα(ε)
−∞ x dH(x)

qα(ε)
− α.

c). If H is slightly heavier than F and/or ε = εα → 0 very quickly such that

εH(qα(ε)) = O(1)F (qα(ε)), then

VaRα(ε) ∼ VaRα, ESα(ε) ∼ −
∫ qα(ε)
−∞ x dF (x)

α
, wα(ε) ∼

∫ qα(ε)
−∞ x dF (x)

qα(ε)
− α.

Remark 2. a) Theorem 2 covers all three cases by considering the interplay role in

the determination of the risk measures between F (x) and εH(x) with x = qα(ε)→

−∞ as α→ 0.

b) Case a) of Theorem 2 indicates the same claim as for ε given, while Case c)

implies that the tail-related risk measures are robust with very slight contamination

level εα for instance εα = cατ for some c > 0 and all τ ≥ 1.

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0019



c) A typical example of contamination model (1− ε)Φ(x
√

1− ε) + εΦ((x− µ)
√
ε)

with µ a constant, and Φ(·) the standard normal cdf, discussed in Kuan et al.

[2009], gives different sensitivity with respect to the contamination level ε = εα.

The influence function approach, known also as the ”infinitesimal approach”, is

generally employed to give qualitative robustness measure, for instance Fermanian

and Scaillet [2005] investigated robust risk portfolios under netting agreements

when the level of contamination in the data gradually decreases to zero. Recall

that the influence function of some risk measure % is defined as follows.

IF (%;F,H) = lim
ε→0

%(ε)− %(0)

ε
=
∂%(ε)

∂ε

∣∣∣
ε=0

with %(ε) standing for the risk measure % of the contamination model Fε(x) =

(1− ε)F (x) + εH(x).

Below, we study the influence function (IF) of VaR and ES evaluating its

approximate bias if the corresponding risk measures are based loosely on the pre-

supposed ideal model F .

Theorem 3. Assume that F has positive continuous differential at the 100α%

quantile, and H is continuous at qα. We have

IF (VaRα;F,H) =
H(qα)− α
F ′(qα)

, IF (ESα;F,H) =

∫ qα
−∞{H(x)− F (x)} dx

α
.

Remark 3. a) Note that if H has heavier left tail than that of F , i.e., (1.5)

holds, then in view of Theorem 3, both influence functions are positive for small
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α. Further, it holds for sufficiently small ε that

VaRα ' VaRα(ε)− εIF (VaRα;F,H), ESα ' ESα(ε)− εIF (ESα;F,H).

We conclude that both VaR and ES based on the reference model F have a slightly

negative bias in comparison to those strictly based on the contamination model.

b) The influence function leads to some robustness measure such as gross error

sensitivity of the estimation of the tail-related risk measure through the following

worst-case scenario

sup
H∈H
|IF (%;F,H)| or sup

H∈H
|IF (%;F,H)|2,

where H is the class of contamination models H’s. This might evoke the min-max

global robustness analysis in risk management [Brazauskas, 2003, Nataliya et al.,

2010].

3. Numerical studies

In this section, We illustrate our theoretical results through Monte-carlo simulation

of three examples introduced below. We take the standard normal cdf as the pre-

supposed ideal model F , and the contamination distribution H as normal, Laplace

and power-like distributions in Examples 1∼ 3, subsequently.

Example 1. Let Fε(x) = (1−ε)Φ(x)+εΦ(x/σ) with σ > 1, the scale parameter of

the contamination model H(x) = Φ(x/σ)(the same as below). Clearly, condition

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0019



(1.5) holds, and the larger σ is, the heavier tail H possesses. Recall qα(ε) denotes

the α quantile of Fε. We have by Theorem 1, with α′ = α/ε→ 0

VaRα(ε) ∼ VaRα′(1) = σΦ−1(1− α′),
∫ u

−∞
x dΦ(x/σ) = −σϕ(u/σ), u→ −∞

with ϕ(·) standing for the probability density function (pdf) of a standard normal

random variable. Further,

ESα(ε) =
(1− ε)ϕ(qα(ε)) + εσϕ (qα(ε)/σ)

α
∼ σϕ (qα(ε)/σ)

α′
.

