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Abstract: Skewness is a common occurrence in statistical applications. In recent

years, various distribution families have been proposed to model skewed data by

introducing unequal scales based on the median or mode. However, we argue that

the point at which unbalanced scales occur may be at any quantile and cannot

be reparametrized as an ordinary shift parameter in the presence of skewness. In

this paper, we introduce a novel skewed pivot-blend technique to create a skewed

density family based on any continuous density, even those that are asymmetric

and nonunimodal. Our framework enables the simultaneous estimation of scales,

the pivotal point, and other location parameters, along with various extensions.

We also introduce a skewed two-part model tailored for semicontinuous outcomes,

which identifies relevant variables across the entire population and mitigates the

additional skewness induced by commonly used transformations. Our theoretical

analysis reveals the influence of skewness without assuming asymptotic condi-

tions. Experiments on synthetic and real-life data demonstrate the excellent

performance of the proposed method.
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1 Introduction

Statisticians frequently encounter skewed data in biomedical, econometric,

environmental, and social research. Commonly used models, such as linear

regression, least absolute deviations, and robust regression, presume sym-

metric errors and are prone to significant distortions when confronted with

skewness. To mitigate the issue, many researchers prefer transforming the

data beforehand, with logarithmic-type transformations being among the

most popular choices. Alternatively, some researchers use modal regression

(Lee, 1989) or median-based methods, which are less sensitive to the as-

sumption of symmetric errors. However, these approaches do not explicitly

account for and describe skewness.

To comprehensively address this issue, adopting a “joint” modeling ap-

proach becomes essential and beneficial. This paper simultaneously esti-

mates location, scale, and skewness parameters, thus avoiding the risk of

either concealing true skewness (masking) or erroneously detecting spurious

skewness (swamping). This risk is present when using a stepwise proce-

dure, such as fitting a modal regression and then assessing skewness based
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on residuals (Boos, 1987). Our primary aim is not only to accommodate

skewness, as many papers do, but to explicitly capture and characterize its

effects.

Various distributions have been proposed in the literature for modeling

skewed data. Azzalini (1985) proposed a skewed density family including

the skewed normal density as an example. Fernández and Steel (1998) pro-

posed a two-piece skewed distribution family that sets the mode at zero,

including the skewed Student and Laplace distributions for Bayesian quan-

tile regression (Arellano-Valle, Gómez, and Quintana, 2005; Yu and Moy-

eed, 2001). Rubio and Steel (2015) extended the family by use of two scale

parameters and additional shape parameters. Kottas and Gelfand (2001)

described an alternative two-piece skewed distribution family that keeps the

median at zero, but the resulting density is discontinuous. For a historical

account of two-piece distributions, interested readers may consult Rubio

and Steel (2020).

The existing constructions rely on a symmetric and unimodal raw den-

sity, introducing asymmetric scales based on either the mode or the me-

dian of the raw density. However, in numerous real-life applications, these

assumptions may not hold. Particularly, the point at which skewness is

enforced, termed the “pivotal point” in this paper, could be situated at
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any position or quantile. Intriguingly, this pivotal point distinguishes itself

from the commonly used shift parameter, as opposed to the prevailing as-

sumption in the existing literature. To overcome these limitations, there

is a demand for a novel skewed distribution family that offers flexibility,

continuity, and adaptability to any pivotal point of interest.
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Figure 1: Some histograms of medical expenditures. Left: stratum ID 1098

(first PSU) of MEPS 2015, right: stratum ID 2109 (third PSU) of MEPS 2019.

In each example, the main plot shows an excessive portion of zeros; the top

right panel, excluding the zeros, plots the log-transformed positive values of

response (with estimated density in red), which still exhibit asymmetry despite

the transformation.

This study draws inspiration from the Medical Expenditure Panel Sur-

vey (MEPS) data, which is obtained from national surveys investigating
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the impact of various demographic variables on the medical expenses of

patients in the United States. Notably, this dataset features a skewed re-

sponse that includes a significant number of zeros, a phenomenon known as

“semicontinuous outcomes” in the realms of economics and longitudinal

studies (Olsen and Schafer, 2001). To provide a visual representation, we

employed two datasets (Agency for Healthcare Research and Quality, 2015,

2019), as depicted in Figure 1, for illustration.

According to Figure 1, more than 20% patients have zero medical ex-

penditure, while the remaining exhibit highly skewed positive medical costs.

Given that these zeros represent precisely zero medical expenses, rather

than truncation, a two-part (or hurdle) model (Mullahy, 1998) is a more

appropriate choice than the Tobit model (Tobin, 1958). In this approach,

the binary part of the model captures zero-nonzero patterns, while the con-

tinuous part of the model addresses strictly positive outcomes. However,

it is important to highlight that applying a standard log-normal two-part

model may not yield sufficient power, owing to the asymmetry depicted

in the upper-right panels of Figure 1. We have frequently observed that

conventional transformations, such as logarithmic or power functions, not

only fail to entirely eliminate skewness but also introduce nontrivial points

around which asymmetric scales arise. Consequently, there may be a ne-

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0412



cessity to “reinforce” the transformed model to counteract the skewness

effectively.

Another closely related challenge within the context of MEPS data anal-

ysis involves developing an interpretable two-part model. This entails the

identification of a subset of medical cost-relevant predictors that apply to

the entire population, serving as valuable guidance for policymakers. To the

best of our knowledge, very few existing two-part models have considered

the issue of joint variable selection, wherein each predictor can contribute

to the response in a composite manner through the binary and continuous

parts.

This paper attempts to address some aforementioned challenges for pos-

sibly skewed, semicontinuous outcomes. Our contributions are as follows.

1. We introduce a novel skewed pivotal-point adaptive family, designed

to infuse skewness around an unknown pivotal point. The key “skewed

pivot-blend” technique is versatile and can be applied to any raw

density, regardless of its symmetry or unimodality. The resulting den-

sity remains continuous and accommodates many previous proposals.

2. We introduce the SPEUS framework (Skewed Pivot-Blend Estima-

tion with Unsymmetric Scales) for simultaneous estimation of scales,

pivotal point, and other location parameters. This framework offers
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useful variants, especially for modeling semicontinuous outcomes with

joint variable selection. The resulting two-part method is capable of

identifying relevant variables across the entire population and con-

currently addressing the excessive skewness introduced by imperfect

transformations

3. We conduct nonasymptotic analysis for sparse skewed two-part mod-

els, utilizing a notion of effective noise and Orlicz norms to derive

sharp statistical error bounds in the presence of skewness and heavy

tails. Our work quantifies how skewness and tail decay impact regu-

larization parameters, prediction and estimation errors.

Notations and symbols. Given two vectors α, β ∈ Rn, their inner prod-

uct is ⟨α, β⟩ = αTβ and their elementwise product is denoted by the vec-

tor α ◦ β. Given a scalar function l and a vector a, l(a) = [l(ai)]
n
i=1,

i.e., l is applied componentwise. Throughout the paper, we use 1A(x)

to denote the indicator function of A, taking 1 if x ∈ A and 0 other-

wise. In particular, given any vector a ∈ Rn, define two indicator vectors

1+(a) = [1ai>0]
n
i=1 , 1−(a) = [1ai<0]

n
i=1 . Define R+ = [0,∞). Given a con-

tinuous density f (with respect to the Lebesgue measure µ), we use f(·|A)

to denote the conditional density given A, or f(·|A) = f(·)∫
A f dµ

. Given any
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matrix A = [a1, . . . , ap]
T ∈ Rp×m, its spectral norm and Frobenius norm are

denoted by ∥A∥2 and ∥A∥F , respectively. The (2,1)-norm of A is defined

as ∥A∥2,1 =
∑p

j=1 ∥aj∥2. We use Ak to denote the kth column of A. Given

a, b ∈ R, we use the shorthand notation a∨b (a∧b) to denote the maximum

(minimum) of a and b.

2 Skewed Pivotal-Blend Estimation

2.1 Skewed Pivot-Blend for Density Pasting

How to define a skewed distribution family from a unimodal, continuous,

and symmetric density ϕ has attracted a lot of attention in the literature.

Azzalini (1985) multiplied ϕ by a perturbation function to define a so-called

“skewed symmetric distribution” family, one well-known example being the

skewed normal distribution. We refer the reader to Nadarajah and Kotz

(2003), Wang et al. (2004), and Azzalini (2005) for variants and further

extensions. On the other hand, the associated skewed distribution function

often lacks an explicit form, and determining its mode can be a challenging

task (Ma and Genton, 2004).

“Two-piece” skewed distributions are popularly used in recent years.

