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Abstract:

High dimensional time series analysis has diverse applications in macroecono-

metrics and finance. Recent factor-type models employing tensor-based decom-

positions prove to be computationally involved due to the non-convex nature of

the underlying optimization problem and also they do not capture the under-

lying temporal dependence of the latent factor structure. This work leverages

the concept of tubal rank and develops a matrix-valued time series model, which

first captures the temporal dependence in the data, and then the remainder sig-

nals across the time points are decomposed into two components: a low tubal

rank tensor representing the baseline signals, and a sparse tensor capturing the

additional idiosyncrasies in the signal. We address the issue of identifiability of

various components in our model and subsequently develop a scalable Alternat-

ing Block Minimization algorithm to solve the convex regularized optimization

problem for estimating the parameters. We provide finite sample error bounds

under high dimensional scaling for the model parameters.
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1. Introduction

There has been a lot of interest in modeling high-dimensional time series

due not only to traditional application areas in macroeconomics and fi-

nance (De Mol et al., 2008; Blanchard and Perotti, 2002; Bernanke et al.,

2005), but also emerging ones, including dynamic traffic networks (Chen

and Chen, 2022), functional genomics (Michailidis and d’Alché Buc, 2013)

and neuroscience (Seth et al., 2015). To accommodate high dimensionality,

both regularized versions of VAR models (Bańbura et al., 2010; Basu et al.,

2015; Kock and Callot, 2015; Ghosh et al., 2019; Wang et al., 2024) and dy-

namic factor models (Bai and Wang (2015), Lam et al. (2012), Chang et al.

(2018)) have been developed. Wang et al. (2019) and Chen et al. (2022)

recently extended the aforementioned factor models to matrix and tensor

valued time series by expressing the data into a low dimensional dynamic

signal as A1GtA
T
2 , or Gt ×1 A1 ×2 A2 ×3 · · · ×k Ak respectively, with Ai’s

being the loading matrices and Gt and Gt are the core factor matrix and

tensors.

The two key points that we aim to address through our work are

(a) In both Wang et al. (2019) and Chen et al. (2022), the factor matrix
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Gt and the factor tensor Gt are assumed to drive all the dynamics of

the data. However, they capture the temporal dependence through

lagged covariance matrix. On the other hand, as it will be discussed

later, we aim to capture the same through our model in the form of

a transition matrix B∗. For the ease of exposition, we only include

lag-1 temporal dependence in our model. However, one can similarly

add more lag-terms to capture higher order temporal dependence.

(b) In many applications, the data may have a more complex underlying

low dimensional structure, which may not be justified by the afore-

mentioned tucker decomposition-based factor-loading representation.

For example, (1) matrix-valued product ratings data with the rows

and the columns corresponding to the customer age groups and dif-

ferent product categories respectively. E-Commerce experts suggest

(see Example 2 of Agarwal et al. (2012)) decomposing such under-

lying signals into two parts: the first part carrying similar baseline

signals across different product categories, and the second part rep-

resenting the additional signals that are active for only some specific

combinations of the age groups and product categories (see Section

2 for more details). (2) Macroeconomic matrix-valued quarterly data,

where at each time point a set of Macroeconomic indicators (GDP,
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Figure 1: Low dimensional structure of Signal

Inflation index and so on) are available for different countries in Eu-

ropean Union (see Section 5 for details). Since the countries under

European Union follow harmonized economic policies with a unified

objective, as in the previous example, it is meaningful to assume that

one part of the signal will be similar or shared across the different

countries. Whereas, the second component of the signal is devoted

to capturing the additional idiosyncratic elements, that are specific

to only some of the combinations of variables and countries, arising

from an economic boom or financial stress.
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In this paper, we propose a matrix-valued time series model that aims

to address the two key issues ((a) and (b)) discussed above. The model first

captures the underlying temporal dependence through a sparse transition

matrix B and then induces a low-dimensional structure in the remainder

signal that is suitable for the previously mentioned examples in (b). To

that end, instead of employing a tucker decomposition based factor-loading

form, the signal is rather decomposed into two parts. When the first parts

across different time points, denoted by Lt’s, are arranged as the frontal

slices along the time dimension (see Figure 1 for intuition), the resulting

third-order tensor L is assumed to exhibit low tubal rank, a concept intro-

duced for tensor decompositions in Kilmer and Martin (2011) and Kilmer

et al. (2013). As illustrated in Figure S8.10, for a third-order tensor, the

horizontal slices, lateral slices and the tube fibers play the roles of rows,

columns and elements of a matrix, respectively. The aforementioned papers

introduced a novel concept of t-product [tensor counterpart of the product

between a matrix column and a scalar; see Definition S4.1 in the supple-

ment], t-linear combination [tensor counterpart of linear combination of the

matrix columns; see Definition S4.7 in the supplement]. Finally, Kilmer and

Martin (2011) define the tubal rank [tensor counterpart of the matrix rank,

see Definition S4.9 in the supplement] and show that, just like the rank of a
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matrix, the tubal rank of a third-order tensor is the number of lateral and

horizontal slices that are t-linearly independent (see Figure S8.9, Section 2

and the discussion after Definition S4.7). Thus the low tubal rank tensor L

in Figure 1 captures the first part of the signal, where the similar baseline

signals are shared across the lateral (or, horizontal) slices of L. Recalling

the two examples discussed before, these slices will correspond to different

product categories in the e-Commerce example, or different countries in

the Macroeconomic example. In addition to this baseline signal, one can

similarly define another third-order tensor S (see Figure 1) that is sparse

and captures the additional idiosyncrasies.