Further, a straightforward calculation yields by setting u = qα(ε):

wα(ε) =
(1− ε)ϕ(u) + εσϕ(u/σ) + uα

2 {(1− ε)ϕ(u) + εσϕ(u/σ) + uα} − u

∼ −(1− ε)ϕ(u) + εσϕ(u/σ)

u
− α

∼ ε

{
−σϕ(u/σ)

u
− α′

}
.

Next, we consider the case with contamination level ε varying in α, denoted

thus by εα. It follows by the Mills’ ratio Φ(x) ∼ ϕ(x)/|x|, x → −∞ that, for

ε =
√
α and 1 < σ2 ≤ 2

ESα(ε) =
(1− ε)ϕ(u) + εσϕ(u/σ)

α
∼ ϕ(u)

α
,

where u = qα(ε) ∼ Φ−1(α).

Similarly, we have for ε =
√
α and σ2 > 2

ESα(ε) = −(1− ε)ϕ(u) + εσϕ(u/σ)

α
∼ −σϕ(u/σ)

α′
,
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where u = qα(ε) ∼ σΦ−1(α/ε).

We conclude the sensitivity of VaR, ES and wα via the contamination level ε

and the heaviness parameter σ, coinciding the claims established in Theorems 1

and 2.

Example 2. Let Fε(x) = (1 − ε)Φ(x) + εL(
√

2x/σ), σ > 0 with L(·) the stan-

dard Laplace distribution (double-sided exponential distribution), i.e., the density

function l(·) is given by

l(x) =
1

2
exp {−|x|} , x ∈ R.

It follows that (1.5) holds, and for α < 0.5, u < 0

L−1(α) = log(2α),

∫ u

−∞
x dL(x) =

1

2
(u− 1)eu

def
= LP (u).

Therefore, by Theorem 1, we have with α′ = α/ε

VaRα(ε) ∼ VaRα′(1) =
σ√
2
L−1(1− α′) = − σ√

2
log(2α′), α→ 0

and

ESα(ε) =
(1− ε)ϕ(qα(ε))− εσ/

√
2LP

(√
2qα(ε)/σ

)
α

∼ σ

2
√

2α′

{
1−
√

2

σ
qα(ε)

}
exp

{√
2

σ
qα(ε)

}
.
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Further, we have by setting u = qα(ε)

wα(ε) =
−(1− ε)ϕ(u) + εσ/

√
2LP (

√
2u/σ)− uα

2
{
−(1− ε)ϕ(u) + εσ/

√
2LP (

√
2u/σ)− uα

}
+ u

∼ −(1− ε)ϕ(u) + εσ/
√

2LP (
√

2u/σ)

u
− α

∼ ε

{
LP (
√

2u/σ)√
2u/σ

− α′
}
.

Next, we consider the case ε = εα. It follows by Theorem 2 together with

elementary calculations that, for ε =
√
α,

ESα(ε) =
(1− ε)ϕ(u)− εσ/

√
2LP

(√
2u/σ

)
α

∼ σ

2
√

2α′

(
1−
√

2

σ
u

)
exp

{√
2

σ
u

}
,

where u = qα(ε) ∼ qα′(1) = (σ/
√

2) log(2
√
α).

If we take ε = α, we have u = qα(ε) ∼ qα = Φ−1(α) and

ESα(ε) =
(1− ε)ϕ(u)− ε(σ/

√
2)LP

(√
2u/σ

)
α

∼ ϕ(u)

α
.

Comparing the Laplace with normal contamination models, we see that the risk

measures are more sensitive for heavier contamination models with even infre-

quent contamination data. Financial practitioners should therefore take care of

the extreme value risk due to asset-specific events and market-wide events.