Fernández and Steel (1998) introduced a two-piece transformation that

rescales ϕ’s negative and positive parts differently using an asymmetry pa-
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2.1 Skewed Pivot-Blend for Density Pasting

rameter, allowing it to maintain the mode at zero. A reparametrization of

the approach, following Arellano-Valle, Gómez, and Quintana (2005), in-

cludes the skewed Student and epsilon-skew-normal distributions (Fernández

and Steel, 1998; Mudholkar and Hutson, 2000). Later, Rubio and Steel

(2015) extended this idea to include two scale parameters (and additional

shape parameters). The motivation for our work largely stems from their

two-piece form, even though it assumes that the median of ϕ is zero. An-

other two-piece distribution family due to Kottas and Gelfand (2001) can

guarantee a median at zero, but the resulting density is discontinuous, which

may cause difficulties and instability in parameter estimation. Interested

readers may refer to Jones (2014) for a systematic framework of how to

construct skewed distributions from a given symmetric density.

Despite the research in this area, two issues have caught our particular

attention and deserve further investigation. Firstly, the majority of existing

works stipulate that ϕ should be unimodal and symmetric. However, situa-

tions can arise where skewness manifests when dealing with non-unimodal

data. There might also be a need for additional reinforcement to counter-

act skewness, even when employing an asymmetric density. Another more

critical concern is that in previous works, the transition point at which un-

equal scales are imposed, referred to as the pivotal point in this paper, is
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2.1 Skewed Pivot-Blend for Density Pasting

typically set at the mode or the median. Nevertheless, skewness can per-

sist when the density deviates from the assumptions above or below any

quantile, a common occurrence when using an imperfect transformation.

In the following, we introduce a process known as “skewed pivot-blend”

(or sometimes pivot-blend for brevity) to characterize skewness as a com-

bination of both first-order and higher-order statistical effects. We define

a versatile two-piece distribution framework with skewness, designed to (i)

accommodate any asymmetric or non-unimodal ϕ, (ii) model skewness as-

sociated with any pivotal point of interest, and (iii) maintain continuity.

See Figure 2 for an illustration.

We provide a step-by-step guide for constructing a new density function

from an arbitrary continuous density (denoted as ϕ), during which skewness

is imposed around a pivotal point m (0 < Φ(m) < 1) and is defined by the

left and right scales, σ and ν > 0.

a) Pivotal-point conditioning : The density ϕ is conditioned into two

separate densities, one for y ≤ m, and the other for y > m, resulting in

ϕ(y)1y≤m

Φ(m)
and ϕ(y)1y>m

1−Φ(m)
.

b) Affine transformation: Apply two separate affine transformations

to the random variables associated with the aforementioned densities, con-

cerning the pivotal point m: m+σ(· −m) and m+ ν(· −m). The resulting
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2.1 Skewed Pivot-Blend for Density Pasting
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Figure 2: Diagram showing the process of “skewed pivot-blend” for constructing

a skewed density: conditioning, affine transformations, and mixing. The two

affine transformations ensure that the cut points remain fixed (alignment in the

x-direction), and the mixing process guarantees the continuity of the resulting

density (alignment in the y-direction).
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2.1 Skewed Pivot-Blend for Density Pasting

densities are
ϕ( y−m

σ
+m)1y≤m

Φ(m)σ
and

ϕ( y−m
ν

+m)1y>m

(1−Φ(m))ν
. It is crucial to emphasize

that these transformations are not simple scalings, but are designed to en-

sure that the cut points of the density functions remain aligned.

c) Continuous mixing : Probability masses p and 1 − p are assigned to

the two densities obtained from the last step, resulting in a new density

function:

f(y) = p× 1

Φ(m)σ
ϕ
(y −m

σ
+m

)
1y≤m + (1− p)× 1

{1− Φ(m)}ν
ϕ
(y −m

ν
+m

)
1y>m,

where Φ denotes the distribution function of ϕ throughout the paper unless

otherwise specified. Given that ϕ(m) > 0 typically holds, ensuring the

continuity of f at m requires that p/(Φ(m)σ) = (1− p)/{(1 − Φ(m)ν},

which leads to a unique choice of p:

p =
Φ(m)σ

Φ(m)σ + {1− Φ(m)}ν
, or

P(Y ≤ m)

P(Y > m)
=

Φ(m)σ

{1− Φ(m)}ν
. (2.1)

We sometimes refer to the process as the “forward” pivot-blend transform

(to contrast with the “backward” pivot-blend transform to be introduced

in Remark 2). When σ = ν or m is not in the support of ϕ, pivot-blend

operates as a location-scale transformation. Otherwise, it serves as a ver-

satile tool for modeling skewed data, encompassing various existing skewed

density functions. Notably, the incorporation of a single pivotal point pa-

rameter m substantially improves skewed data modeling in practical appli-
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2.1 Skewed Pivot-Blend for Density Pasting

cations.

Definition 1 (Skewed pivot-blend (SP) family). Given a continuous den-

sity ϕ and a pivotal point m, we say that Y is a skewed random vari-

able with m-associated left- and right-scale parameters σ and ν, i.e., Y ∼

SP(ϕ)(σ, ν,m), if its density is given by

f(y;m,σ, ν) =
ϕ
(
y−m
σ

+m
)
1y≤m + ϕ

(
y−m
ν

+m
)
1y>m

Φ(m)σ + {1− Φ(m)}ν
. (2.2)

We occasionally write Y ∼ SP(ϕ) and omit the parameters when there

is no ambiguity. Throughout the paper, we use the term skewness to refer

to asymmetric scales (σ ̸= ν), regardless of the shape of ϕ.

The pivotal location m can be translated to a pivotal quantile q. Let

q = Φ(m), then an equivalent form of (2.2) is

ϕ
{y−Φ−1(q)

σ
+ Φ−1(q)

}
1Φ(y)≤q + ϕ

{y−Φ−1(q)
ν

+ Φ−1(q)
}
1Φ(y)>q

qσ + (1− q)ν
.

For the distribution function F (y) = 1
σΦ(m)+ν(1−Φ(m))

[σΦ(y−m
σ

+m)1y≤m +

{νΦ(y−m
ν

+m) + (σ − ν)Φ(m)}1y>m], the new quantile at m is related to

the original quantile q by F (m) = qσ
qσ+(1−q)ν ≶ q when σ ≶ ν.

When working with the family described in Definition 1, it is a common

practice to add a shift or intercept α ∈ R and assume Y −α ∼ SP(ϕ)(σ, ν,m);

however, it is crucial to note that α and m are generally not redundant.

This distinction arises because the operations of translation and asymmetric

Statistica Sinica: Preprint 
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2.1 Skewed Pivot-Blend for Density Pasting

rescaling utilized in the skewed pivot-blend process do not commute (cf.

Remark 1).
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raw density

pivot

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

-2 0 2 4 6

0.3

0.2

0.1

0.0
-2 0 2 4 6

(b) ϕ: Gumbel, m: mean

raw density

pivot

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

-2 0 2 4 6

0.3

0.2

0.1

0.0
-4 -2 0 2 4

(c) ϕ: flat modal, m: (rightmost) mode
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(d) ϕ ∼ 0.4N(0.9, 0.25) + 0.6N(3.4, 1),m = 2

Figure 3: Illustration of some SP families with varied σ and ν (while main-

taining a constant ratio). These plots demonstrate the versatility of skewed

pivot-blend in generating a wide range of distributions for practical modeling,

including asymmetry and diverse tails (which contrasts with traditional methods

assuming symmetry in ϕ and median/mode in m).

Figure 3 provides visual examples of introducing skewness through

pivot-blend around a nontrivial pivotal point, with variations in σ and ν to

demonstrate different tail decay behaviors.
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2.2 SPEUS for Skewed Regression

Example 1 (Skewed double-gamma family). Skewed densities may involve

heavy tails and multimodality. When applied to the deneralized double-

Gamma density (GDG), p/{2γdΓ(d/p)}|y|d−1 exp{−|y|p/γp}, an extension

of Stacy (1962), skewed pivot-blend reveals

SP(GDG):
p

2[Φ(m)σ + {1− Φ(m)}ν]γdΓ(d/p)

×
[∣∣y −m

σ
+m

∣∣d−1
exp

{
− |(y −m)/σ +m|p

γp
}
1y≤m

+
∣∣y −m

ν
+m

∣∣d−1
exp

{
− |(y −m)/ν +m|p

γp
}
1y>m

]
,

where γ, d, p > 0 are parameters. The skewed GDG family comprises

bimodal types such as the skewed double gamma (p = 1,m = 0) and skewed

double Weibull (d = p,m = 0). The unimodal skewed exponential power

distribution family (Zhu and Zinde-Walsh, 2009) is another instance (γ =

1, d = 1), including the skewed Laplace distribution and skewed normal

distributions (Arellano-Valle, Gómez, and Quintana, 2005; Mudholkar and

Hutson, 2000).