The key novel contribution of this paper is to develop the algorithm

and technical tools to obtain estimates of the two components of the signal,

along with the transition matrix that captures the temporal dependence

and establish a non-asymptotic upper bound to the estimation error under

both Gaussian and Sub-Exponential distributional assumption. This type

of decomposition has been employed earlier in another line of research that

deals with tensor recovery (see Liu et al. (2016)). However, to the best of

our knowledge, this methodology and the subsequent theoretical analysis

are new in the context of high-dimensional time series models.
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2. Low Tubal-Rank Time Series Model and Its Estimation

Suppose there are p variables of interest, for m entities, observed across T

time periods, as discussed in the motivating examples. The data are then

modeled as

Xt = Mt + Et, t = 1, 2, · · · , T, (2.1)

where Xt ∈ Rp×m is the matrix-valued time series observed at time point

t and Mt and Et are the signal and noise components associated with Xt.

Further, we assume that Cov{V ec(Mt), V ec(Et′)} = 0,∀ (t, t′), that is, the

error processes are uncorrelated with the signal across all time points, where

the notation V ec(·) is used to denote the vectorized form of a matrix.

We introduce a sparse transition matrix B∗ ∈ Rpm×pm to capture the

underlying temporal dependence in the dynamic signal and noise, by assum-

ing V ec(Mt) = B∗ V ec(Mt−1) + V ec(Ft) and V ec(Et) = B∗ V ec(Et−1) +

V ec(Ut), where both V ec(Ft) and V ec(Ut) are white noise processes with

mean zero and Cov{V ec(Ft), V ec(Ut′)} = 0,∀ (t, t′). The primary motiva-

tion of assuming sparsity on B∗ is to deal with the excessive dimensionality

of the same as compared to the available sample size. By assuming spar-

sity structure on B∗, our method selects and estimates only the significant

parameters in B∗, and sets the insignificant ones to zero. This assump-
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tion has been widely used in the literature of high-dimensional time series

models, including the SSVS approach of George et al. (2008), a Bayesian

Non-parametric approach of Billio et al. (2019), and a Graphical VAR ap-

proach in Ahelegbey et al. (2016a,b). Basu et al. (2015) investigate the

theoretical properties of ℓ1-regularized estimate of the sparse VAR tran-

sition matrix. Asymptotic properties of lasso for high-dimensional time

series have also been considered by Loh and Wainwright (2012), and Basu

et al. (2015) provide detailed comparisons with the above studies. Ghosh

et al. (2019) and Chakraborty et al. (2023) also assume sparsity structure

on the VAR transition matrix, and formally extend the idea of Basu et al.

(2015) in the Bayesian context and for the mixed frequency time series data

respectively.

It is worth mentioning that, here we are assuming temporal dependence

of the noise process, which is in line with the approach of Bai (2003) and

Chen and Fan (2023). On the other hand, Wang et al. (2019) assume no

temporal dependence of the noise process, and the factor process captures

all the temporal dependence of the data. Liu and Zhang (2022) provide a

detailed description on the differences between these two settings.

With the sparse transition matrix B∗, equation (2.1) translates into the

following form,
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V ec(Xt) = V ec(Ft) +B∗ V ec(Xt−1) + V ec(Ut), t = 1, 2, · · · , T (2.2)

Once the temporal dependence is captured, we aim to employ the low-

dimensional structure on the remainder signal Ft, that we discussed in Sec-

tion 1 (see the examples discussed in (b) of Section 1). As argued there,

one may come across time series data, for which the underlying low di-

mensional structure of the associated signal may not be fully justified by

Tucker decomposition based factor-loading representation used in Wang

et al. (2019) and Chen et al. (2022). Consider the earlier example from e-

Commerce, where the matrix valued data on product ratings are available

with customer age-group in one dimension and the product categories in

the other dimension. As e-Commerce experts suggest (see Agarwal et al.

(2012)), the signal corresponding to these ratings will be more or less sim-

ilar or shared across the different product categories, say “Books”, “Elec-

tronics” and “Clothing Accessories”. However, in addition to this similar

baseline part, there will be a few additional idiosyncratic elements in the

signal, which are active for only some specific combinations of age-group

and product categories. For example, the customers of age-group “16 years-

30 years” are more inclined towards online shopping of clothing accessories

and thus this combination demands additional signal component over and

above the baseline signal. Hence, in the baseline part, there should be low-
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rankness along the product-categories and on the other hand, the second

part should be a sparse component capturing the idiosyncrasies (see Figure

S8.8 in the supplement). Similar justification follows for the other example

from Macroeconomics too, with the baseline part capturing low-rankness

across the countries and country-specific financial crisis giving rise to the

additional idiosyncratic signal (see Figure S8.8 and Section 1).

To formulate this typical low dimensional structure, we first place the

signal matrices Ft’s as the frontal slices (see Figure 1), create a third-order

tensor F ∈ Rp×m×T and assume that F = L∗+S∗, where L∗ and S∗ are two

complementary types of low dimensional structure, as the aforementioned

examples demand.

