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Abstract: The mixed membership stochastic blockmodel (MMSB)

is a popular Bayesian network model for community detection.

Fitting such large Bayesian network models quickly becomes

computationally infeasible when the number of nodes grows

into hundreds of thousands and millions. In this paper we pro-

pose a novel mini-batch strategy based on aggregated relational

data that leverages nodal information to fit MMSB to massive

networks. We describe a scalable inference method that can

utilise nodal information that often accompanies real-world net-

works. Conditioning on this extra information leads to a model

that admits a parallel stochastic variational inference algorithm,
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utilising stochastic gradients of bipartite graphs formed from

aggregated network ties between node subpopulations. We apply

our method to a citation network with over two million nodes

and 25 million edges, capturing explainable structure in this

network. Our method recovers parameters and achieves better

convergence on simulated networks generated according to the

MMSB.

Key words and phrases: Community Detection, Network Data,

Aggregated Relational Data, Mixed-Membership.

1. Introduction

Relational data between objects is commonly represented by a graph or

network that encodes pairwise interactions, and has been studied across the

natural and social sciences. Due to this prevalence in modern applications,

analysis of such data is vitally important. Among the tasks commonly

considered for such data, community detection stands out as being one of

the most crucial for practitioners and has been widely studied. Community

detection algorithms aim to identify groups of nodes that exhibit similar

connective behaviors. More specifically, nodes in networks often cluster

into small communities, where nodes within a community show a similar

propensity to form ties with other nodes (Bickel and Chen, 2009). These

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0411



clusters are often assortative, where nodes within a community interact more

than nodes in different communities (Fortunato and Hric, 2016). Identifying

such clusters of nodes often provides important scientific insights into the

processes underlying the realised network, and can also be used for further

analysis such as link prediction and node classification (Soundarajan and

Hopcroft, 2012; Ward et al., 2021).

The mixed membership stochastic blockmodel (MMSB) is a popular

model-based method for community detection in networks(Airoldi et al.,

2008). An extension of the widely used stochastic block model (Holland

et al., 1983; Nowicki and Snijders, 2001), the MMSB relaxes the assumption

that each node belongs to exactly one community, instead allowing the node

to belong to different communities for different interactions. By allowing

nodes to belong to multiple communities in varying amounts, this model

can capture more realistic features of networks (Airoldi et al., 2008).

A fundamental difficulty in analyzing networks with models such as

the MMSB is the computational burden of fitting these flexible models to

large real-world networks. The number of parameters grows quadratically

in the number of nodes in the network. To mitigate this issue, many

algorithms take advantage of the sparseness found in real-world networks by

avoiding computations using all node pairs. In particular, Gopalan and Blei

(2013) developed a stochastic variational inference (SVI) algorithm with a

sub-sampling scheme that only uses links.

The computational burden of fitting network models may be reduced by
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including nodal information. Although the MMSB models connectivity only,

real-world networks often have rich nodal data that can help with model

convergence. Additionally, modeling nodal covariates reveal an interesting

interplay between “content” and “connections” in networks. For instance,

Tan et al. (2016) modeled both text and links in a citation network to

measure the topic-neutral impact of scientific articles.

Previous procedures for the MMSB have performed inference using the

fully observed adjacency matrix, including sampling links to scale this to

large networks. These methods aim to infer the global network structure

by sampling edges from the network in a possibly online fashion, learning

the parameters using gradient steps based on these small samples. One

obstacle to the use of these methods is the inherent difficulty in sampling

from networks. Such sampling schemes may only provide limited information

about a subset of the parameters in the model. For example for models

describing community structure, it may be challenging to generate a sample

of nodes containing all possible pairs of community interactions. This can

lead to difficulties in learning stable estimates and such models may not

converge efficiently.

In this paper we propose a novel mini-batch strategy based on aggregated

relational data that leverages nodal information to fit MMSB to massive

networks. Instead of forming a subgraph by sampling nodes or links, we

create counts of links called aggregated relational data (ARD) for selected

nodes in a mini-batch. These represent aggregate counts of interactions
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between a node and a specified subpopulation, derived from available nodal

information. These node subpopulation counts can be more readily analyzed

than the original full adjacency matrix. These subpopulations could be

formed utilising nodal information (such as the journals academic papers

appear in). The weighted bipartite graph formed by ARD retains more

information from the original graph and can be used to estimate the pa-

rameters of an MMSB directly using the ARD data enumerated from the

sampled mini-batches. We apply Bayesian modeling and derive a variational

approximation algorithm for ARD that is used for each mini-batch. We

show our strategy enjoys good computational efficiency and recovers true

community structure in simulation experiments. A real-data analysis reveals

insightful and meaningful structure from a citation network of scientific

publications.