2.2 SPEUS for Skewed Regression

Skewed pivot-blend is a valuable tool for statistical modeling of a skewed

outcome y ∈ Rn associated with p predictors collected in the matrix X ∈

Rn×p. Given a density function ϕ, if we assume

y −Xβ∗ ∼ SP(ϕ)(σ∗, ν∗,m∗)
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2.2 SPEUS for Skewed Regression

and define ρ = − log ϕ, the estimation of β∗, σ∗, ν∗,m∗ can be formulated

as a joint optimization problem

min
β,σ,ν,m

n log
[
σΦ(m) + ν{1− Φ(m)}

]
+

n∑
i=1

{
ρ
(ri −m

σ
+m

)
1ri−m≤0

+ ρ
(ri −m

ν
+m

)
1ri−m>0

}
s.t. r = y −Xβ, σ > 0, ν > 0, (2.3)

where the first term arises from the so-called “normalizing constant” which

is a joint function of m,σ, ν. Henceforth, we refer to the framework of (2.3)

as the Skewed Pivot-blend Estimation with Unsymmetric Scales (SPEUS).

We always assume that ρ is constructed from a given density function un-

less otherwise specified. (2.3) is thus an instance of maximum likelihood

estimation (MLE), and standard MLE asymptotic theory guarantees con-

sistency and other properties. In practical implementation, the values of ri

are rarely equal to m and so conventional optimization algorithms like gra-

dient descent, Newton’s method, and quasi-Newton methods can be readily

applied. Given the nonconvex nature, initialization impacts estimates, es-

pecially for small sample sizes. We usually start location parameters at

0, but using a preliminary estimate like Yang, Gallagher, and McMahan

(2019) tends to yield better performance. A Bayesian approach can be

developed as well. It is also worth pointing out that skewed pivot-blend,

like other skewness-introducing methods, operates on a given density with

asymmetric scales to handle skewed data. We do not explore nonparamet-
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2.2 SPEUS for Skewed Regression

ric approaches in this paper (but refer to Supplement S2 for potential ideas

involving kernels and data ranks).

Remark 1 (Pivotal Point vs. Intercept). Typically, an intercept α is

included the model, and so r = y − Xβ = y − X◦β◦ − 1α, where X =

[1, X◦], X◦ = [x̃1, . . . , x̃n]
T , β = [α, (β◦)T ]T . Interestingly, when skewness is

present, the pivotal point m diverges from the intercept α.

Specifically, based on previous discussions, we have the following density

form

n∑
i=1

ϕ
(yi−x̃Ti β◦−α−m

σ
+m

)
1yi−x̃Ti β◦≤m+α + ϕ

(yi−x̃Ti β◦−α−m
ν

+m
)
1yi−x̃Ti β◦>m+α

Φ(m)σ + {1− Φ(m)}ν
.

It is evident that m plays a more intricate role compared to α. If σ = ν,

the expression within the sum can be rewritten in a location-scale form:

(1/σ)ϕ{(yi−x̃Ti β◦−α′)/σ}, where α′ = α+(1−σ)m. In this special case, m

can be absorbed into the combined intercept α′, which is unique (ensuring

the final model has no ambiguity). This also applies to m ≤ min ri or

m ≥ max ri, regardless of scale differences. However, in situations beyond

the simple unskewed case (e.g., when σ and ν are not exactly equal and m

is within the support of ri or 1/n < q < 1−1/n), m cannot be incorporated

into the intercept or casually discarded.

To the best of our knowledge, the distinct roles of pivotal point and

intercept in the context of skewness have received little attention in existing
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2.2 SPEUS for Skewed Regression

literature. Our proposal is one of the first attempts to introduce pivotal

point estimation into the statistical modeling of skewed data.

Remark 2 (Backward Pivot-blend for Residual Diagnostics). Let’s

start by rewriting the forward pivot-blend transform for generating a ran-

dom variable following SP(ϕ)(σ, ν,m): With Y 0
− ∼ ϕ(y | y ≤ m), Y 0

+ ∼ ϕ(y |

y > m) and an independent Bernoulli variable U ∼ Ber(σΦ(m)/[Φ(m)σ +

{1− Φ(m)}ν]), we can construct

Y =


m+ σ(Y 0

− −m) if U = 1

m+ ν(Y 0
+ −m) if U = 0,

and guarantee that Y follows SP(ϕ)(σ, ν,m). Conversely, given f represent-

ing SP(ϕ)(σ, ν,m), we can use Y− ∼ f(y | y ≤ m), Y+ ∼ f(y | y > m) and

an independent Bernoulli random variable V ∼ Ber(Φ(m)) to construct a

random variable Y 0 ∼ ϕ using the “backward” pivot-blend:

Y 0 =
(Y− −m

σ
+m

)
1V=1 +

(Y+ −m

ν
+m

)
1V=0. (2.4)

In addition to employing the inverse of the affine transformations in the

forward process, the Bernoulli distribution here features a different proba-

bility. Thus, an SP(ϕ) sample can be transformed into a weighted sample

that follows ϕ. Importantly, the functional form of the distribution Φ is not
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2.2 SPEUS for Skewed Regression

required to calculate the probability weights; instead, we can turn to the

mixing probability formula (2.1)

P(V = 1) = Φ(m) =
ν P(Y ≤ m)

ν P(Y ≤ m) + σ P(Y > m)
,

P(V = 0) =
σ P(Y > m)

ν P(Y ≤ m) + σ P(Y > m)

(2.5)

and directly estimate these quantities from the data (also applicable to

nonparametric skew estimation in Supplement S2).

In the context of SPEUS, (2.4) can be used to generate “back-transformed”

residuals for model diagnostics: once the parameters β, σ, ν,m are deter-

mined, a weighted sample can be created from the residual vector r =

y −Xβ, which, if the model assumption holds, should adhere to ϕ. First,

define L = {i : ri ≤ m}, L = |L|, R = {i : ri > m}, and R = |R|. As

aforementioned, Φ(m) can be estimated by Lν/{Lν + Rσ}. Next, define

r̃ = [r̃i] ∈ Rn:

r̃i =


( ri−m

σ
+m) if ri ≤ m

( ri−m
ν

+m) if ri > m,

for 1 ≤ i ≤ n.

Finally, assign two sets of nonuniform probabilities pi to r̃i based on (2.5):

pi = ν/(Lν +Rσ) for i ∈ L, and σ/(Lν +Rσ) for i ∈ R.

Now we can use the R software to plot a weighted histogram of r̃i and

compare it to the hypothetical density ϕ. This is akin to standard OLS
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2.2 SPEUS for Skewed Regression

diagnostics for checking the goodness-of-fit of residuals under the Gaussian

assumption. In practical data analysis, after fitting the SPEUS model, one

can display the back-transformed residual plot to verify if skewness has been

adequately addressed (cf. Figure 4).

back-transform

0.2

0.1

0.0

0 4 8

0.4

0.3

0.2

0.1

0.0

-2 0 2

Figure 4: An illustration of the weighted histogram of back-transformed residu-

als. The left panel shows residuals from a skewed SP(ϕ) model with a symmetric ϕ,

and the right panel displays backward pivot-blend residuals using estimated pa-

rameters. The model assumption is considered valid when the back-transformed

residuals closely resemble ϕ (the red curve) and, importantly, exhibit symmetry,

indicating effective handling of skewness.
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2.3 Expansions of Skewed Pivot-Blend and Relevant Works

2.3 Expansions of Skewed Pivot-Blend and Relevant Works

2.3.1 Extensions and Beyond

Our main focus is on applications where the loss function ρ is derived from

a single density function ϕ. However, there are also variations of skewed

pivot-blend that hold value across different applications and fields.

Skewed Pivot-blend for two densities. Skewed pivot-blend extends

capabilities to seamlessly “paste” two distinct densities with varying scales,

while ensuring continuity at the pivotal point. Consider ϕ and ψ as two

continuous densities with respective distributions Φ and Ψ, and m an inte-

rior point within the support of both densities. The process of conditioning,

affine transformations, and mixing, using two scales, σ and ν in relation to

m, leads to

p
ϕ(y−m

σ
+m)

Φ(m)σ
1y≤m + (1− p)

ψ(y−m
ν

+m)

{1−Ψ(m)}ν
1y>m. (2.6)

Choosing

p =
ψ(m)Φ(m)σ

ϕ(m){1−Ψ(m)}ν + ψ(m)Φ(m)σ

results in the following continuous density:

ψ(m)ϕ(y−m
σ

+m)1y≤m + ϕ(m)ψ(y−m
ν

+m)1y>m

ϕ(m){1−Ψ(m)}ν + ψ(m)Φ(m)σ
. (2.7)
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2.3 Expansions of Skewed Pivot-Blend and Relevant Works

This offers a means of fusing two distinct tail types with exceptional flexi-

bility. Remarkably, even when σ = ν, the pasted density in (2.7) does not

conform to a location-scale form (in contrast to the single-density scenario,

cf. Remark 1), and m cannot be simply interpreted as a location shift.