The L∗ component corresponds to a low tubal-rank tensor. As shown

in Kilmer et al. (2013) and discussed in Section 1, the tubal-rank of a third-

order tensor is analogous (in the appropriate algebra, see Section S4 in the

supplement) to the rank of a matrix. Hence, analogously to the fact that low

rankness of a matrix implies linear dependence among its columns and rows,

a low value of tubal-rank characterizes a similar type of dependence, namely

t-linear dependence (see Definition S4.7 and the ensuing discussion), among

the lateral and horizontal slices. For the posited model, we select the di-

mension across the lateral slices to impose low-rankness. However, one can
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always reorient the tensor and thus impose low-rankness assumption across

any of the dimensions. The aforementioned dependence is governed by the

concept of the t-product and the t-linear combination introduced in Kilmer

et al. (2013). The formal definitions are deferred to the supplement and

Figure S8.9 illustrates the key ideas. As it depicts, a lateral slice is said to

be t-dependent on the other, if the former can be expressed as the t-product

between the latter and a suitable tube. Using the definition of t-product,

Figure S8.9 also provides an alternative representation of t-dependence in

terms of Block-Circulant matrix [See notation S4.2 in the supplement]. Fig-

ure S8.1 in the supplement provides some numerical examples to show the

relation between tubal-rank and the t-dependence among the lateral slices.

Thus, based on this brief discussion, the purpose of the first component L∗

is to capture similar baseline part of the signal. The second component S∗

represents the additional idiosyncrasies and can be formally considered as

a third order tensor, whose frontal slices are elementwise sparse.

Following the above discussion, we rewrite our model in equation (2.2)

in more explicit form as follows:

V ec(Xt) = V ec(L∗
t ) + V ec(S∗

t ) +B∗ V ec(Xt−1) + V ec(Ut), t = 1, 2, · · · , T

(2.3)

where B∗ ∈ Rpm×pm is an elementwise sparse transition matrix. For t =
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1, 2, · · · , T , L∗
t and S∗

t are the tth frontal slices of the tensors L∗ and S∗ re-

spectively, where L∗ ∈ Rp×m×T is a low tubal-rank tensor and S∗ ∈ Rp×m×T

tensor whose frontal slices are elementwise sparse. V ec(Ut) is a zero mean

White Noise process. Later, while we have theoretical discussion in Section

3, we take different distributional assumptions on the processes V ec(Ut),

V ec(L∗
t ) and V ec(S∗

t ) and present our results under those distributional

assumptions. Finally, a tensor counterpart of equation (2.3) can be written

as:

Y = L∗ + S∗ +B∗ ×Z+U (2.4)

where, Y ∈ Rp×m×T , Z ∈ Rp×m×T and U ∈ Rp×m×T are the third-order

tensors whose frontal slices are {Xt}Tt=1, {Xt−1}Tt=1 and {Ut}Tt=1 respectively,

and the notation B∗×Z is used to denote a third-order tensor of size p×m×

T , whose tth frontal slice is the matricized version of the pm dimensional

vector B∗V ec(Xt−1) in equation (2.3). Given the model in equation (2.4),

our objective is to estimate the low tubal-rank signal component L∗, sparse

signal component S∗ and sparse transition matrix B∗ based on the available

data. Note that, some additional constraints are required in order to make

the model identifiable, which have been discussed in Section 2.1.

Note that, in the e-Commerce example (and similarly in the macroe-

conomics example), one can not simply use the Tucker decomposition in
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Figure 2: Pictorial illustration of the difference between Tucker decompo-

sition and low Tubal-rank plus sparse approach

order to impose our desired low-dimensional structure. As explained in

Kolda and Bader (2009), Chen et al. (2022), and depicted in Figure 2, a

typical Tucker decomposition uses a core tensor, and then applies loading

matrices along all three different directions of the core tensor. So, though

it helps in reducing the dimension substantially, the reduction of dimension

occurs arbitrarily from all three directions. However, in our examples, we

have matrix-valued time series, with inherent low-dimensional pattern de-

composed into two parts: baseline and additional idiosyncratic parts. In the

baseline part, the signal will be similar or shared across the three product
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categories: books, electronics and clothing accessories. Thus, to induce this

shared pattern, it behooves us to impose low-rankness along the product

category direction. To that end, as explained earlier and depicted in Figure

2 and Figure 1, we first create two-dimensional lateral slices corresponding

to each product category (with time in one dimension and age-group in

the other dimension), and assume low tubal-rank among these slices. As

discussed earlier in this section, and formally presented in Section S4 of

the supplementary material, just like low-rank and linear dependence be-

tween the matrix columns, low tubal-rank induces t-linear dependence (see

Figure S8.9 and the discussion after Definition S4.7 in the supplementary

material) among the above lateral slices, and that dependence will capture

the shared baseline signal across the product categories. In addition to this

baseline part, the idiosyncratic part is captured by the sparse tensor as

shown in Figure 2. Hence, the low-dimensional structure induced by the

Tucker decomposition is quite different than our low tubal-rank plus sparse

approach, and the former is not suitable for our desired pattern.
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2.1 Estimation of the Signal components and the Transition Ma-

trix

The tubal rank and sparsity constraints in equation (2.4) are non-convex

and as common with other high-dimensional models, a convex relaxation

is introduced to compute the model parameters. Next, we introduce some

necessary notation employed in the sequel. Define matrix Y ∈ RT×pm as

Y = {V ec(X1), V ec(X2), · · · , V ec(XT )}T . Thus, the tth row of Y corre-

sponds to the tth time point, wherein the observed matrix Xt is arranged

in vectorized form. Similarly, define T × pm dimensional matrices L∗, S∗, Z

and U associated with V ec(L∗
t ), V ec(S∗

t ), V ec(Xt−1) and V ec(Ut) respec-

tively. Thus, the model in equation (2.4) (and in equation (2.3)) can be

alternatively expressed in the following form:

Y = L∗ + S∗ + ZB∗T + U (2.5)

It can be seen from equation (S4.1) and the related discussion in the sup-

plement that 1
T
∥Circ(L∗)∥∗ corresponds to a suitable convex relaxation for

the low tubal-rank constraint, where Circ(L∗) is the block-circulant matrix

associated with the tensor L∗ (see notation S4.2). Indeed, it is an alter-

native form of the Tensor Nuclear Norm defined in Lu et al. (2018) (see

Definition 7 in Lu et al. (2018) and equation 12 in Lu et al. (2016)) and
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imposing a constraint on this norm translates into an analogous constraint

on the tubal-rank. Further, since S∗ consists of element-wise sparse frontal

slices, one can simply treat each frontal slice as a matrix and employ the

usual element-wise ℓ1 norm for each of them. Hence, we consider a regular-

izer
∑T

t=1 ∥S∗
t ∥1, or equivalently ∥S∗∥1, for the sparse component. Similarly,

we employ an element-wise ℓ1 norm for the sparse transition matrix B∗.

The objective function for estimating the parameters L∗ and S∗ and

B∗ becomes:

min
L,S,B

{ 1

2T

∥∥Y − L− S − ZBT
∥∥2

F
+ λL

1

T
∥Circ(L)∥∗ + λS ∥S∥1 + λB ∥B∥1}

(2.6)

wherein λL, λS and λB are non-negative regularization parameters corre-

sponding to the low tubal-rank signal component, sparse signal component

and sparse transition matrix, respectively.

Remark 2.1. While penalizing Circ(L∗), the factor 1
T
can be interpreted as

follows: for any third-order tensor in Rp×m×T , the associated block-circulant

matrix consists of m blocks. Each block corresponds to a particular lateral

slice and contains all of the T possible block-circulant arrangements of that

lateral slice. Hence, in addition to exhibiting inter-slice t-dependence, the

penalty on ∥Circ(L)∥∗ also induces intra-slice dependence among the T

block-circulant arrangements of a slice. The factor 1
T
thus adjusts for this
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additional penalization.

Before presenting an algorithm for estimating the model parameters

(L∗,S∗, B∗), we address the issue of their identifiability next. There are

two sources of non-identifiability in our posited model. First, in order to

correctly identify L∗ and S∗, one should be able to disentangle the two com-

ponents from each other. In other words, the low tubal-rank component

L∗ should be “incoherent” with the sparse component S∗, so that one can

identify and recover the two components L∗ and S∗ separately. In addi-

tion to that, the overall signal component F = L∗ + S∗ in equation (2.5),

should also be incoherent with the third component ZB∗T . In the case of a

multivariate response regression model, an incoherence condition between

the low rank and the sparse component of the regression coefficient ma-

trix, is usually operationalized through conditions on the singular vectors

of the low rank component obtained from the singular value decomposition

(SVD); for details, see, Candès et al. (2011). In our case, we adapt the ap-

proach employed in Agarwal et al. (2012) to the current setting and require

∥Circ(L∗)∥∞ ≤ α1√
pmT

and ∥F∥∞ ≤ α2√
pmT ∥Z∥sp

wherein α1 > 0 and α2 > 0 are some fixed parameters. Note that based

on Proposition S3.1 in the supplement, a low tubal rank for L∗ translates
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to a small matrix rank for Circ(L∗) and vice versa. Hence, the nature of

the posited incoherence constraint follows from that for the matrix case.

Specifically, by restricting the “spikiness” -a matrix with high “spikiness”

will have very few non-zero elements and all the remaining elements will

be zeros- of the elements of Circ(L∗), one can ensure a sufficient number

of non-zero elements in Circ(L∗) and thus the same to hold for each of

the frontal slices of L∗. However, each of the last m(T − 1) columns of

Circ(L∗) can be written by rearranging elements of any one of its first m

columns. Hence, by restricting the “spikiness” of pmT elements of only

the first m columns, one can essentially control the ‘spikiness’ of all the

elements of Circ(L∗), which leads to the first incoherence condition posited

above. Similarly, the second incoherence condition controls the spikiness of

the overall signal component F with respect to the sparse transition matrix

B∗, where the upper bound of the spikiness is now suitably scaled by ∥Z∥sp.

Note that the objective function (2.6), denoted by f(L, S,B), is jointly

convex in its arguments and hence the following alternating block min-

imization procedure summarized in Algorithm 1, will obtain the desired

minimizer. The details of Steps 1−3, that update L, S and B, respectively,

are presented in Section S5 of the supplementary materials.
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Algorithm 1 Alternating Block Minimization for minimizing f(L, S,B)
1: Input: data Y ∈ RT×pm, λL, λS , λB

2: Initialize: L(0), S(0) ∈ RT×pm and B(0) ∈ Rpm×pm

3: repeat

4: Step 1: Update L(t+1) = argmin
L

f(L, S(t), B(t)), given S(t) and B(t)

5: Step 2: Update S(t+1) = argmin
S

f(L(t+1), S, B(t)), given L(t+1) and B(t)

6: Step 3: Update B(t+1) = argmin
B

f(L(t+1), S(t+1), B), given L(t+1) and S(t+1)

7: until f(L(t+1), S(t+1), B(t+1)) converges

3. Theoretical Results

We start by defining the estimation error e2(L̂, Ŝ, B̂) as follows:

e2(L̂, Ŝ, B̂) =
1

T

∥∥∥L̂− L∗
∥∥∥2

F
+

1

T

∥∥∥Ŝ − S∗
∥∥∥2

F
+
∥∥∥B̂ −B∗

∥∥∥2

F
(3.1)

The factor 1
T
in the first two parts of the above definition can be interpreted

as follows: from equation (2.5) it can be seen that our posited model in-

cludes L∗ ∈ RT×pm and S∗ ∈ RT×pm as the two components of the signal

and the transition matrix B∗ ∈ Rpm×pm captures the autoregressive tem-

poral dependence in the data. Thus, while the size of B∗ does not grow

with T , the same of L∗ and S∗ increase as T increases. The factor 1
T
in our

definition, thus adjusts for this increasing size of L∗ and S∗.