This paper is organized as follows. Section 2 provides a review of the

MMSB model for network data, previous inference schemes for MMSB, and

ARD models for network data. Section 3 develops our proposed extension,

considering aggregate relational data for the mixed membership stochastic

block model (ARDMMSB). In particular, Section 3.2 introduces a new

variational algorithm for approximate posterior inference for this model, de-

scribing important practical considerations of our implementation. Section 4

evaluates the performance of our proposed method using simulated data

while in Section 5 we examine the performance of our proposed for a large

citation network. In Section 6 we summarize our contributions and describe
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Mixed membership stochastic blockmodel (MMSB)
1. For each entry of the blockmatrix B, draw probability Bmn ∼

Beta(amn, bmn).

2. For each node n = 1, . . . , N , draw mixed membership vector πn ∼

Dirichlet(α).

3. For each node pair (i, j), draw

� the sender membership indicator sij ∼ Multi(1, πi)

� the receiver membership indicator rij ∼ Multi(1, πj).

� the resulting interaction δij ∼ Bernoulli(Bsijrij).

Figure 1: Data Generating Processes for the MMSB

potential future applications of our model.

2. Background

In this section, we review the Mixed-Membership Stochastic Blockmodel

(MMSB) and past approaches for posterior inference for this model, before

providing a review of the idea of ARD.

2.1 Review of MMSB

The MMSB is a mixed membership latent variable model for a directed

graph that detects overlapping communities within a network. It assumes

there are K latent communities (groups). The global connectivity is stored
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2.2 Review of prior posterior inference approaches for MMSB

in a block matrix B, where Blm represents the probability of a directed link

from a node that assumes membership in group l to a node in group m. Each

node belongs to the K groups with varying degrees of affiliation encoded in

a K-dimensional probability vector πi. The membership vectors are drawn

from a Dirichlet(α) prior. Each node i may assume different memberships

when interacting with different nodes. For each (i, j), membership indicator

vectors for the sender (sij) and receiver (rij) are drawn from a multinomial

based on their membership vectors. If the lth and mth elements of sij and

rij are ones respectively, the value of the interaction δij is sampled from

Bernoulli(Blm). Figure 1 outlines this data generating process.

2.2 Review of prior posterior inference approaches for MMSB

Since the MMSB models each directed edge, it quickly becomes compu-

tationally infeasible as the number of nodes grows. A popular approach

to fit large Bayesian models is stochastic variational inference (Hoffman

et al., 2013). Variational approximation algorithms turn a Bayesian infer-

ence problem into an optimization procedure. The researcher first posits a

family of approximating densities and the algorithm seeks to find the density

that minimizes the Kullback-Leiber divergence to the exact posterior (Blei

et al., 2017). Stochastic variational inference implements gradient based

optimization that combines natural gradients and stochastic optimization.

The algorithm maintains a current estimate of the global variational pa-

rameters, while repeatedly subsampling data. It uses the current global
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2.2 Review of prior posterior inference approaches for MMSB

parameters to compute the optimal local parameters for the subsampled

data, and adjusts the current global parameters appropriately.

Implementing a stochastic variational algorithm on the MMSB requires

subsampling network data, a difficult problem, especially on sparse networks

commonly found in practice. If one subsamples nodes and keeps the links

between them, there will hardly be any links in the subgraph, making

updates to parameters extremely noisy (Ma and Zheng, 2017). Gopalan

and Blei (2013) instead proposed a sampling strategy that is guaranteed to

sample a large number of links often. For instance, their stratified random

node sampling selects a node and partitions its node pairs into links and

many sets of non-links. The stochastic variational inference selects a node

at random and picks a link set or one of its non-link sets half the time. By

up-weighting the probability of selecting links, they ensure efficient updates

to their global parameters by not allowing their subsampled graphs to be

almost filled entirely of non-links at each iteration.

Fitting a MMSB can be improved by developing a sampling procedure

that creates subgraphs which more closely resemble the original graph. Al-

though Gopalan and Blei (2013) create subgraphs with many links, the

resulting subgraph does not carry the same properties from the full net-

work. They rely on the subgraph to get noisy, unbiased updates for the

global parameters. Although their sampling strategy is superior to naively

subsampling nodes, the global parameters recovered from the subgraph will

not closely match those in the full graph. Instead, they rely on stochastic
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2.3 Review of ARD

optimization to get closer with each iteration towards the truth. Thus, for

a fixed node, their procedure necessitates the need to periodically sample

subgraphs that contain links involving that fixed node to efficiently update

its variational parameter.