Beyond the estimation of scales, an intriguing question is to determine the

pivotal point at which the two densities coalesce. Furthermore, the concept

of skewed pivot-blend can be iteratively applied to paste multiple densi-

ties with varying scales. In multidimensional spaces, the pivotal point can

be extended to a pivotal hyperplane for combining two densities, which is

another intriguing topic for future exploration.

Skewed pivot-blend for bounded losses. In our discussions, we gen-

erally assume that ρ is a negative log-likelihood—for example, a convex ρ

function like Huber’s loss corresponds to a log-concave density. However,

it is well established in robust statistics that bounded nonconvex losses are

more effective in handling extreme outliers with high leverage. Two promi-

nent examples are Tukey’s bisquare loss and Hampel’s three-part loss, both

of which are bounded (or winsorized, preventing them from reaching +∞)

and are constructed using piecewise polynomials (Hampel et al., 2011). We

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0412



2.3 Expansions of Skewed Pivot-Blend and Relevant Works

can formulate a general objective for estimating the location parameters

n∑
i=1

{
ρ(
ri −m

σ
+m)1ri≤m + ρ(

ri −m

ν
+m)1ri>m

}
+ nχ0 log

[σΦ(m)/{1− Φ(m)}+ ν

1 + Φ(m)/{1− Φ(m)}
]
. (2.8)

Here, r = y −Xβ, 0 ≤ Φ(m) ≤ 1, and χ0 is for the purpose of calibration.

The user can specify the particular forms of ρ and Φ (and in the convex-ρ

case, Φ(m) may take limM→∞
∫ m
−M exp{−ρ(t)} dt/

∫M
−M exp{−ρ(t)} dt). In

robust statistics, it is often recommended to first perform a separate ad-

hoc robust scale estimation (Maronna, Martin, and Yohai, 2006), before

proceeding to optimize (2.8) for the location parameters β,m. But various

selections for σ and ν influence the structure of the resulting asymmet-

ric loss. This practice prompts a theoretical inquiry: is it possible to set

a finite-sample error bound for location estimation using data-dependent

scales, regardless of scale construction or the data distribution of y? For a

nonasymptotic analysis using statistical learning theory, see Theorem 1 for

insights on how skewness adds to problem complexity and increases “excess

risk”.

Finally, extensions of the skewed pivot-blend in nonparametric estima-

tion, such as methods based on data ranks and kernels, can be found in

Supplement S2 due to space constraints.
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2.3.2 Other Related Works

Section 1 and Section 2.1 provide a list of relevant works on two-piece

distributions. Moreover, as pointed out by a reviewer, our skewed pivot-

blend idea shares similarities with the “composite models” in the fields of

finance and actuarial sciences.

In such a context, researchers often aim to create a new size distribution

by combining two distributions: one that is lighter-tailed on the left (e.g.,

lognormal or Weibull), and another that is heavier-tailed on the right (e.g.,

Pareto) (Cooray and Ananda, 2005). This can be expressed as p · ϕ(y)
Φ(m)

·

1y≤m+(1−p)· ψ(y)
1−Ψ(m)

·1y>m (Scollnik, 2007), with the choice of p to ensure the

resulting density is smooth. An alternative proposal appeared in Bernardi

and Bernardi (2018), which, however, does not guarantee continuity. For

further discussions on composite models, we refer to Klugman et al. (2012)

and Dominicy and Sinner (2017).

It is not difficult to see that the composite form described above corre-

sponds to a specific instance of our skewed pivot-blend density (2.6) with

σ = 1, ν = 1. However, our research is driven by the need to tackle data

skewness, where the values of σ and ν are typically unknown and can vary.

Our primary goal is to estimate these potentially distinct scales while also

identifying the central pivotal point in the context of skew data analysis.
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(2.6) or (2.7) is notably different from the composite distribution even when

σ = ν but not equal to 1.

Additionally, the composite model may be rigid and restrictive due to

limited choices for the mixing parameter p (Scollnik, 2007). In contrast,

Figure 3 illustrates the flexibility of SP distributions, taking on various

shapes through adjustments in σ and ν. The versatility of the skewed

pivot-blend, capturing both asymmetry and varied tail behaviors, offers a

variety of distributions for practical modelingg.

3 Skewed Two-Part Model with Joint Sparsity

As mentioned in Section 1, our work is driven by the study of “semicon-

tinuous outcomes” (Olsen and Schafer, 2001), as defined by a significant

proportion of values equaling 0, with the remaining values following a con-

tinuous, often skewed, distribution. For example, the MEPS datasets have

many patients showing no medical expenditure (including the sum of out-of-

pocket payment, insurance, Medicaid, Medicare, and other payments), and

the rest with positive, highly skewed and heavy-tailed medical costs (see

Figure 1). Semicontinuous outcomes are frequently encountered in biomed-

ical and economic applications, as well as rainfall levels and daily drinking

records (Hyndman and Grunwald, 2000; Liu et al., 2008; Sarul and Sahin,
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2015).

Because zero medical cost means no medical service, rather than an

outcome resulting from truncation or sampling, commonly used biometric

models like the Tobit model and zero-inflated models (Tobin, 1958; Lam-

bert, 1992) are not suitable. Instead, the two-part model (Cragg, 1971;

Mullahy, 1998), sometimes also referred to as a hurdle model, is more ap-

propriate. This model can be expressed as:

Two parts for semicontinuous y:


P(yi = 0) = πi = 1/{1 + exp(−x̃Ti b)}

yi | yi > 0 ∼ f(yi; x̃
T
i β).

In the binary part, the probability of observing a zero response is typically

modeled using logistic regression or a probit model; in the continuous part,

the density function f represents a positive random variable with parameter

x̃Ti β. Without loss of generality, let’s assume that for 1 ≤ i ≤ n, yi > 0,

while for n < i ≤ N , yi = 0, and so the response and the overall prediction

matrix X̃ can be partitioned as

y =
[
[y1, . . . , yn] [0, . . . , 0]

]T
, X̃ =

[
[x̃1, . . . , x̃n] [x̃n+1, . . . , x̃N ]

]T
= [XT ZT ]T .

(3.9)

We then derive the negative log-likelihood from the 2-part distribution, with

respect to a combination of the Lebesgue measure on R+ and a counting
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measure at 0:

−
N∑
i=1

[
1yi=0 log πi + 1yi>0 log{(1− πi)f(yi; x̃

T
i β)}

]
=

N∑
i=1

[
− x̃Ti b1yi=0 + log

{
1 + exp(x̃Ti b)

}]
+

n∑
i=1

− log f(yi; x̃
T
i β). (3.10)

Each predictor makes a composite contribution to the response through two

parts, but (3.10) is separable with respect to b and β, making it amenable

to optimization. Below, we will introduce two modifications to the classical

two-part model to better address some challenges in modern applications:

(a) mitigating skewness in the positive part through the use of pivot-blend,

and (b) enhancing interpretability by incorporating joint variable selection

across both model components.

First, specifying an ideal density function for the positive values of yi

can be challenging. As a result, many researchers opt to employ a transfor-

mation T (·) : (0,∞) → R, and assume that the transformed response T (yi)

(1 ≤ i ≤ n) follows a symmetric distribution, such as a normal or a Laplace.

With ρ denoting the corresponding symmetric negative log-likelihood, the

last term
∑n

i=1 − log f(yi; x̃
T
i β) in (3.10) now takes the form

n∑
i=1

ρ(ri) with r = T (y)−Xβ (3.11)

where r ∈ Rn is the residual vector associated with the continuous com-

ponent of the model. Nevertheless, asymmetry continues to manifest in
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the transformed data in various scenarios, as observed by Chai and Bai-

ley (2008). Our experience shows that routine transformations may not

only fail to completely rectify skewness but also introduce a nontrivial piv-

otal point around which asymmetric scales arise. The technique detailed in

Section 2 offers an effective remedy by replacing (3.11) with the following

n log[σΦ(m) + ν{1− Φ(m)}] +
n∑
i=1

[
ρ
(ri −m

σ
+m

)
1ri≤m + ρ

(ri −m

ν
+m

)
1ri>m

]
,

where σ, ν,m are all unknown.

Second, practitioners of two-part models encounter another pressing

challenge—the abundance of predictors collected. Variable selection pro-

vides a valuable tool for enhancing model interpretation and prediction,

but in the context of two-part models, it is crucial to identify predictors

that are relevant to the entire population, rather than just focusing on the

subpopulation with positive responses or the subpopulation with zero re-

sponses. In other words, a predictor can only be eliminated if it bears zero

coefficients in both the binary and continuous parts of the model.