We assume that L∗ has tubal rank r ≪ min{p,m}. The rank of the

associated block-circulant matrix is denoted by R and it is bounded above

by r × T (see Proposition S3.1 in the supplement). We then assume that

the matrix S∗ has s1 ≪ pmT non-zero elements. Similarly, we assume
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that the matrix B∗ has s2 ≪ p2m2 non-zero elements. The roadmap of

the technical developments is as follows: We first summarize and describe

our assumptions. For deterministic realizations and under certain regular-

ity conditions, Lemma 3.1 establishes the bound on the estimation error

e2(L̂, Ŝ, B̂). Theorem 3.2 and Theorem S6.1 extend the result to random

realizations under Gaussian and Sub-Exponential distribution respectively.

The proofs of the results are delegated to Section S3 of the supplement.

Assumption 1. The loss function satisfies Restricted Strong Convexity

with curvature γ > 0 (and tolerance τL = 0) over the set, characterized

by Lemma S1.1 and Lemma S1.2 in the supplement. In other words, there

exists a positive constant γ > 0 such that 1
2

∥∥Z∆T
B

∥∥2

F
≥ γ

2
∥∆B∥2F ,

for all ∆B satisfying equation (S1.2) in the supplement.

Assumption 2. ∥Circ(L∗)∥∞ ≤ α1√
pmT

and ∥F∥∞ ≤ α2√
pmT∥Z∥sp

, where α1

and α2 are some fixed parameters

Assumption 3. Under the deterministic setup, the regularizer parameters

(λL, λS, λB) satisfy λL ≥ 4 1
T
∥Circ(U)∥sp , λS ≥ 8

∥∥∥ U√
T

∥∥∥
∞
+ 4α1√

pmT
and λB ≥

8
∥∥Z′U

T

∥∥
∞ + 4α2√

pmT

Assumption 1 ensures that the loss function exhibits strong convexity

over some restricted set of interest, as defined in equation (S1.2) in the
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supplement. This is a fairly standard assumption in the high-dimensional

literature Agarwal et al. (2012). As discussed in Section 2.1, Assumption 2

is aimed to ensure that the low tubal-rank component L∗ is incoherent with

the sparse component S∗ and the overall signal, say F , which is the sum of

L∗ and S∗ in Equation (2.5), is incoherent with the third component ZB∗T .

It is worth recalling that this assumption is a straightforward application

of the “spikiness” restriction on the elements of the low-rank matrix, as

introduced in Agarwal et al. (2012). We directly impose that restriction

on Circ(L∗), which is a reasonable low rank matrix-counterpart of our low

tubal-rank component L∗. The reader may revisit Section 2.1 for more

details. This assumption is milder than the other Tensor Incoherence con-

ditions (see Zhang and Aeron (2016)), which involve the components of the

t-SVD. Assumption 3 imposes a certain lower bound to the three regularizer

parameters, a common requirement in the high-dimensional literature.

The following lemma establishes an upper bound to e2(L̂, Ŝ, B̂) in the

case of deterministic realizations.

Lemma 3.1. In the deterministic case and under the Assumptions (1), (2)

and (3), the estimation error e2(L̂, Ŝ, B̂) satisfies the following:

e2(L̂, Ŝ, B̂) ⪯ λ2
L r + λ2

S s1 + λ2
B s2 (3.2)

where the notation ‘⪯’ denotes an upper bound, ignoring all the constant
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factor.

Note that the result is broadly in line with Theorem 1 of Agarwal

et al. (2012); specifically, when the loss function satisfies Restricted Strong

Convexity with tolerance τL = 0 and the parameters of interest are exactly

(not approximately) Low Rank and Sparse, a similar form of error bound

is obtained. In the current setting, the tubal-rank ( instead of matrix rank)

enters the bound, as well the sparsity s1 and s2 reflecting the nature of S∗

and B∗ respectively.

Next, the above result is extended under different distributional as-

sumptions. We start with the Gaussian case. Recalling the model posited

in equation (2.2), we assume that V ec(Ut) are i.i.d. N(0, σ2Ipm) and V ec(Ft)

are i.i.d. N(0,ΣF ) for t = 1, 2, · · · , T with Cov(V ec(Ut), V ec(Ft′)) =

0∀(t, t′). For any discrete time, centered, covariance-stationary process {pt},

we use the notation Γp(h) to denote the corresponding autocovariance func-

tion. In other words, Γp(h) = Cov(pt, pt+h) where t, h ∈ Z. To avoid com-

plex notations, we use p1t and p2t to denote V ec(Xt−1) and V ec(Ut) respec-

tively for t = 1, 2, · · · , T . Thus {p1t} and {p2t} are two centered, stationary