Example 3. Let Fε(x) = (1 − ε)Φ(x) + εH(x/σ), σ > 0, with H a symmetric

distribution such that

H(x) =
1

2

{
1−

(
1− 4

4 + x2

)0.5
}
, x < 0.
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Clearly, Remark 1 a) holds with H(x) ∼ |x|−2/2 as x → −∞, i.e., H decays

slowly like a power function with index −2. Hence, H is the so-called power-like

distribution with scale parameter σ > 0 in the context. Further, with α′ = α/ε,

we have by Theorem 1

VaRα(ε) ∼ VaRα′(1) =
1− 2α′√
α′(1− α′)

, α→ 0, (3.1)∫ u

−∞
x dH(x) =

∫ u

−∞

2x

(4 + x2)3/2
dx = − 2√

4 + u2
def
= LP (u).

We see that |LP (·)| is a regular varying function at −∞ with index −1. Therefore,

ESα(ε) =
(1− ε)ϕ(qα(ε))− εσLP (qα(ε)/σ)

α

∼ −σLP (qα(ε)/σ)

α′
∼ −σLP (qα′(1)/σ)

α′
= ESα′(1).

Further, we have by setting u = qα(ε)

wα(ε) =
−(1− ε)ϕ(u) + εσLP (u/σ)− uα

2 {−(1− ε)ϕ(u) + εσLP (u/σ)− uα}+ u

∼ −(1− ε)ϕ(u) + εσLP (u/σ)

u
− α

∼ ε

{
σLP (u/σ)

u
− α′

}
∼ εwα′(1).

Next, applying Theorem 2 we consider two cases of ε = εα so that the tail-

related risk measures determined by F and H, respectively.

• For ε =
√
α tending to zero slowly, we have with u = qα(ε) ∼ q√α(1) given

by (3.1)

ESα(ε) =
(1− ε)ϕ(u)− εσLP (u/σ)

α
∼ −σLP (u/σ)√

α
∼ ESα′(1).
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• For ε = α, we have

ESα(ε) ∼ ϕ(u)

α
, u = VaRα(ε) ∼ VaRα = Φ−1(1− α).

We remark that the power-like contamination distribution is a typical example

that the probability level ratio wα/α = 1. For a realistic degree of tail heaviness,

the ratio wα/α is less than 1, and increases with the degree of tail heaviness [Mihoci

et al., 2021].

In the following, we investigate the behavior of the theoretical results indicated

by Theorems 1, 2 and 3 with the three examples given above.

In Fig. 1, we fix the contamination level ε to be 0.5 and show performance of

our asymptotical results indicated by Theorem 1. Here the contamination models

are normal, Laplace and power-like distributions with the same scale parameter

σ = 1.5. Here, the approximations of the VaR, ES and the expectile-quantile

transformation level ratio (indicated by the dotted line) are given by the heavier

contamination distribution of normal, Laplace and power-like risk at level α′ = α/ε,

i.e., VaRα′(1), ESα′(1) and wα′(1)/α′. We see that, as the risk level α → 0, the

more accurate approximations to the true values based strictly on the underlying

model are obtained.

In Fig. 2, we fix small risk level α = 0.5% and investigate how the approxima-

tions vary with the contamination level ε. Clearly, the VaR, ES and the probability

level ratio wα/α become smaller and smaller as ε becomes larger, in other words,
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the smaller ratio level indicates the heavier left tails of the contamination model.

Further, the approximations perform better for larger ε. Finally, we conclude that

the level ratio of expectile vs. quantile is not monotonic for moderate ε, and the

normal-power-like contamination model has ratio level around 1.