Combining both elements, the incorporation of regularization and skewed

pivot-blend allows us to formulate a sparse skewed 2-part (S2) criterion for
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modeling semicontinuous outcomes with joint variable selection:

S2 : min
b,β,σ,ν,m

n log
[
σΦ(m) + ν{1− Φ(m)}

]
+

n∑
i=1

{
ρ
(ri −m

σ
+m

)
1ri−m≤0

+ ρ
(ri −m

ν
+m

)
1ri−m>0

}
+

N∑
i=1

[
− x̃Ti b1yi=0 + log

{
1 + exp(x̃Ti b)

}]
+ λ∥B∥2,1 + P2(σ, ν,m, β; τ) s.t. r = T (y)−Xβ,B = [

√
nβ,

√
Nb], σ > 0, ν > 0.

(3.12)

Practically, it is common to include two intercepts, one for the binary

part and one for the continuous part of the model, which are not subject

to any penalty. The (2,1)-norm applied to matrix B enforces the desired

row-wise sparsity for joint variable selection, but can be substituted with a

row-wise nonconvex penalty like group SCAD or MCP. Incorporating the

scaling factors in the construction of B is essential for the use of a single

regularization parameter. The term P2 represents an ℓ2-penalty, akin to

ridge regression, to account for significant noise and design collinearity. An

example is adding (τ/2)(1/σ2 + 1/ν2) (especially when p ≥ n), which from

a Bayesian perspective amounts to an inverse gamma prior on σ2 and ν2.

Empirical studies show that τ is not sensitive, and a small τ often suffices.

Likewise, we suggest including an ℓ2-penalty on m which translates to a
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Gaussian prior (or alternatively, a beta prior for the quantile parameter q),

because in cases involving asymmetric scales σ ̸= ν, a moderate |m| value

(or q near 1/2) can exert a considerable influence on the model, warranting

deeper exploration in applications. (This might contrast with outlier effects

which exhibit more of a tail behavior inconsistent with most data and are

complex to model with a single distribution due to heterogeneity.) Adding

the ℓ2 penalties also facilitates the theoretical analysis in the next section.

(3.12) involves the estimation of coefficients b, β, a pivotal point m, and

two scales σ, ν and is one-sided directionally differentiable (She, Wang, and

Jin, 2021). In contrast to the conventional two-part (3.10), this criterion no

longer shows separability in (b, β) and includes a non-differentiable penalty.

Efficient computation of the estimates can be achieved through optimization

techniques. In handling the nondifferentiable (2,1)-penalty, we can express

∥B∥2,1 as (1/2)
∑p

j=1(B
2
j,1 + B2

j,2)/aj + aj with each aj > 0. This yields a

differentiable criterion, facilitating the use of standard optimization solvers

such as Newton or quasi-Newton methods. Alternating optimization can

also be used to improve scalability.
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4 Analysis of Sparse Skewed Two Parts

In this section, we delve into the theoretical underpinnings of the sparse

skewed two-part estimation (3.12) introduced earlier. Our investigation

differs from classical asymptotics which assume a fixed number of predic-

tors and an infinite sample size. Nonasymptotic theory remains relatively

unexplored when considering the interplay of skewness, regularization, and

heavy tails collectively. A significant challenge entails comprehending the

impact of asymmetric scales, pivotal points, and sparsity on both statisti-

cal accuracy and the choice of the regularization parameter in finite sample

sizes.

The key implications and contributions of our theoretical framework

are as follows: (i) Applicability. Unlike conventional consistency studies,

which frequently assume an i.i.d. data structure and require fixed p with

n → +∞, our theory is applicable to any values of n and p, and does not

require the design matrix to have i.i.d. rows. (ii) Effective Noise and Flex-

ibility in Tails. Our investigation reveals that prediction and estimation

errors, as well as the choice of the regularization parameter, are linked to

the tail decay characteristics of the “effective noise”. The concept diverges

from raw noise and often exhibits lighter tails (cf. Remark 3). Moreover,

we employ Orlicz ψ-norms to model various tail behaviors (cf. Lemmas

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0412
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1–4), providing flexibility in real applications. In essence, when the effec-

tive noise shows light tails, implying a finite Orlicz norm with a “large” ψ

function, the presence of ψ−1 in the choice of the regularization parameter

leads to a reduced error bound (cf. (4.21) or (4.23)). (iii) Misspecification

Tolerance. The core theorems do not require a zero-mean effective noise, as

demonstrated in Theorems 1, 2, 2, 3, 4. Consequently, our analysis applies

to misspecified models (where the risk function associated with the given

loss does not necessarily vanish at the statistical truth).

4.1 Preliminaries: Reparametrization and Effective Noise

Recall the loss function in (3.12), which can be represented by

l0(β, b,m, σ, ν) =
n∑
i=1

(
ρ
(ri −m

σ
+m

)
1ri≤m + ρ

(ri −m

ν
+m

)
1ri>m

+ log[σΦ(m) + ν{1− Φ(m)}]
)
+ ⟨L(Zb;Y ), 1N⟩, (4.13)

where r = y−Xβ denotes the plain residuals, ρ and L are two differentiable

losses that respectively operate on the continuous part and binary part.

Here, the observed data are represented by y,Y , X, Z, with y ∈ Rn, X ∈

Rn×p, Y ∈ {0, 1}N and Z ∈ RN×p (cf. (3.9)). For simplicity, the section

assumes that the number of rows in X and Z is each bounded by cn, with

n representing the order of the sample size and c a positive constant.
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To ease theory and presentation, we introduce some concatenated sym-

bols. First, β and b can be combined into β̄ as the coefficient vector for an

extended design matrix X̄:

β̄ = vec([β, b]) =

[
β

b

]
, X̄ =

[
X 0

0 Z

]
.

We denote [βk, bk]
T by β̄k, the coefficients associated with the kth and

(p + k)th columns of X̄. Based on the problem structure in (4.13), we

define

m̄ = m1n, ς =

[
(1/σ)1n

(1/ν)1n

]
,

where 1n is to match the scale of the design matrices when considering

prediction errors. Introduce ζ as the overall unknown vector, as well as γ

and µ

ζ = [β̄T , m̄T , ςT ]T , γ = [m̄T , ςT ]T , µ = [η̄T , m̄T , ςT ]T , η̄ = X̄β̄.

With the above notations, we can rewrite the general problem of interest

as

l(µ) + ∥ϱβ̄∥2,P +
τ

2
∥γ∥22, (4.14)

where l is the loss on µ, ∥β̄∥2,P :=
∑p

k=1 P (∥β̄k∥2;λ) and P is a sparsity-

promoting penalty. Including ϱ in the penalty allows for a scale adjustment

based on the size of the designs, enabling a universal choice of λ that is

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0412



4.1 Preliminaries: Reparametrization and Effective Noise

independent of the sample size in later theorems. In alternating optimiza-

tion algorithms, ϱ can takes κ2,∞ which represents the maximum column

ℓ2-norm of X̄, as a measure of the size of the design:

κ2,∞ = max
1≤k≤2p

∥X̄k∥2 = max
{
∥X1∥2, . . . , ∥Xp∥2, ∥Z1∥2, . . . , ∥Zp∥2

}
.

This quantity is typically on the order of
√
n. When P is the ℓ1-penalty,

(4.14) reduces to the previous S2-criterion (3.12) for two-part models with

skew and sparsity,

l(µ) + λ∥ϱβ̄∥2,1 +
τ

2
∥γ∥22, (4.15)

where ∥β̄∥2,1 is short for
∑p

k=1 ∥β̄k∥2.

Next, we introduce the notion of “effective noise” to account for ran-

domness, conditional on the design matrices X,Z. Given l(µ), define the

effective noises associated with η̄∗, γ∗ as

ϵη̄ = −∇η̄l(µ)
∣∣
µ=µ∗

, ϵm̄ = −∇m̄l(µ)
∣∣
µ=µ∗

, ϵς = −∇ς l(µ)
∣∣
µ=µ∗

, (4.16)

where l is assumed to be differentiable at the statistical truth µ∗.

When formulating statistical assumptions related to effective noises,

it is important to account for different types of tail decay. We employ

Orlicz ψ-norms, as well as some nonconvex variants capable of handling
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significantly heavier tails (cf. Supplement S1.1). In the context of the

Orlicz ψ-norm for a random variable (or vector) X, represented as ∥X∥ψ,

ψ(·) is consistently assumed to be a nondecreasing, nonzero function defined

on R+ with ψ(0) = 0 (but not necessarily convex). For the Orlicz-norm of

a random vector, please see (S1.2). The inverse of ψ is defined as ψ−1(x) =

sup{t ∈ R+ : ψ(t) ≤ x}.

Some notable examples encompass the sub-Weibull ψq-norms, with ψ

defined as

ψq(x) = exp(xq)− 1, x ∈ R+ (4.17)

for q > 0. (4.17) covers sub-Gaussian (q = 2) and sub-Exponential (q = 1)

random variables, but as q < 1, the sub-Weibull tails become much heavier

(Götze, Sambale, and Sinulis, 2021). Another class is the Lq-norms, with

ψ(x) = xq (q ≥ 1). Orlicz norms provide a useful framework for analyzing

skewed random variables (even when they lack a zero mean).