2.3 Review of ARD

We show in this paper that employing node-centric aggregated relational

data (ARD) gives an efficient solution to the above issue. ARD can be

used to create a multigraph using a subsample of nodes that can estimate

the global parameters directly, eliminating the need to continuously update

the global parameters with each sampled subgraph. Aggregated relational

data is commonly used in the study of social networks (DiPrete et al.,

2011). Sociologists are interested in the connections between people and

gather information through sample surveys (McCarty et al., 2001). Ideally,

a respondent would reveal some personal information and enumerate all

the persons he or she knows (Shelley et al., 1995). However, this is not

always feasible since people may be reluctant to report membership to a

certain group due to social pressure or stigma. Additionally, enumerating

one’s network of friends and acquaintances is not practical especially since

personal network sizes run to the hundreds of individuals. To get around this

obstacle, survey enumerators ask questions of the form “How many X’s do

you know?,” where X represents a subpopulation of interest. For example,

X can be the subpopulation of people with first name Michael. Rather than
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having data on the connections individually, we get the total number of

links the respondent has with Michaels. This idea can be extended to other

networks with well-defined subpopulations.

McCormick and Zheng (2015) modeled ARD as a partially observed full

network. By first positing a model of the complete graph and deriving the

model for the ARD, they were able to establish a framework that yielded

an explicit relationship between complete graph features and the sampled

data. This connection illuminates how inferences made on the smaller graph

effects inferences made on the complete graph.

3. ARDMMSB Model and Algorithm

In this paper, we address the computational challenge posed by fitting

massive real-world networks by proposing ARD to construct bipartie graphs

that carry information about full network features. Ideally, we want infer-

ences made for this bipartite graph to carry over to inferences made on

the complete graph. To form ARD, we leverage background information

on the dataset to create subpopulations, if it is available. Nodes within a

subpopulation should have similar memberships, while the subpopulations

themselves ideally should be spread across regions of the membership space.

As an example, in a citation network, one can use the journals that the

papers were published in as subpopulations. Intuitively, papers in the same

journal should have similar community memberships. In this case, for each

sampled node, one would summarize the number of citations to each journal
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3.1 Proposed model: ARDMMSB

to form the ARD bipartite graph. We will show below that this method

provides stable estimates of the blockmatrix B and the subsampled nodes’

community memberships. However, other methods, such as constructing

subpopulations based on papers which share keywords, is also possible.

In what follows, we model the entire full network as a MMSB, create

random subgraphs from ARD mini-batches, and model the aggregated

links to infer the blockmatrix B and membership vectors for each node

in the complete graph. Central to this algorithm is a model for the ARD

bipartite graph assuming the underlying full network is generated from an

MMSB. We first introduce this model and then describe our variational

inference procedure for ARD, before giving practical remarks related to

implementation.

3.1 Proposed model: ARDMMSB

In a complete graph, we observe an N ×N adjacency matrix δ where δij = 1

if there is a directed edge from i to j and 0 otherwise. We assume that there

are K latent communities present in this network, where the probability of

an edge between these communities is determined by a K ×K block matrix

B, where Blm is the probability of an edge from a node in community l

to a node in community m. In the MMSB, the propensity to form ties

is modeled conditionally on πi and πj, the memberships of sender i and

receiver j. The probability is calculated by integrating over the sender and

receiver indicators sij and rij,
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3.1 Proposed model: ARDMMSB

πi

YikYiℓ

B

πGℓ
πGk

α

Generative process of ARDMMSB

1. For each entry of the blockmatrix B, draw

probability Bij ∼ Beta(aij, bij).

2. For each node n = 1, . . . , nb in minibatch

b, draw πn ∼ Dirichlet(α).

3. For each subpopulation k = 1, . . . , κ, draw

ηk ∼ Dirichlet(α).

4. For each node and subpopulation pair

(i, k), draw yik ∼ Poisson(Nkπ
T
i Bηk).

Figure 2: Left: Graphical representation of a two-node segment of the ARD

network. The complete model contains yik for every node, subpopulation

pair. Circles denote variables and observed variables are shared. The plates

contain variables to be replicated. Right: Data Generating Process for

Aggregated Relational Data for MMSB.