Gaussian processes and also Cov(p1t, p2t) = 0∀t. As in Basu et al. (2015), we

first define the spectral density corresponding to the process {p1t} as follows

fp1(θ) =
1
2π

∑∞
ℓ=−∞ Γp1(ℓ)e

−iℓθ, θ ∈ [−π, π], and assume that it exists with
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its maximum eigen value being bounded a.e. on [−π, π]. In terms of no-

tation, this implies that M(fp1) = ess sup
θ∈[−π,π]

Λmax(fp1(θ)) < ∞. Similarly, the

maximum eigen value of the spectral density corresponding to the process

{p2t} is denoted by M(fp2) and we assume that M(fp2) < ∞. Finally, as in

Basu et al. (2015), we define the cross spectral density of the two processes

{p1t} and {p2t} as follows: fp1,p2(θ) =
1
2π

∑∞
ℓ=−∞ Γp1,p2(ℓ)e

−iℓθ, θ ∈ [−π, π]

where Γp1,p2(h) = Cov(p1t, p2 t+h), t, h ∈ Z. We assume that the above

cross spectral density exists and its maximum eigen value is bounded a.e. on

[−π, π]. In terms of the notation,M(fp1,p2) = ess sup
θ∈[−π,π]

√
Λmax(f ∗

p1,p2
(θ)fp1,p2(θ))

< ∞. These assumptions will be used in supplement S3 while we prove the

next theorem.

Theorem 3.2. Suppose the signals and the errors follow Gaussian distri-

bution as discussed above and the above assumptions on the spectral and

cross-spectral densities are satisfied. Then with probability greater than

1− 6 exp{−c (2 log(pm))} we will have,

e2(L̂, Ŝ, B̂) ≤ c1 σ2 r(p+m)

T
+ c2 [σ2 s1 log(pmT )

T
+

α2
1s1

pmT
]+

c3 [Q2(B∗, σ2,ΣF )
s2 2 log(pm)

T
+

α2
2s2

pmT
]

(3.3)

where, Q(B∗, σ2,ΣF ) = M(fp1) +M(fp2) +M(fp1,p2)

The bound is analogous to the matrix case; for the latter, with m1 rows,

m2 columns and rank w, the bound involves the expression σ2w(m1+m2)
n

.
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This comprises two parts: w(m1 +m2) corresponds to the degrees of free-

dom, which is in the order of the number of free elements and a multiplica-

tive factor σ2

n
corresponding to the error variance. Analogously, the term

rp (or, rm) corresponds to the r t-independent lateral slices (or, horizontal

slices) and estimation of the p (or, m) tubes in that slice. The multiplicative

factor now becomes σ2

T
.

The second part of the error bound is related to the sparse component

and can be interpreted as follows: the first term σ2 s1 log(pmT )
T

arises as a

result of estimating s1 non-zero elements of T × pm dimensional matrix S∗.

Note that there are
(
pmT
s1

)
possible subsets of size s1 and thus the numerator

includes the corresponding term with the scaling log(
(
pmT
s1

)
) ≈ s1 log(pmT ).

The next term
α2
1s1

pmT
appears due to the non-identifiability of the low tubal-

rank and sparse components.

Finally, the first term of the last part is in line with the Proposition 4.1

of Basu et al. (2015). In the proof of Theorem 3.2, we arrive at the same

choice of the regularizer parameter λB as the one given in Proposition 4.1 of

Basu et al. (2015). This choice of λB leads to the first term of the last part.

On the other hand, the second term arises due to the second incoherence

condition between the signal F and the component ZB∗T , as discussed in

Section 2.1.
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4. Performance Evaluation

In this section, we illustrate the performance of our estimation procedure

described in Section 2.1, based on synthetic data under different settings.

The true data generating process for the simulation is described in Section

S2 of the supplement. Given the simulated data, we employ the Algorithm

1, discussed in Section 2.1, to obtain L̂, Ŝ and B̂. The regularization pa-

rameters λL, λS and λB are selected by a three-dimensional grid search

method. We run the algorithm and obtain the estimates for different grids

of the triplets (λL, λS, λB) and select that triplet for which the tubal-rank

of L̂ and the positions of the non-zero elements in Ŝ and B̂ are as close as

possible to the tubal-rank of L∗ and the positions of the non-zero elements

in S∗ and B∗ respectively. It is worth mentioning that, later we develop

an AIC criteria in order to select the optimum values of the regularization

parameters, when the true tubal-rank and sparsity levels are unknown to

us.

Performance Evaluation: We use Relative Error, Tubal-rank of L̂ and

Sensitivity and Specificity of both S∗ and B∗ estimation as the criteria

of evaluation. Small values of relative error, along with the closeness

of tubal-rank of L̂ and tubal-rank of L∗ characterize the quality of the

estimation. In addition to that, sensitivity and specificity together as-
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sess the ability of support recovery. Considering the definition of Esti-

mation Error provided in equation (3.1), the Relative Error (RE) is de-

fined as
1
T ∥L̂−L∗∥2

F
+ 1

T ∥Ŝ−S∗∥2

F
+∥B̂−B∗∥2

F
1
T
∥L∗∥2F+ 1

T
∥S∗∥2F+∥B∗∥2F

. Specificity of S∗ estimation (SP S)

is defined as 1− False Positive Rate (FPR), where, FPR is defined as

number of non-zero elements in Ŝ, which are actually zero in S∗

number of elements that are zero in S∗ . Sensitivity of S∗ estima-

tion (SN S) is defined as number of non-zero elements in Ŝ, which are actually non-zero in S∗

number of non-zero elements in S∗ .

Specificity and sensitivity of B∗ estimation can be defined in a similar way.