Remark 3 (Effective Noise vs. Raw Noise). The effective noise, jointly

determined by the data and the loss function, may differ from the plain “raw

noise” defined by

ϵraw := y − m̄∗ − η∗, (4.18)

where η∗ = Xβ∗. Comparing (4.16) with (4.18), one appealing aspect of

ϵη̄ is that it tends to have light tails, even when ϵraw does not. Indeed, a
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straightforward derivative calculation based on (4.13) shows that

ϵη̄,i =


ρ′(ϵ−i )
σ∗ 1−(ϵ

raw
i ) +

ρ′(ϵ+i )
ν∗ 1+(ϵ

raw
i ), 1 ≤ i ≤ n,

L′(ZTi b
∗;Yi), n < i ≤ N,

ϵm̄,i = (
1

σ∗
− 1)ρ′(ϵ−i )1−(ϵ

raw
i ) + (

1

ν∗
− 1)ρ′(ϵ+i )1+(ϵ

raw
i ) +

Φ′(m∗)(ν∗ − σ∗)

σ∗Φ(m∗) + ν∗{1− Φ(m∗)}
,

ϵς,i =


−ϵrawi ρ′(ϵ−i )1−(ϵ

raw
i ) + σ∗2Φ(m∗)

σ∗Φ(m∗)+ν∗{1−Φ(m∗)} , 1 ≤ i ≤ n,

−ϵrawi ρ′(ϵ+i )1+(ϵ
raw
i ) + ν∗2{1−Φ(m∗)}

σ∗Φ(m∗)+ν∗{1−Φ(m∗)} , n < i ≤ 2n,

where ϵ−i = ϵrawi /σ∗+m∗, ϵ+i = ϵrawi /ν∗+m∗. Therefore, if |ρ′| ≤M, |L′| ≤ B

for some positive M,B (e.g., when using Huber’s loss for ρ and logistic

deviance for L), then∣∣ϵη̄,i∣∣ ≤ M

σ∗ ∧ ν∗
+B,

∣∣ϵm̄,i∣∣ ≤ (
|1− 1

σ∗
| ∨ |1− 1

ν∗
|
)
M +

|σ∗ − ν∗|
σ∗ ∧ ν∗

,

∣∣ϵς,i∣∣ ∨ ∣∣ϵς,i+n∣∣ ≤M |ϵrawi |+ (σ∗ ∨ ν∗).

It is evident that all components of ϵη̄ and ϵm̄ are bounded , thereby possess-

ing a finite ψ2-norm regardless of heavy tails that ϵraw may exhibit. Finally,

it is worth noting that our theorems below impose Orlicz-norm conditions

on the entire random vectors in (4.16), which is more flexible than assum-

ing that the vectors have independent components, each with a finite Orlicz

norm and a mean of 0 (cf. Lemma 1). Furthermore, one can employ gen-

eralized Bernstein-Orlicz norms for random vector marginals, as described
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in Kuchibhotla and Chakrabortty (2022) to develop sharper bounds under

an additional minimum sample size constraint. We will not explore this

further in the current paper.

4.2 Nonasymptotic Error Bounds

This part demonstrates some error bounds when using the (2, 1)-penalty.

Additional results can be found in the supplements, such as Theorem 2

providing a universal form for λ applicable to a broad range of tails, Theo-

rem 3 presenting an elementwise error bound, and Theorem 4 examining a

general sparsity-inducing penalty.

In what follows, we denote the group support of β̄ as J (β̄) = {k :

β̄k = [βk, bk]
T ̸= 0, 1 ≤ k ≤ p} and J(β̄) is the cardinality of J (β̄).

Also, define J ∗ = J (β̄∗), J∗ = J(β̄∗), and Ĵ = J ( ˆ̄β) for short, and let

J ∗C ⊂ {1, . . . , p} denote the complement of J ∗. The generalized Bregman

function ∆l is useful in defining an appropriate error measure and making

regularity conditions: given a function l differentiable at η′, ∆l(η, η
′) :=

l(η)− l(η′)−⟨∇l(η′), η − η′⟩ and ∆̄l(η, η
′) := {∆l(η, η

′)+∆l(η
′, η)}/2. The

differentiability can be replaced by directional differentiability (She, Wang,

and Jin, 2021). If l is also strictly convex, ∆l(η, η
′) becomes the standard

Bregman divergence Dl(η, η
′) (Bregman, 1967). For the specific case of
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l(η) = ∥η − y∥22/2, ∆l(η, η
′) = ∥η − η′∥22/2, or D2(η, η

′) for short.

Theorem 1. Assume that the effective noises ϵη̄, ϵm̄, and ϵς are bounded in

Orlicz norms: ∥ϵη̄∥ψ ≤ ωη̄, ∥ϵm̄∥ψ ≤ ωm̄, and ∥ϵς∥φ ≤ ως , where ψ, φ satisfy:

i) ψ(x) is convex and ψ(x)ψ(y) ≤ c1ψ(c0xy), ∀x, y ≥ c2, for some positive

c0, c1, c2 (dependent on ψ only), (ii) {ψ−1(t)}2 is concave or {ψ−1(t)}2 ≲ t

on R+; iii) {φ−1(t)}2 is concave or {φ−1(t)}2 ≲ t on R+. Consider the

estimator ζ̂ = [ ˆ̄β T , γ̂ T ]T by minimizing (4.15) with ϱ ≥ κ2,∞ and λ =

A
∥∥X̄T ϵη̄

∥∥
∞/ϱ, where A a large enough constant. Then

E
{
∆l(µ̂, µ

∗) ∨ τD2(γ̂, γ
∗)
}

≲ cψωη̄ ϱψ
−1(p)∥β̄∗∥2,1 +

1

τ
{ψ−1(1)}2ω2

m̄

+
1

τ
{φ−1(1)}2ω2

ς + τ∥γ∗∥22. (4.21)

where cψ = c0(1 ∨ c1 ∨ 2ψ(c2))
2ψ−1(1).

Theorem 1 provides a bound on prediction and estimator errors, mea-

sured using generalized Bregman functions. Notably, this bound does not

necessitate any regularity conditions on the design matrices or signal strength.

The assumptions (i)–(iii) on effective noise tails are mild, and the func-

tions φ and ψ can be applied to a wide range of cases. For example, it is

straightforward to verify that ∥ · ∥ψ can represent a ψq-norm with q ≥ 1

(van der Vaart and Wellner, 2013) where we can take c1 = 1, c2 = 1, c0 =

21/q; ∥ · ∥φ can be sub-Weibull for some q > 0, or an Lq-norm (q ≥ 2) with

heavy polynomial tails.
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The first term on the right-hand side of (4.21), cψωη̄ ϱψ
−1(p)

∥∥β̄∗
∥∥
2,1
, is

the dominant term scaling with p. Remark 3 emphasizes that ϵη̄ can have

considerably lighter tails, enabling the choice of a large ψ function. For

instance, when |ρ′| ≤ M, |L′| ≤ B, we can take ψ = ψ2, ωη̄ = c{M/(σ∗ ∧

ν∗) +B}. Such a substantial ψ function ensures that the error rate, which

incorporates ψ−1, stays well controlled, even when the raw noise (4.18)

exhibits heavy tails.

Furthermore, with proper regularity conditions, another error bound

that depends on β̄∗ though its support J∗ can be derived.

Theorem 2. Assume that the tails of effective noises are bounded in Orlicz

norms: ∥ϵς∥φ ≤ ως , ∥ϵη̄∥ψq ≤ ωη̄, ∥ϵm̄∥ψq ≤ ωm̄ for some q > 0. Let ζ̂ denote

the optimal solution for (4.15) with ϱ ≥ κ2,∞ and

λ = Aωη̄(log p)
1
q

for some large enough A > 0. Suppose that there exist a large K > 0 and a

constant ϑ such that for any β̄, γ

(1 + ϑ)λϱ
∥∥(β̄ − β̄∗)J ∗

∥∥
2,1

≤ ∆l(µ, µ
∗) + λϱ

∥∥(β̄ − β̄∗)J ∗C
∥∥
2,1

+Kλ2J∗.

(4.22)
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Then

∆l(µ̂, µ
∗) ∨ τD2(γ, γ

∗)

≲KA2ω2
η̄(log p)

2
qJ∗ + A2ω

2
m̄

τ
(log p)

2
q +

ω2
ς

τ
{φ−1(pA

q

)}2 + τ∥γ∗∥22 (4.23)

holds with probability at least 1−Cp−cA
q
, where C, c are positive constants.