Fig. 3 and 4 show the approximations of VaR, ES and expectile-quantile trans-

formation level ratio with varying contamination level ε = ατ , τ = 0.05, 0.1 based

on Theorem 2, respectively. In Fig. 3, we conduct the numerical approximations

based on the reference normal model with normal and power-like contamination

models. For both cases, we take the same scale parameter σ = 1.2. Generally, the

efficiency of approximations supports the claim in c) of Theorem 2. The approxi-

mations of expectile-quantile transformation level ration seem slower than that for

Value-at-Risk and expectile, which is common since its approximation depends on

the estimated Value-at-Risk for the mixed models (see Eq.(1.2) and Theorem 2).

Meanwhile, the approximations based on the heavier contamination model (normal

and Laplace) with the same scale parameter σ = 0.8 and lighter contamination

changes according to ε = α0.1 were illustrated in Fig 4. We see that the efficiency

of approximations for ES is more obvious than that for VaR.

Finally, in view of Theorem 3, we estimate the risk measure % by

%̃(ε)
def
= %+ εIF (%;F,H) (3.2)

for small ε, provided that both F and H are asymptotically known. Define the
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Figure 1: Comparisons of the true values (solid line) based strictly on the con-

tamination model Fε and approximations (dotted line) based loosely on the con-

tamination distribution H at level α′ = α/ε via Value-at-Risk, Expected-shortfall

and the expectile-quantile transformation level ratio wα/α. Here ε = 0.5 and H

is the normal, Laplace and power-like distribution with the same scale parameter

σ = 1.5.
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Figure 2: Comparisons of the true values (solid line) and approximations (dot-

ted line) based on the contamination model H at level α/ε via Value-at-Risk,

Expected-shortfall and the expectile-quantile transformation level ratio wα/α.

Here α = 0.5%, and ε varies in (0.01, 1), and H is normal, Laplace and power-like

distribution with the same scale parameter σ = 1.4.
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Figure 3: Comparisons of the true values (solid line) and approximations (red

dotted line) based on the pre-supposed Normal model. Here we take H as normal

and power-like distribution with same scale parameter σ = 1.2 and ε = ατ with

τ = 0.05.

Statistica Sinica: Preprint 
doi:10.5705/ss.202023.0019



Figure 4: Comparisons of the true values (solid line) and approximations (red

dotted line) based on the contamined normal (left) and Laplace (right). Here we

take H as normal, and Laplace distribution with the same scale parameter σ = 0.8

and ε = ατ with τ = 0.1.
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relative error (RE) of the estimations as follows.

RE(%) =
%̃(ε)− %(ε)

%(ε)
. (3.3)

In Table 1, we fix α = 10% and see that, the smaller the contamination ε is, the

less RE is for all three contamination cases. Further, the RE of ES is not greater

than that of VaR in absolute value when the contamination level ε > 1.10%.

Therefore, we conclude that Theorem 3 gives nice estimations of VaR as well as

ES for moderate α.
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Table 1: Relative error (RE) of VaR and ES at α = 0.10 with varying ε for

contamination modelH being normal, Laplace and power-like with scale parameter

σ = 2, 1.2, 1 based on (3.3). Here, VaRα and ESα are estimated by Eq.(3.2), and

the unit of ε, V̂aRα, ÊSα is % while for RE(V̂aRα),RE(ÊSα) is h.