P (δij = 1|πi, πj) =

∫
P (δij = 1|sij, rij)P (sij|πi)P (rij|πj)dsijdrij

= πT
i Bπj.

Gopalan and Blei (2013) infer these global parameters B,π from sub-

graphs formed from the original graph. While these subgraphs can be

constructed to contain many links, it may still be challenging to gener-
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3.1 Proposed model: ARDMMSB

ate reasonably sized subgraphs which can infer these global parameters

well. For example, when learning the off diagonal elements of B, the inter

group connection probabilities, there may only be a limited number of edges

with which to perform inference. This can lead to noisy estimates of these

parameters, and may make convergence of the inference scheme challenging.

Instead of observing the connections between each pairs of nodes (i, j),

we only observe aggregated counts of links between each node i and each of κ

subpopulations, such that yik =
∑

j∈Gk
δij whereGk is the kth subpopulation,

with k = 1, . . . , κ. Conditional on the community memberships πi and

{πj}j∈Gk
, {δij}j∈Gk

are independent Bernoulli random variables, each with

a small probability of success. It is then reasonable to assume,

yik ∼ Poisson(λik)

λik ≈
∑
j∈Gk

P (δij = 1|πi, πj) =
∑
j∈Gk

πT
i Bπj.

Since we do not observe δij for j ∈ Gk, we will not be able to estimate

the latent parameters {πj}j∈Gk
and thus not be able to infer the Poisson

rate λik. Instead, we approximate the rate by taking the expectation over

the latent positions of nodes in subpopulation Gk. Defining Nk to be the

number of nodes in subpopulation k, we have the approximation,

1

Nk

∑
j∈Gk

πT
i Bπj ≈ Eπj∼Pk

(πT
i Bπj)

where we introduced a distribution Pk over nodes j in subpopulation k. This

Pk is a distribution over the K communities in the network. This gives

λik ≈ NkEπj∼Pk
(πT

i Bπj). (3.1)
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3.1 Proposed model: ARDMMSB

The approximation in Equation (3.1) has two key features. First, the

probability of a connection is no longer conditional on the membership of

the two nodes but now conditions on the sender’s membership and the

expected membership of a node in the subpopulation. Second, it introduces

a distribution over the set of latent membership vectors, Pk, with integration

over the K − 1 dimensional unit simplex.

Now we must make a choice for the subpopulation distribution. If we

take Pk = Dirichlet(αk), then

Eπj∼Pk
(πT

i Bπj) = πT
i BEπj∼Pk

(πj) = πT
i Bηk

where ηk = (η1k, . . . , η
K
k ) is a vector of length K and ηjk =

[
αj
k∑K

j=1 α
j
k

]
. Com-

bining these results, we have

yik|πi, ηk ∼ Poisson(Nkπ
T
i Bηk),

which is the likelihood of the MMSB for ARD. In this paper, we will infer

ηk, the subpopulation mean, rather than αk, which would additionally allow

estimation of the subpopulations’ concentration. To finalize our model

specification we add prior distributions for the community memberships

πi and ηk as well as the blockmatrix B. The data generating processes for

MMSB and the Aggregated Relational Data for MMSB is summarized in

Figure 2.
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3.2 Posterior Inference

3.2 Posterior Inference

To perform inference for large networks, we randomly sample minibatches

of nodes and subpopulations and use the resulting ARD bipartite subgraphs

to learn the parameters of the underlying MMSM model for the original

network. The variational inference scheme we perform for each of these

minibatches is described below.

As the true posterior of our model is not available in closed form, we

develop an efficient variational algorithm for posterior approximation. We

fit this procedure to each of the minibatches independently. This allows us

to parallelize this algorithm across minibatches. These are minibatches of

ARD data, namely samples of nodes and the corresponding subpopulation

counts. This retains more expressive information than minibatches of the

underlying adjacency matrix, δ.

Let Θ denote the set of unknown variables in the ARDMMSB, namely

the community memberships, π, the subpopulation means, η, and the

underlying blockmatrix, B. In variational inference, the true posterior is

approximated by tractable distributions which are optimized to be close to

the true posterior in terms of Kullback-Leibler divergence. Here we consider

a fully-factorized family (commonly called mean field variational inference),

q(Θ) =
∏
i,k

qK(πi|γi)qK(ηk|ϕk)
∏
m,n

δBmn

where we infer a separate variational family for each of the latent vari-

ables in our model. For both πi and ηk a natural choice is to consider a
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3.2 Posterior Inference

Dirichlet variational family, with parameters γi and ϕk respectively. We

use qK to denote these Dirichlet distributions of order K, while δBmn is

the point mass at Bmn. In variational inference we aim to infer the vari-

ational parameters such that the variational approximation best matches

the true posterior distribution. We aim to optimise over the variational

parameters, {γ, ϕ,B} to minimize the Kullback-Liebler divergence between

the variational approximation, q(Θ), and the true posterior.