To obtain a sufficient condition for the regularity condition (4.22), we

can confine ξ = β̄ − β̄∗ within a cone: (1 + ϑ)∥ξJ ∗∥2,1 ≥ ∥ξJC∗∥2,1, and

require either ϱ2∥ξJ ∗∥22,1 ≤ K̃J∗∆l(µ, µ
∗) or ϱ2∥ξJ ∗∥22 ≤ K̃∆l(µ, µ

∗) for

some large K̃ > 0. These conditions extend the compatibility and restricted

eigenvalue conditions which are widely used in sparse regression (Bickel,

Ritov, and Tsybakov, 2009; van de Geer and Bühlmann, 2009). But (4.22)

is less technically demanding.

In proving the theorem, we establish a more general result where ψq

can be replaced with a general ψ and the appropriate choice for λ is of the

order ωη̄ψ
−1 (pψAψ−1(p)) . For more, please refer to Supplement S1.4.

To illustrate the bound (4.23), let’s consider a scenario where |ρ′| ∨

|L′| ≤M for some M > 0. Under the assumptions of independent centered

effective noise components and ∥ϵrawi ∥ψq ≤ ω for some q ∈ (0, 2], we can

deduce based on (4.20) in Remark 3 that the error bound in (4.23) is of the
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following order (treating K,A as constants):

log p ·
(
(1 ∨ 1

σ∗2 ∨ 1

ν∗2
)M2J∗ +

1

τ
[{(1− 1

σ∗ )
2 ∨ (1− 1

ν∗
)2}M2 + (

σ∗ ∨ ν∗

σ∗ ∧ ν∗
− 1)2]

)
+ (log p)2/q · 1

τ
(Mω + σ∗ ∨ ν∗)2 + τ∥γ∗∥22.

The bound varies with the number of predictors logarithmically, and quanti-

fies the impact of asymmetric scales in the context of sparse skewed two-part

models.

Remark 4. Under suitable regularity conditions similar to those in Theo-

rem 2, the following (2,∞)-norm bound holds (cf. Theorem 3 in Supplement

S1.5):

∥ ˆ̄β − β̄∗∥2,∞ ≤ C

√
Kα ∨ ϑ
α
√
n

A
(
ωη̄ +

ωm̄ + ως√
J∗

)
(log p)

1
q (4.24)

with probability at least 1− Cp−(Aϑ)q − 1/φ(cAϑ(log p)1/q), where C, c are

positive constants and A,K, α, ϑ can often be treated as constants. Hence

with a proper signal strength mink∈J (β̄∗) ∥β̄∗
k∥2 > 2CA(

√
Kα ∨ ϑ)

{
ωη̄ +

(ωm̄ + ως)/
√
J∗

}
(log p)

1
q /(α

√
n), (4.24) guarantees faithful variable selec-

tion, J ∗ ⊂ Ĵ , with high probability.

Finally, our analysis can be extended to a general P beyond the ℓ1-type

penalty. See Supplement S1.6 for more details.
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5 Experiments

We conducted a variety of synthetic and real data experiments to evalu-

ate the performance of the proposed method. Due to limited space, we

only present a selection of our data analyses in the following subsections.

Interested readers may refer to Supplement S3 for more experiment results.

5.1 Simulations

In this part, we conduct simulation experiments to compare our proposed

methods with some popularly used approaches for skewed estimation. The

predictor matrixX = [X1, . . . , Xn]
T ∈ Rn×p is generated byXi

i.i.d.∼ N(0,Σ),

where Σ = [κ|i−j|] has a Toeplitz structure. The response vector is generated

according to y = Xβ∗+1α∗+ϵ, where ϵi
i.i.d.∼ SP(ϕ)(σ∗, ν∗,m∗). In the setups

to be introduced, we set α∗ = 0 and β∗ = [12, 13, 14]T . The pivotal point

will be chosen as the mean, median, mode, quartiles, and more.

The following methods are included for comparison: quantile regres-

sion (QR) (Koenker and Bassett Jr, 1978), Bayesian quantile regression

(BQR) (Yu and Moyeed, 2001), Z-estimation quantile regression (ZQR)

(Bera et al., 2016), adaptive M-estimation (AME) (Yang, Gallagher, and

McMahan, 2019), epsilon-skew-normal regression (ESN) (Mudholkar and

Hutson, 2000), in addition to SPEUS. The first two methods require the user

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0412



5.1 Simulations

to specify a quantile parameter (Koenker, 2009; Benoit and Van den Poel,

2017); we employ the oracle quantile (Φ(m∗)σ∗/[Φ(m∗)σ∗+{1−Φ(m∗)ν∗}]

(computed using the truth) in all experiments, and so denote the methods

by QR∗ and BQR∗, respectively. In BQR∗, the posterior mean estimate is

obtained with 4000 MCMC draws after 1000 burn-in samples. For SPEUS,

the scale parameters σ and ν, as well as the pivotal point m, are all con-

sidered unknown and are estimated from the data. Given each setup, we

repeat the experiment for 50 times and evaluate the performance of each

method based on Err(β), Err(σ) and Err(ν). Err(β) is the (absolute) root-

mean-square error on β, and Err(σ) and Err(ν) denote the (relative) root-

mean-square errors on σ and ν, i.e., Err(σ) = {
∑N

t=1(σ̂t/σ
∗ − 1)2/N}1/2,

where σ̂t is the estimate on the tth simulation dataset.

Ex 1. (Skewed Gaussian and skewed Laplace, m∗ = 0): Let ϕ be

the standard normal or Laplace density, n = 300, κ = 0.5, σ∗ = 0.2 and

ν∗ = 0.4, 0.6, 1.2.

Ex 2. (Skewed Gaussian and skewed Laplace, m∗ ̸= 0): Let ϕ be the

standard normal or Laplace density, n = 300, κ = 0.2, m∗ = Φ−1(0.75)

(third quartile), σ∗ = 0.3 and ν∗ = 0.5, 0.7, 0.9. (We also tried m =

Φ−1(0.25) but the results are similar and omitted.)

Tables 1 and 2 provide a detailed comparison of the performance of
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Skewed Gaussian

ν∗/σ∗ = 2 ν∗/σ∗ = 3 ν∗/σ∗ = 6

Err(β) Err(σ) Err(ν) Err(β) Err(σ) Err(ν) Err(β) Err(σ) Err(ν)

QR∗ 0.05 — — 0.06 — — 0.08 — —

BQR∗ 0.04 0.20 0.20 0.05 0.20 0.20 0.07 0.20 0.20

AME 0.04 0.44 0.44 0.04 0.44 0.44 0.06 0.44 0.44

ESN 0.04 0.42 0.42 0.04 0.42 0.42 0.06 0.42 0.42

SPEUS 0.04 0.13 0.08 0.05 0.18 0.06 0.06 0.29 0.05

Skewed Laplace

ν∗/σ∗ = 2 ν∗/σ∗ = 3 ν∗/σ∗ = 6

Err(β) Err(σ) Err(ν) Err(β) Err(σ) Err(ν) Err(β) Err(σ) Err(ν)

QR∗ 0.04 — — 0.05 — — 0.17 — —

BQR∗ 0.04 0.05 0.05 0.05 0.05 0.05 0.17 0.06 0.06

AME 0.04 0.23 0.20 0.05 0.25 0.21 0.17 0.24 0.20

ZQR 0.04 0.08 0.06 0.05 0.09 0.06 0.17 0.12 0.06

SPEUS 0.04 0.10 0.07 0.05 0.12 0.07 0.17 0.18 0.06

Table 1: Skewed normal and skewed Laplace with pivotal point at zero (Ex 1)

various methods. According to Table 1, when m∗ = 0, the β-errors do not

differ significantly. In this setup, BQR∗, ZQR and SPEUS all perform well.

In the setup of Ex 2 with a nontrivial pivotal point, as shown in Table 2,

SPEUS significantly outperforms the other methods in both Gaussian and

Laplace cases. We also tried other quantiles for m∗ (results not reported

here) and found that BQR, AME and ZQR typically produce highly in-
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Skewed Gaussian

ν∗/σ∗ = 1.7 ν∗/σ∗ = 2.3 ν∗/σ∗ = 3

Err(β) Err(σ) Err(ν) Err(β) Err(σ) Err(ν) Err(β) Err(σ) Err(ν)

QR∗ 0.16 — — 0.17 — — 0.15 — —

BQR∗ 0.16 1.04 0.30 0.16 0.67 0.43 0.14 0.46 0.50

AME 0.06 0.43 1.34 0.07 0.47 0.93 0.08 0.51 0.71

ESN 0.06 0.56 1.05 0.06 0.56 0.73 0.07 0.57 0.58

SPEUS 0.04 0.10 0.08 0.04 0.14 0.07 0.05 0.17 0.06

Skewed Laplace

ν∗/σ∗ = 1.7 ν∗/σ∗ = 2.3 ν∗/σ∗ = 3

Err(β) Err(σ) Err(ν) Err(β) Err(σ) Err(ν) Err(β) Err(σ) Err(ν)

QR∗ 0.17 — — 0.18 — — 0.17 — —

BQR∗ 0.17 1.07 0.31 0.17 0.69 0.43 0.16 0.48 0.50

AME 0.09 0.19 1.32 0.11 0.26 0.90 0.11 0.31 0.66

ZQR 0.10 0.52 0.55 0.11 0.52 0.34 0.12 0.52 0.22

SPEUS 0.04 0.10 0.08 0.05 0.10 0.07 0.06 0.14 0.07

Table 2: Performance comparison for skewed normal and skewed Laplace with

a nontrivial pivotal point (Ex 2)

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0412



5.2 Abalone Age

accurate scale estimates. In contrast, SPEUS is much more successful at

accurately recovering the true location and scales, and is not sensitive to

different values of m∗ even in the heavy-tailed cases.