Normal

ε 0.10 1.10 2.10 3.10 4.10 5.10 6.10 7.10 8.10 9.10

V̂aRα 128.25 129.17 130.11 131.06 132.02 132.99 133.97 134.97 135.99 137.01

ÊSα 175.76 178.43 181.09 183.73 186.36 188.99 191.58 194.16 196.72 199.27

RE(V̂aRα) −0.01 −0.07 −0.22 −0.47 −0.81 −1.19 −1.71 −2.31 −3.01 −3.79

RE(ÊSα) 0.02 0.08 0.21 0.42 0.71 1.00 1.44 1.95 2.53 3.18

Laplace

ε 0.10 1.10 2.10 3.10 4.10 5.10 6.10 7.10 8.10 9.10

V̂aRα 128.16 128.22 128.28 128.34 128.40 128.46 128.53 128.59 128.65 128.71

ÊSα 175.54 176.00 176.47 176.93 177.39 177.86 178.32 178.78 179.25 179.71

RE(V̂aRα) −0.01 −0.02 −0.02 −0.03 −0.04 −0.05 −0.07 −0.09 −0.11 −0.14

RE(ÊSα) 0.02 0.02 0.03 0.03 0.03 0.03 0.04 0.04 0.04 0.05

Power-like

ε 0.10 1.10 2.10 3.10 4.10 5.10 6.10 7.10 8.10 9.10

V̂aRα 128.23 128.98 129.74 130.50 131.28 132.07 132.86 133.67 134.48 135.31

ÊSα 175.99 180.98 185.96 190.93 195.89 200.84 205.78 210.72 215.64 220.55

RE(V̂aRα) −0.01 −0.06 −0.18 −0.37 −0.63 −0.96 −1.37 −1.80 −2.36 −2.98

RE(ÊSα) 0.02 0.06 0.14 0.27 0.45 0.67 0.93 1.16 1.50 1.87

We notice that our theoretical findings are well illustrated by the above nu-
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merical analysis. The question of relevance is that the potential contamination

distribution as well as its contamination level are completely unknown in real-

ity. To this point, we recommend a splicing model with a classical distribution

for the bulk of the data and the tail distribution based on extreme value theory

[Reynkens et al., 2017]. We refer to Mohamed and Odile [1999] for the likelihood

ratio test whether a known density contaminated by another density of the same

parametric family and among others. On the other hand, statistician considered

the alternative robust statistical methods which thus avoid the issue of identify-

ing the contamination distribution and contamination level in reality [Zhu and

Fukushima, 2009, Blanchet and Murthy, 2020]. The next section will show us the

empirical study on Royalton CRIX with numerical estimation of the contamination

level and subjective selection of the contamination distribution as well [Trimborn

and Härdle, 2018, Kim et al., 2021].

4. Empirical study on CRIX

The Royalton CRIX, a market index (benchmark), is designed by Trimborn and

Härdle [2018]. It enables each interested party to study the performance of the

crypto market as a whole or single cryptos, and therefore attracts increasing at-

tention of risk managers and regulators [Chen et al., 2018, Härdle et al., 2020,

Trimborn et al., 2020, Petukhina et al., 2021, Kim et al., 2021]. Consequently, we

focus on its tail feature and give the estimations of the tail-related risk measures.
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As shown below, this is achieved by using the normal-Laplace contamination model

and the approximations given in Section 2. Here, we use the daily CRIX dataset

during 20140731-20180101, which is available on royalton-crix.com.

Firstly, we see the leptokurtic (fat-tailed) distributional feature of the financial

dataset CRIX from the normal Q-Q plot in Fig. 5. Further, according to Chen

et al. [2018], we standardize first the daily log returns of CRIX by GARCH(1,1)

model explaining the heteroskedasticity of the CRIX, see also recent discussions

by Venter and Maré [2020] and among others.

Next, in Fig. 6 we employ the empirical mean excess function from extreme

value theory to visualize the heaviness of the standardized daily log returns of

CRIX (X):

m̂X(t) =

∑n
i=1 (Xi − t) I{Xi > t}∑n

i=1 I{Xi > t}
, t large,

where X1, . . . , Xn are the observations of X. We see that both of upper and lower

tails of CRIX decay exponentially since the graph (t, m̂X(t)) becomes linear with

slope zero for large threshold t (cf. Fig. 6 (upper)). Further, we see from Fig. 6

(bottom) that, the horizontal change of the log mean excess graph (log t, log m̂X(t))

for large t, indicates the Laplace tail-decaying of the dataset [Dierckx et al., 2009].