From Jensen’s inequality, minimizing the Kullback-Leibler divergence

between q(Θ) and the true posterior is equivalent to maximizing a lower

bound L on the log marginal likelihood (Blei et al., 2017). The lower bound

is given by

L = Eq log p(Y,Θ)− Eq log q(Θ) (3.2)

=
∑
i,k

Eq log p(yik|πi, ηk, B) +
∑
i

Eq log p(πi|α)

+
∑
k

Eq log p(ηk|α) +
∑
m,n

Eq log p(Bmn|amn, bmn) +H(q).

Here note that Eq log p(Y,Θ) in (3.2) consists of both the priors for

π, η and B, along with the likelihood of the MMSB for ARD. We consider a

common Dirichlet prior with K dimensional parameter α for π and η. For

entry Bmn of B we utilise a Beta(amn, bmn) prior. In practice, we choose

amn = bmn = 1, giving a uniform prior on the entries of B, and a common

concentration vector for the Dirichlet prior α = (α, . . . , α).

However, Eq log p(yik|πi, ηk, B) cannot be evaluated in closed form. To

circumvent this issue, we lower bound this term further by introducing
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3.2 Posterior Inference

auxiliary parameters.

Eq log p(yik|πi, ηk, B)

= yikEq log(π
T
i Bηk) + yik logNk −NkEqπ

T
i Bηk

≥ yik
∑
m,n

p
(mn)
ik Eq log(π

m
i Bηnk )−

∑
m,n

p
(mn)
ik log p

(mn)
ik

+ yik logNk −NkEqπ
T
i Bηk. (3.3)

where {p(mn)
ik |m,n = 1, . . . , K} is an auxiliary probability vector for

every (i, k) pair. The lower bound on the log marginal likelihood obtained

by using Equation (3.3) is denoted by L∗. The full expression for L∗ is

included in the supplementary materials.

We optimize L∗ via coordinate ascent, optimizing both the variational

parameters {γ, ϕ,B} and the corresponding auxiliary parameters p
(mn)
ik . For

the auxiliary parameters p
(mn)
ik , we update L∗ by tightening inequality (3.3).

For {γ, ϕ}, the likelihood is nonconjugate with respect to the prior. We

appeal to nonconjugate variational message passing for updates of these

parameters (Knowles and Minka, 2011). This is a fixed point iteration

method for optimizing the natural parameters of variational posteriors in

exponential families. The advantages of this approach is that it yields

closed form updates and extends to stochastic variational inference naturally.

However, L∗ is not guaranteed to increase at each step and updates for

{γ, ϕ} may be negative at times. To resolve these issues, we use the fact

that nonconjugate variational message passing is a natural gradient ascent

method with step size 1 and smaller step sizes may also be taken. An outline
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3.2 Posterior Inference

of the overall procedure is shown in Algorithm 1. When updating {γ, ϕ}

using nonconjugate variational message passing, we start with step size

1 and reduce the step size where necessary to ensure updates are positive.

If L∗ increases, these updates are accepted. Otherwise, we revert to the

former values. As a point mass δBmn was chosen for the variational family

for B, the entries are updated by a standard gradient step. We show the

expression for the updates of {γ, ϕ} in Algorithm 1. The derivation of these

updates and their exact form is included in the Supplementary Material.

Multiple Passes. When fitting to a large network, each minibatch will

contain a small fraction of nodes. After initialization, the nodes in each

minibatch will be run through the algorithm with weakly informative subpop-

ulation blockmatrix parameters. The fit of each node ignores link information

from all other minibatches. However, after being fit with Algorithm 1, the

subpopulation and blockmatrix parameters contain richer information since

they are averaged over all minibatches. Running Algorithm 1 a second time

with the fits as initial values will allow the node parameters to be fit using

information across the network. This process is summarized in Algorithm

S1 of the supplementary material. We found that two passes is usually

sufficient for the stability of parameters. This entire process is illustrated in

Figure 3.

Per-iteration Complexity. At first glance, it seems that we must store

a matrix of ancillary parameters [p
(mn)
ik ]m,n for each node-subpopulation
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3.2 Posterior Inference

Figure 3: Illustration of inference process for multiple passes. Each tall

orange rectangle represents all of the variational parameters for the nodes.