Using the above-mentioned criteria we evaluate the performance of our

method under two different scenarios. Each scenario corresponds to some

specific values of the pair (p,m), where the estimates are obtained for dif-

ferent values of sample size T . The objective is to show that larger sample

sizes lead to better estimation results. Furthermore, within each scenario,

we obtain the estimates under three different sub-cases. Now we first de-

scribe all the scenarios and the sub-cases and then summarize the results

under all these cases. The results reported in the following tables are based

on 100 replicates.

Scenario 1: p = 10,m = 10, Scenario 2: p = 20,m = 20. Sub-case

1: We fix the tubal-rank r = 3 and edge-density of B∗ = 0.04, but vary

the number of non-zero elements in S∗ (2 non-zero elements per slice and

4 non-zero elements per slice). Sub-case 2: Here we fix the tubal-rank
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r = 3 and the number of non-zero elements in each slice of S∗ = 2, but

vary the edge-density of B∗ (edge-density of B∗ is taken as 0.04 and 0.06

respectively). Sub-case 3: Finally, in this sub-case, we fix the number of

non-zero elements in each slice of S∗ = 2 and the edge density of B∗ = 0.04,

but vary the tubal-rank of L∗ (tubal-rank is taken as 2 and 3 respectively).

As depicted in Table S8.1 in the supplement, the relative error decrease

as the sample size increases. Moreover, as the estimation is equipped with

more and more samples, it becomes easier to achieve the target tubal-rank

of the true L∗. Finally, the values of the specificity and sensitivity approach

to 1, with increase in the sample size. The first part of Table S8.1 (third

and fourth column: Sub-case 1) fixes the value of true tubal-rank as 3 and

the edge-density of B∗ as 0.04 and then increases the number of non-zero

elements in each slice of S∗ from 2 to 4. This leads to an increase in the

relative error, which is in accordance with the theoretical finding in Lemma

3.1. For example, with sample size 80 when one increases the number of

non-zero elements in each slice of S∗ from 2 to 4, the relative error increases

from 0.30 to 0.37. The same argument follows for the other two parts of

Table S8.1 (Sub-case 2 and Sub-case 3) as well. The second part (Sub-case

2) fixes the true tubal-rank and the number of non-zero elements in S∗ and

increases the edge-density of B∗. Finally, in the third part (Sub-case 3),
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the sparsity level of S∗ and B∗ are fixed and we increase the tubal-rank of

L∗ from 2 to 3. However, in both the cases, the Relative Error increases as

we increase the tubal-rank or the number of non-zero elements.

Table S8.2 in the supplement displays the similar results under Scenario

2, where both p and m are now increased to 20. As expected, more samples

are required to achieve good performance while we increase the number of

parameters. However, in all these cases, as in Scenario 1, both estimation

and support recovery performance become stronger with increase in the

sample size. Also, the Relative Error increases as we increase the tubal-

rank (see Sub-case 1 of Table S8.2) or the number of non-zero elements in

S∗ or in B∗ (see Sub-case 2 and Sub-case 3 of Table S8.2 respectively). In

Section S7 of the supplementary materials, we define AIC which is used to

choose the optimum balues of λL, λS and λB.

Finally, we compare the predictive performance of our proposed model

with regularized VAR model in Basu et al. (2015). We first fix a forecast

horizon, h. Then, for each t′ ∈ {T − 10, T − 9, · · · , T − h}, we consider the

data up to time point t′, and use it to estimate the model parameters. Using

the estimated parameters, we obtain the predicted value of Xt′+h, that is

X̂t′+h, and compute the Root Mean Squared Error (RMSE) (Ghosh et al.

(2019), Chakraborty et al. (2023)) as

√
1

10−h+1

∑T−h
t′=T−10

∥Xt′+h−X̂t′+h∥2

F

pm
. In
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this expression, the first average, that is
∥Xt′+h−X̂t′+h∥2

F

pm
, characterizes the

average squared error, where the average is taken over the pm elements of

the error Xt′+h − X̂t′+h ∈ Rpm. The second average is taken over 10−h+1

estimation samples. To assess the predictive performance of our model, we

obtain the RMSE values with h = 1, 2, and 3 for our simulated data with

p = 10, m = 10, T = 80, true tubal-rank of L∗ = 3, number of non-zero

elements in each slice of S∗ = 2, and the edge-density of B∗ = 0.04. Then we

compare them with the RMSE values corresponding to the regularized VAR

model Basu et al. (2015). As depicted in Table 1, our model outperforms

the other method in terms of predictive ability.

Forecast horizon (h) Low tubal-rank plus sparse Regularized VAR model

1 0.20 0.62

2 0.21 0.63

3 0.24 0.65

Table 1: Predictive performance using RMSE values: our model outper-

forms the regularized VAR model Basu et al. (2015)
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5. Application to Macroeconomic Data

We illustrate the proposed model to a data set of p = 16 key macroeco-

nomic indicators for m = 11 Eurozone countries - Austria, Belgium, Fin-

land, France, Germany, Greece, Ireland, Italy, Netherlands, Portugal and

Spain. The data comprise of matrix-valued time series observed quarterly,

starting from 2002-Q2 to 2019-Q4. The macroeconomic variables under

consideration are summarized in Table S8.3 in the supplement. To ad-

dress the issue of non-stationarity, the variables were processed by applying

necessary transformations, as suggested in McCracken and Ng (2020) and

Stock and Watson (2005). Table S8.3 also displays the transformation for

each variable, along with their sources. Recalling equation (2.2), we use

the notation Xt ∈ Rp×m to denote the matrix-valued observation, whose

(i, j)th element is the value of the ith variable for jth country at tth quarter,

i = 1, 2, · · · , p = 16; j = 1, 2, · · · ,m = 11 and t = 1, 2, · · · , T = 71.