We remark that the left tail feature of X is given by the right tail of −X. To

illustrate the normality feature of standardized CRIX with possible heavier tail

due to contamination model, we choose here the normal-Laplace contamination
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model with parameter ε,µ = (µ1, µ2),σ = (σ1, σ2) to fit the log returns of CRIX:

Fε(x) = (1− ε)Φ
(
x− µ1

σ1

)
+ εL

(√
2
x− µ2

σ2

)
, x ∈ R. (4.1)

We refer to Nasir et al. [2022] for the applications of Gaussian mixture and normal-

Laplace mixture (one of heterogeneous mixtures) for return series. The maximum

likelihood estimation of the parameters involved in (4.1) are listed in Table 2

utilizing the expectation-maximization (EM) algorithm [Dempster et al., 1977].

The EM algorithm, a general method to deal with the iterative computation of

maximum likelihood estimation, works with initial parameter estimates and then

iterates through two steps (i) the Expectation step and (ii) the Maximization step.

The former step assumes fixed parameter estimates and computes the expected

values of the latent variables in the model, and the maximization step updates the

previous parameter estimates that maximize the likelihood function.

Further, for the CRIX during 20160401–20180101 the contamination level ε̂ =

0.731 is slightly bigger than those for the sub-period of 20140701–20160331 and

the whole period of 20140401–20180101. We conclude the tail heaviness of CRIX

time series might probably have an increasing tendency.

Finally, estimations of VaR and ES at level α = 0.5%, 1%, 5% are compared

also in Table 2 via three methods including the historical simulation, written by

V̂aR
∗
α, ÊS

∗
α; Laplace approximations at level α′ = α/ε̂ by use of Theorem 1, de-

noted by V̂aRα′(1), ÊSα′(1); and approximations based directly on the normal-

Laplace mixture model, written by V̂aRα(ε̂), ÊSα(ε̂). Note that historical sim-
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ulation (HS) is a non-parametric method which assumes that past returns are

anticipated to be the next period return, and thus a good guide for forecasting

future returns. HS represents the easiest way of calculating VaR for many portfo-

lios, and is more pliable and less sensitive to the odd outlier than the parametric

method, which thus is extensively accepted by trading communities and manage-

ment mostly [Andersen et al., 2009]. For all the estimations of ES, we keep the

historical simulations of VaR, as in Mihoci et al. [2021].

We conclude that the estimations of V̂aR
∗
α, V̂aRα′(1), V̂aRα(ε̂) and ÊSα(ε̂) for

the sub-period of 20160401–20180101 are slightly larger (in absolute value) than

those for the sub-period of 20140701–20160331 and the whole period of 20140401–

20180101, and the same holds for the estimates of ÊS
∗
α at α = 1% and α = 5%.

Further, the Laplace approximations of the VaR are rather close to the complete

contamination model, illustrating again the efficiency of our theoretical approxi-

mation in Theorem 1.

Finally, given the scarcity of data in the tail, the estimates of VaR and ES

based on historical simulations are not recommended for small α. In this case,

we may employ the so-called extrapolation method in extreme value theory to get

the out-of-sample estimates [Ferreira et al., 2003]. In our viewpoint, given the

computation complexity of the mixture model with some model uncertainty in the

tail, one may choose the estimates based on the heavier contamination model for

extreme tail inference. In addition, our findings of the non-normality and certain
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heavy tails are in consistent with that by Chen et al. [2020].