The blue blocks represent the subpopulation and blockmatrix parameters

while the orange blocks represent the parameters for each node. In each pass,

the orange blocks are broken up into minibatches. Each of the minibatches

are passed along with the current blue parameters and fit through the

algorithm. After the pass, the orange blocks are stored and the blue

parameters are averaged over before being stored.

pair. This would mean having a memory requirement of O(D2NK). This

can be problematic when trying to fit the model with a large number of

communities. However, all parameter updates depend on p
(mn)
ik only through

the term yikp
(mn)
ik . Thus, we can take advantage of the sparseness found in
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3.2 Posterior Inference

real-world networks by only storing ancillary parameters corresponding to

nonzero counts yik.

Picking subpopulations. Ideally, subpopulations should be chosen so

that the members of a subpopulation have similar community membership.

In practice, one would need to use background information to pick subpopu-

lations (McCormick and Zheng, 2013; McCormick et al., 2012, 2013), which

may not be readily available. For instance, in a citation network, journals

may be a good choice of subpopulations, as papers within a journal are

often on the same topic. This will result in non-overlapping subpopulations.

Alternatively, we could use specific keywords as a choice of subpopulations,

which may result in overlapping subpopulations. For the simulation studies

demonstrating the performance of our proposed method in Section 4 there is

no background information and so the subpopulations were randomly chosen

and still resulted in strong community recovery. Similarly, we note that

while there is a computational cost to initially forming these subpopulations

counts of O(n2κ), this calculation is only required initially and does not

need to be repeated.

Initialization From our synthetic data set, we found initialization of {γ, ϕ}

is important for good recovery of the model parameters. We initialized by

first forming a new matrix Ỹ = [yik/Nk]ik. That is Ỹ is a normalized version

of the ARD. Communities for the sampled nodes were initialized using soft

clustering on the top K left singular values of Ỹ , while the subpopulation
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communities were clustered using the top K right singular values. We

use this initialization scheme for all comparison methods considered in the

simulation studies and real data example below.

4. Simulation Studies

In this section we perform simulation studies showing that bipartite graphs

formed from ARD preserve enough information from the full network so

that inference made using ARD minibatches carries over to inference based

on the complete graph. Moreover, we compare our method to Gopalan

and Blei (2013) and observe that we have excellent parameter recovery and

model fit using ARD subgraphs, without observing all nodes in the network.

The procedure of Gopalan and Blei (2013) is unable to correctly recover

the true communities or model parameters using only a subgraph of the

original network, only achieving comparable performance when the complete

network is used.

4.1 Subsampling

In practice, a network is often presented to the researcher that is too large

to conduct an analysis with the complexity required to gain an insight into

the underlying network. Fitting Bayesian hierarchical models to such data

simply take too much time. Because of the intractability of such models,

the researcher oftentimes runs her analysis on a subgraph of the network.

Choices of subgraphs include the largest connected component or a subset of
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4.1 Subsampling

nodes with similar covariates. However, inferences on the subgraph may be

misleading when extended to the entire network. Ideally, the subgraph will in

some way be representative of the original graph. Among the many sampling

strategies of networks, simple random node selection has been shown to

create subgraphs that maintain many features of the graph (Leskovec and

Faloutsos, 2006).

If the complete graph is a MMSB, subsampling nodes and doing inference

on the resulting subgraph may lead to misleading inferences. Due to its

data generating process, sampling nodes at random and keeping the edges

between them will result in a MMSB with the same blockmatrix. However,

such a procedure may lead to a large loss in efficiency and thus unstable

parameter estimates. This is particularly an issue in sparse networks since

such a subsampling procedure will leave out most of the links in the network,

making it hard to learn the many parameters of the model. Using ARD

leads to vastly improved estimates of both the blockmatrix and membership

profiles.

We first wish to investigate the choice of subsample size on inference

for such network data. Can valid inferences about the overall network

structure be obtained using ARD subgraphs, rather than the whole network?

Is this possible with existing methods for MMSB data, taking subgraphs

of the underlying adjacency matrix instead? Figure 4 shows the results

from a simulation experiment illustrating the instability of estimates from a

subgraph formed by sampling nodes. We evaluate performance by community
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assignment and blockmatrix recovery. In this experiment, we simulated 10

networks, each a MMSB with N = 10000 nodes and K = 6 communities.

Our model assumes that we have information other than the link structure

that can define subpopulations or groups of similar nodes. Thus, for our

simulations, we must introduce a method of generating these subpopulations.