The estimatedL∗, denoted by L̂ has tubal-rank 7. This implies that out

of 11 countries, there are 7 countries for which the lateral slices in L̂ are t-

linearly independent. The slices corresponding to the remaining 4 countries

can be expressed as t-linear combinations of the aforementioned 7 slices.

Further investigation reveals that the set of t-linearly independent slices

is essentially {L̂Austria, L̂Belgium, L̂Finland, L̂France, L̂Germany, L̂Greece, L̂Ireland}
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and any slice in the remaining set {L̂Italy, L̂Netherlands, L̂Portugal, L̂Spain} are

t-linearly dependent on the previous set. Figure S8.2 in the supplement

partially depicts the slices of L̂. The t-independent slices are marked in

green, whereas the ones that are t-dependent, are marked in yellow. All

these countries are the members of European Union (EU) and a part of

Euro-Area as they share the same currency, Euro. Furthermore, the coun-

tries under Euro-Area harmonize their economic and fiscal policies in order

to meet some common objectives and achieve an increased economic stabil-

ity. This fact serves as a justification of the aforementioned low-rankness

along the slices of the countries in L̂.

We now move to the estimate of the sparse component of F, which is

denoted by Ŝ. As discussed earlier, the lateral slice corresponding to any

particular country captures the additional idiosyncrasies in the signal due

to a period of financial crisis or economic boom in that country. Below we

present the heatmaps of estimated lateral slices of Ŝ in matrix form, with

variables in one dimension and the quarters in the other dimension. Figure

S8.3 and Figure S8.4 in the supplement represent 8 such slices. As shown in

Figure S8.4, the slices corresponding to France and Italy indicate more or

less stable economic scenarios. On the other hand, slices corresponding to

Greece and Portugal display comparatively large numbers of idiosyncratic
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elements. These can be attributed to Greek Government-debt crisis and

Portuguese financial crisis. The other slices can be interpreted in a similar

fashion.

Finally, we present the estimate of the sparse transition matrix, de-

noted by B̂. As discussed earlier, the transition matrix characterizes the

underlying temporal dependence in the data. In our case, B̂ is of order

176 × 176 (pm × pm) and B̂irjr, icjc is the element that captures the effect

of the ithc variable of jthc country in the past on the current value of ithr

variable of the jthr country, irjr = 1, 2, · · · , pm and icjc = 1, 2, · · · , pm. We

use Circular Network Graph to depict the non-zero elements of B̂, where

the directed edges imply the temporal dependence of present on the past.

However, for a better visual representation, we divide the whole transition

matrix into m2 block matrices, each of order p× p. Out of these m2 blocks,

there will be m blocks representing the intra-country temporal dependence

for m countries. On the other hand, remaining m2−m blocks represent the

cross-country temporal dependence. Figure S8.5, Figure S8.6 and Figure

S8.7 illustrate a few such intra-country and cross-country temporal con-

nectivity. The directed edges reveal meaningful economic links among the

variables of past and current quarter and they are in line with the findings

of the other relevant literature (Ghosh et al., 2019). For instance, in case
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of both Italy and France, the figures show that the unemployment rate of

the past quarter affects the current GDP. As discussed earlier, the countries

under consideration are the members of Euro-Area and they follow coor-

dinated economic policies. Thus the cross-country temporal connectivities

are also justifiable.

As in case of simulated data, here also we use the RMSE (see Section 4)

values to compare the predictive performance of our proposed model with

that of the matrix-valued factor model (Wang et al., 2019). As depicted in

Table 2, our model outperforms the matrix-valued factor model in terms of

predictive ability.

Forecast horizon (h) Low tubal-rank plus sparse Matrix factor model

1 0.23 0.70

2 0.25 0.71

3 0.26 0.78

Table 2: Predictive performance using RMSE values: our model outper-

forms the matrix-valued factor model.
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6. Discussion

In this paper, we propose a matrix-valued time series model that first cap-

tures the underlying temporal dependence in the data and then assumes

that the remainder signal is decomposed into two parts. The first one cor-

responds to a low tubal rank tensor, which captures the baseline signal,

shared across the lateral (or, horizontal) slices. On the other hand, the sec-

ond component is a third-order tensor, whose frontal slices are elementwise

sparse representing the additional idiosyncrasies in the signal. This de-

composition, as opposed to the tucker decomposition based factor-loading

representation used in related literature, expands the scope of exploring

more complex structures in the data. We develop a fast and scalable Al-

ternating Minimization algorithm to solve our convex regularized program.

In the context of theoretical development, we establish a non-asymptotic

interpretable upper bound to the estimation error under Gaussian and Sub-

Exponentail distributional assumptions. As described in Section 2, we have

used B∗ to model both Mt and Et, and this formulation facilitates the

following representation

V ec(Xt) = V ec(Ft) +B∗V ec(Xt−1) + V ec(Ut).
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If instead, we would use two different transition matrices, say B∗
1 and B∗

2 ,

such that, V ec(Mt) = B∗
1V ec(Mt−1)+V ec(Ft) and V ec(Et) = B∗

2V ec(Et−1)+

V ec(Ut), then the resulting model would not be easily tractable. This can

be thought of as one of the potential future extension of this work.

7. Supplementary Material

Proofs of the theoretical results and some additional tables and figures have

been presented in the online supplementary material.
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