Table 2: Estimated parameters of the normal-Laplace contamination model for

the log return CRIX during 20140731–20180101 and the two sub-periods. Here

V̂aR
∗
α and ÊS

∗
α stand respectively for historical simulations of VaR and ES, and

V̂aRα′(1), V̂aRα(ε̂) and ÊSα′(1), ÊSα(ε̂) are those estimations based on Laplace

and the original mixture model with estimated parameters involved and α′ = α/ε.

period parameter α V̂aR
∗
α V̂aRα′(1) V̂aRα(ε) ÊS

∗
α ÊSα′(1) ÊSα(ε̂)

2014.07-2018.01

ε̂ = 0.622

µ̂ = (0.002, 0.004)

σ̂ = (0.010, 0.043)

0.5% 0.136 0.127 0.127 0.183 0.125 0.000

1% 0.105 0.105 0.105 0.152 0.138 0.000

5% 0.054 0.055 0.054 0.091 0.085 0.000

2014.07-2016.03

ε̂ = 0.480

µ̂ = (0.001,−0.002)

σ̂ = (0.014, 0.045)

0.5 0.118 0.125 0.125 0.171 0.184 0.000

1% 0.104 0.103 0.103 0.143 0.130 0.000

5% 0.046 0.052 0.052 0.086 0.094 0.000

2016.04-2018.01

ε̂ = 0.731

µ̂ = (0.002, 0.008)

σ̂ = (0.006, 0.045)

0.5% 0.137 0.128 0.128 0.179 0.128 0.000

1% 0.108 0.106 0.106 0.155 0.130 0.000

5% 0.059 0.055 0.055 0.095 0.080 0.000

+

5. Discussions and Conclusion

Model mis-specifications and contamination data are very common in the grow-

ing fields of financial markets and insurance industry. Robustness against outliers

are a desirable property of estimators based on the bulk data without being dis-

torted by outliers. We argue that certain robustness of the VaR & ES remains un-

der a contamination neighbourhood with lighter tailed contamination distribution
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Figure 5: Time series of daily log returns of CRIX standardized by GARCH(1,1)

during 2014.07.31 – 2018.01.01 (left) and normal Q-Q plot (right).

Figure 6: Mean Excess plot and log Mean Excess plot for log returns of CRIX

standardized by GARCH(1,1) during 2014.07.31 – 2018.01.01.
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or heavier-tailed contamination provided a suitable shrinked contamination level.

This can lead to an understanding of the robust risk management role played by

these extreme events. On the other hand, practitioners may implement outlier re-

jection approach and/or stress tests qualifying the effects of potentially hazardous

events on VaR and other risk measures, according to the subjective judgement of

the risk experts. Besides, it is worthy to emphasize the difference between outliers

and extremes, and one may employ the splicing model to model both the bulk of

data and extreme events [Reynkens et al., 2017]. We expect that the reference

model with stable inference may improve the tail analysis through certain shar-

ing effects in statistical applications. As an alternative topic on the sensitivity of

portfolio strategy, one may study the sensitivity of the portfolio weight to changes

in the portfolio loss distribution since in a long run, the portfolio loss distribu-

tion may violate to some extent. This will be considered in a forthcoming project

[Caccioli et al., 2018, Nataliya et al., 2010].

6. Proofs

Proof of Theorem 1 Note by Eq.(1.1) that ESα = −LPMα/α with LPMα the

lower partial moment at 100α% quantile. Hence, in view of (1.3), it suffices to find

qα(ε) and LPMα(ε). Since

(1− ε)F (qα(ε)) + εH (qα(ε)) = α, (6.1)
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we have by Eq.(1.5)

H (qα(ε)) ∼ α/ε.

Therefore, it follows further from Lemma 1.2.9 in de Haan and Ferreira [2006]

that, for given ε ∈ (0, 1],

VaRα(ε) ∼ VaRα/ε(1), (6.2)

that is, the VaR for the contamination model equals approximately the VaR of H

(the heavier df) at probability level α/ε.