5.2 Abalone Age

Determining the age of abalone is a tedious and challenging task that often

involves counting growth rings under a microscope. We use 7 physical

measures of blacklip abalone, including length, diameter, height, weight

and others, to predict the age of 1,526 infant samples originally collected by

Nash et al. (1994). We split the data into a training set (70%) and a test set

(30%). The abalone age dataset is usually analyzed using a regression model

based on ordinary least squares (OLS) (Chang and Joe, 2019), but the

histogram in the left panel of Figure 5 suggests the possibility of skewness.

To address this, we employed SPEUS by applying skewed pivot-blend to

the normal density function. Moreover, we included the skewed methods

AME (Yang, Gallagher, and McMahan, 2019) and ESN (Mudholkar and

Hutson, 2000) for comparison.

To assess the goodness of fit of several different models, we present Q-

Q plots of the residuals in Figure 6. Although OLS is widely adopted for

the data, it clearly demonstrates a lack of fit. The ESN and AME models
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Figure 5: Left: histogram of abalone age. Right: “back-transformed” SPEUS

residuals, the associated density estimate (red solid curve), and the standard

normal density (blue dashed curve).

offer significant improvement through scale and tail adjustments, but their

Q-Q plots still exhibit substantial right-skewness. In contrast, the sample

quantiles in the SPEUS model nearly match the theoretical quantiles. The

symmetry after the back-transform, as shown in the right panel of Figure

5, corroborates this point.

To compare the fit of the methods, which optimize different criteria

based on various distributional assumptions, we conducted Kolmogorov-

Smirnov tests and calculated the associated p-values: 0.008 for OLS, 0.003

for ESN, 0.08 for AME, and 0.3 for SPEUS. These findings validate our

model’s superior fit. It effectively addresses pivotal point and skew effects in
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Figure 6: Q-Q plots of model residuals on the abalone data.

the data, surpassing alternative approaches that rely solely on adjustments

to intercept and scale.

Figure 7 shows the histogram of the SPEUS residuals along with the

bootstrap results form,σ, ν. The scale estimates σ̂ = 0.9, ν̂ = 5.4, with 90%

confidence intervals [0.8, 1.0] and [4.0, 6.5], respectively, suggest significant

skewness in the data compared to a standard Gaussian distribution. The

estimated pivotal point, m̂ = 2 (with a 90% confidence interval [1.7, 2.2]) is
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Figure 7: Abalone data. Left: Histogram of SPEUS residuals with a labeled

pivotal point. Right: Bootstrap estimates of m,σ, ν (with 100 replications),

where m ̸= 0 and σ ̸= ν are significant.

likely associated with the legal minimum size limits in Tasmania during the

1980s (where and when the data were collected). The determination of size

limits included adding an estimated two years’ growth to the size at which

abalone reached sexual maturity in different areas, aiming to ensure abalone

could reproduce before being harvested (Tarbath, 1999). However, blacklip

abalone do not mature in size, and the significant growth variability among

various abalone stocks led to frequent changes in size limits, impacting

abalone of various ages. Our estimated pivotal point appears to correspond

with the 2-year protection regulation.



5.3 Medical Expenditure

5.3 Medical Expenditure

Modeling medical cost data and identifying relevant predictors are valuable

yet demanding tasks. MEPS conducts large-scale surveys across the United

States and provides nationally representative information about medical

expenditures. We model medical expenditures on 17 features on a sub-

set (stratum ID 2109, third PSU) of the 2019 MEPS data, which includes

150 participants. Of the 17 features, 15 are from Linero, Sinha, and Lip-

sitz (2020), including, for example, the amount of total utilization of pre-

scribed medications (RXTOT19), the number of dental care visits in 2019

(DVTOT19), age (AGE19X), each participant’s rating about their own health

status (RTHLTH31), and categorized family income (POVCAT19). We also

include the variables SEX and ACTLIM31, with the latter being a binary

variable indicating whether a participant has any physical restrictions that

impede his/her ability to engage in physical labor.

Traditional medical cost data analysis often employs a two-part model

with logistic and log-normal components. We compared this to the sparse

skewed two-part model (cf. Section 3) using a logarithmic function for T

and Huber’s loss for ρ. The regularization parameter is tuned by 5-fold

selective cross-validation (She and Tran, 2019). Figure 8 demonstrates the

superior fit of the latter in terms of the continuous component. In binary
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Figure 8: Q-Q plots of the continuous-part residuals on MEPS. The left panel

corresponds to the standard log-normal two-part model and the right panel cor-

responds to its skewness-enhanced counterpart.

component analysis, 100 repeated classification tests on 75/25 training/test

splits show that our method improved accuracy from 78% to 84%.

Next, we analyze the variable selection outcomes using the proposed

model. By bootstrapping the data 100 times, we plot the selection frequen-

cies of the top 10 variables in Figure 9. It is worth noting that setting

σ = ν resulted in all variables being selected at low frequencies, less than

23%. This emphasizes the profound influence of skewness on variable selec-

tion.

According to Figure 9, the first 4 variables, RXTOT19, DVTOT19, AGE19X,

and RTHLTH31, exhibit high selection frequencies (> 60%). In contrast,

other variables exhibited significantly lower selection frequencies. Below,
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Figure 9: Selection frequencies of the top 10 MEPS features over the 100 boot-

strap replications.
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we provide some practical explanation and guidance regarding these four

variables.

First, RXTOT19, representing the count of a person’s total prescribed

medications, is identified as highly influential in predicting medical expen-

ditures. This predictor has the highest correlation (0.43) with the response

among all the predictors. Our conclusion is consistent with Holle, Wolff,

and Herant (2021), highlighting that prescribed medication expenses con-

stitutes a substantial portion of medical costs in the USA. Moreover, the

patient’s age (AGE19X) and self-perceived health status (RTHLTH31) emerge

as significant predictors influencing medical costs. This discovery aligns

with Axon and Kamel (2021).

Perhaps interestingly, our analysis also reveals that the number of den-

tal care visits (DVTOT19), selected over 90% of the time, plays a significant

role in determining the total medical costs. Its contribution appears to be

unique, as it has low correlations (< 0.09) with the other three major pre-

dictors (the number of prescriptions, self-perception, and age). Beyond the

direct costs of dental care, a plausible explanation could be that individuals

with regular dental visits may be more health-conscious and have higher

incomes, making them more willing to spend on healthcare.
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6 Conclusion

Skewness poses a significant challenge in data science, and many approaches

attempt to model skewness by introducing different scales based on the me-

dian of a symmetric, unimodal density. This paper introduced a novel

two-piece density family constructed through skewed pivot-blend. “Pivot”

refers to the central reference point around which different affine transfor-

mations are applied to two conditional densities, and it can be positioned

anywhere. “Blend” signifies the merging of these asymmetrically scaled

densities using appropriate mixings to create a new continuous density.

We proposed a joint modeling framework that simultaneously estimates

scales, the pivotal point, and other location parameters. In particular, we

argued that the pivotal point does not correspond to the intercept when

skewness is present, a key aspect previously overlooked in the literature.

In practice, the inclusion of a single pivotal point parameter significantly

enhances a model’s capacity in real-world applications.

As an important application, the paper also investigated sparse skewed

two-part models, a problem that has recently gained much attention in

biomedical and econometric studies. Our non-asymptotic analysis show-

cases how skewness in random samples, especially those with potentially

heavy tails, can affect statistical accuracy. The quantification of the im-
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pact of asymmetrical scales on the choice of regularization parameters and

the rates of statistical error provides an insightful examination of skewness

within a finite-sample context.

We aim to raise data analysts’ awareness of data skew, as well as poten-

tial distortions that can arise when applying common transformations and

conventional log-likelihoods. The technique of skewed pivot-blend offers an

effective strategy for mitigating these challenges.

Supplementary Material

The supplementary material includes detailed proofs, extended theoretical

discussions, and further experimental validations.
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