We generated κ = 50 subpopulation centers and then generated the members

or each subpopulation from a Dirichlet at the subpopulation center. The

blockmatrix B is diagonally dominated to ensure exact recovery is possible

with enough nodes (Zhao et al., 2012), with non-diagonal entries being

0. Three communities have within-linking probabilities of 0.1 while the

other three have within- linking probabilities of 0.04. Given these simulated

networks, we form subgraphs of the original network first, sampling n = 500

and n = 5000 nodes uniformly at random and keeping the edges between

them. Similarly, ARD subgraphs were formed with n = 500 and n = 1000

sampled nodes. Throughout, the use of ARD corresponds to fitting our

ARDMMSB model to subgraphs of ARD data using the inference scheme

described in Section 3.2. We wish to examine the performance of these

different network subgraphs (both original network subgraphs and ARD

subgraphs) in terms of community and parameter recovery. To investigate

how these samples compare to using the complete network, we also include

the results from fitting the entire network using the stochastic variational

inference scheme of Gopalan and Blei (2013). We adapt the stochastic

variational inference algorithm presented in Gopalan and Blei (2013) to
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fit the subgraphs formed from random node sampling and using the entire

network, (with SVI indicating the use of this inference scheme throughout

this paper). Initialization of the nodes’ variational parameters was performed

using ten random restarts of spectral clustering. We report the best fit for

each of the random restarts.

Figure 4: Left: Boxplots of normalized mutual information (NMI) among the

subgraphs considered in simulations, using SVI for subgraphs of size n of the

underlying adjacency matrix and ARD subgraphs of size n. Right: Posterior

means and standard errors of estimation of diagonals of blockmatrix for SVI

on subgraphs of the adjacency matrix and ARD data of size n. The true

values of the block matrix are given as dashed horizontal lines.

The left panel of Figure 4 is a boxplot demonstrating performance

of community recovery for the different subgraphs. We chose normalized

mutual information between the fitted network’s membership profiles and

the true membership profiles as the measure of performance (Danon et al.,

2005). For each node, we take its community assignment to be the maximum
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4.2 Comparison to Related Method

community in its membership profile. We show the result for n = 500, 5000

for subgraphs of the original network, using SVI and ARD subgraphs of size

n = 500, 1000.

The bipartite graphs formed using ARD have excellent recovery, compa-

rable to using the entire network (SVI(10000)). Using SVI with subgraphs

rather than the full graph struggles to recover the communities well. The

right panel of Figure 4 plots the average posterior mean of the blockmatrix

B’s diagonal elements. We show these for ARD (ARD (500), ARD (1000))

and node subgraphs (SVI (500), SVI (5000)), along with using the entire

network (SVI (10000)). As expected, we see that for the subgraphs formed

from random sampling, the estimates have little bias and the standard error

decrease as we increase the size of the subgraph, although it is still large with

even large subgraphs. ARD incurs similar bias but has drastically smaller

standard errors. Thus, ARD contains much more information about the

original graph as it performs just as well as fitting on the entire network. The

small bias of the ARD estimates here is related to the validity of the Poisson

approximation, which may not be reasonable for the large subpopulations.

4.2 Comparison to Related Method

Expanding on the results showing the strong performance of our ARD pro-

cedure with small subsamples, we further compare our model and inference

algorithm to the SVI algorithm in Gopalan and Blei (2013). Their method

implements a stochastic variational inference algorithm for the MMSB. We
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4.2 Comparison to Related Method

Figure 5: Comparison between ARDMMSB (ARD) and Gopolan et. al.’s

Stochastic Variational Inference (SVI), showing the average predictive log

likelihood with subgraphs of size n = 500.

utilise the same simulation setting discussed in section 4.1, generating net-

works of 10000 nodes. For a fixed subgraph size (500 nodes, 5% of the total

network), we wish to compare the performance of these two procedures. We

do this in terms of model convergence and community membership recovery.

The results are shown in Figure 5 and Figure 4.

While the previous results showed that SVI required the complete

network to achieve similar community and parameter recovery to ARD

subgraphs, we also wish to quantify how well our algorithm’s solution fits the

data compared to that of stochastic variational inference. Ideally, this would
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mean comparing the ELBOs, the target criterion of variational inference

algorithm. Comparisons of the respective ELBOs is not possible since

Gopalan and Blei (2013) implement a stochastic variational inference and

therefore do not store any local parameters. Without the local parameters,

the ELBO cannot be computed. Moreover, even if we could calculate the

respective ELBOs, they would not be comparable since the models are

different.