Next, we return to LPMα(ε). It follows by integral by parts that∫ a
−∞ x dF (x)∫ a
−∞ x dH(x)

=
aF (a)−

∫ a
−∞ F (x) dx

aH(a)−
∫ a
−∞H(x) dx

→ 0, a→ −∞

since F (a)/H(a) → 0 and
∫ a
−∞ F (x) dx/

∫ a
−∞H(x) dx → 0 by a straightforward

application of L’Hôpital’ rule and Eq.(1.5). Therefore, taking a = qα(ε), we have

LPMα(ε) = (1− ε)
∫ qα(ε)

−∞
x dF (x) + ε

∫ qα(ε)

−∞
x dH(x)

∼ ε

∫ qα(ε)

−∞
x dH(x), (6.3)

which goes to 0 by the fact that E (Y ) <∞ with Y ∼ H and qα(ε)→ −∞.

Meanwhile, it follows by Eq.(1.2) that

wα =
LPMα/qα − α

1 + 2(LPMα/qα − α)− E (X) /qα
∼ LPMα

qα
− α

since wα → 0 as α→ 0. Thus, we have (recall α′ = α/ε)

wα(ε) ∼ LPMα(ε)

qα(ε)
− α ∼ ε

{∫ qα(ε)
−∞ x dH(x)

qα′(1)
− α′

}
(6.4)
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Consequently, the claim follows by (6.2)-(6.4).

Proof of Theorem 2 Clearly, we have limα→0 F (qα(ε)) = 0 since limα→0 max(α, εα) =

0 and qα(ε) satisfies (6.1). Hence, limα→0 qα(ε) = −∞.

a) If F (qα(ε)) = O(1)εH (qα(ε)), then

εH (qα(ε)) ∼ (1− ε)F (qα(ε)) + εH (qα(ε)) = α.

Recalling that H is in the max-domain attraction, it follows by Lemma 1.2.9 by

de Haan and Ferreira [2006] that

VaRα(ε) ∼ VaRα/ε(1).

b) If F (qα(ε)) ∼ c′εH (qα(ε)) with some fixed c′ > 0, then

VaRα(ε) ∼ VaRα/{(c′+1)ε}(1) ∼ VaRαc′/(c′+1) .

c) If εH (qα(ε)) = O(1)F (qα(ε)), then

F (qα(ε)) ∼ (1− ε)F (qα(ε)) + εH (qα(ε)) = α

implying that VaRα(ε) ∼ VaRα.

Proof of Theorem 3 First, for given α ∈ (0, 1), denote by θ the influence function

of the VaR at quantile level 100α% with the underlying df in the ε-neighbourhood

Fε = {Fε|Fε(x) = (1− ε)F (x) + εH(x)}. We have (recall VaRα = −qα)

qα(ε) ' qα−εθ.
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Therefore, we have by Taylor’s expansion of F at qα that

lim
ε→0
{(1− ε){α− εθF ′(qα)}+ εH(qα)} = α.

This implies that H(qα)−θF ′(qα) = α. The first claim is obtained.

Similarly, we have for the ES

IF (ESα;F,H) = − lim
ε→0

∫ qα(ε)
−∞ x dFε(x)−

∫ qα
−∞ x dF (x)

αε

= −
∫ qα
−∞ x d{H(x)− F (x)}+ limε→0 ε

−1 ∫ qα(ε)
qα

x dFε(x)

α

= −
∫ qα
−∞ x d{H(x)− F (x)}+ qα{α−H(qα)}

α

=

∫ qα

−∞
{H(x)− F (x)} dx,

where the last second step follows by qα(ε) − qα ' θε and the continuity of F ′ at

qα, and the last step follows by integral by parts.
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A. Kim, S. Trimborn, and W.K. Härdle. VCRIX–a volatility index for crypto-currencies. International

Review of Financial Analysis, 78:101915, 2021.

C.M. Kuan, J.H. Yeh, and Y.C. Hsu. Assessing Value-at-Risk with CARE, the conditional autoregressive

expectile models. Journal of Econometrics, 150(2):261–270, 2009.

A.J. McNeil, R. Frey, and P. Embrechts. Quantitative risk management: Concepts, techniques and tools.

Princeton university press, 2015.
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