Since the ELBO cannot be computed when implementing stochastic

variational inference, Gopalan and Blei (2013) evaluate model fitness through

the predictive distribution (Geisser, 1975). Intuitively, a better model will

have a higher predictive likelihood on a held-out set. The held-out predictive

likelihood is thus used as a proxy for the ELBO. This is computed as follows:

p(ynewab = 1|yobs)

=

∫
θTaBθbp(θa, θb, B|yobs)dθadθbdB

=

∫
θTaBθbp(θa|θb, B, yobs)p(θb, B|yobs)p(B|yobs)dθadθbdB

≈
∫

θTaBθbq(θa)q(θb)q(B)dθadθbdB = Eqθ
T
aEqBEqθb.

We could also compute a predictive likelihood for our model, but they

still would not be comparable. However, our algorithm yields a variational

posterior for the node memberships and the blockmatrix. We can use these

parameter estimates and plug them into the posterior likelihood defined

above. Ideally, both of our models should be fit using the same held-out set

of node pairs; but it is not obvious how the ARDMMSB model can handle
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such held-out node-pairs. Instead, we propose computing the predictive

likelihood over the observed data. A good model fit should have a high

predictive likelihood on the training set. We show the predictive likelihood

over the observed data, using ARD subgraphs of size 500 and SVI with

subgraphs of size 500 in Figure 5. Figure 5 shows that ARD achieves a

higher model fit than SVI using a subgraph of the original network with the

same number of nodes.

Due to space constraints, we defer further detailed comparisons to the

supplementary material. There, we investigate our proposed method as

we vary the number of communities, subpopulations, and sparsity of the

network. We also examine the computational performance relative to SVI.

5. Applications

We fit a MMSB using our algorithm to a real-world network to demonstrate

how it can help study massive networks. We analyzed a citation network

with over three million nodes and 25 million edges extracted from DBLP,

ACM, MAG, and other sources (Tang et al., 2008). We removed journals

and papers that are isolated or do not have any outlinks. This reduced

network has 2,139,891 papers and 4,349 journals.

For this network, we set the number of communities to twenty and used

1,000 mini-batches. The number of mini-batches used was chosen simply

for convenience as the cluster used for fitting took a maximum of 1,000

jobs at once. In each minibatch, we used all the journals and a random
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subset of roughly 2,000 papers. We measure convergence according to our

lower bound approximation of the ELBO. We stopped each mini-batch

computation when the change in the ELBO was less than 10−2.

To initialize the community membership profiles, we formed the journal

to journal adjacency matrix and performed regularized spectral clustering.

The result gave us hard community assignments for each journal. Each

paper’s membership was then initialized according to its journal’s hard

assignment. With this initialization our ARDMMSB model was used to

obtain mixed memberships for each of the papers and journals.

Figure 6 shows our community detection results from the fitted model.

Each panel shows what we call a topic terrain plot. This plot visualizes the

breath and coverage of journals in the citation network. Each plot contains a

circle plot of a particular journal. The circle is outlined with twenty colored

blocks that represent the twenty communities that papers belong to. The

size of a block corresponds to the size of the community or the number of

papers in that community determined by the dominant community in its

membership profile vector. The placement of the bars around the circle is

the result of hierarchical clustering of the twenty topics using inverse value

of the probability of a link as the distance metric. Each topic also has a

word cloud of the seven most frequent words found among the journal titles

after removing stop words.

Inside the circle, we plot the papers’ membership profile vectors within

that journal as well as the coordinates of papers cited by papers within the
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journal. We randomly sampled 1000 papers from the journal to construct

the plot. For each paper, we sample approximately fifteen of its cited papers

on average. The bigger nodes within the wheel represent the papers from

the journal and the smaller nodes represent the cited papers. Each link

represents a citation activity. The coordinate of each node is the average

of the coordinates of the centers of the twenty topic bars, weighted by the

membership value of the node. The color of each node is also the average

of the RGB value of twenty topic bars, weighted the same way. The color

of each edge depends on the target node. The contour plot represents the

density estimate of the papers from the journal.

From the word clouds, we can infer what communities correspond to

which fields and topics. Those in yellow are related to mathematics. Those

in orange correspond to biology and other biological applications, while

those in light blue have topics relating to software and software design.

Machine learning and artificial intelligence dominate the red region.

The top of Figure 6 shows the topic terrain plot for Bioinformatics

using results from our algorithm. Intuitively, we would expect papers in

this journal to develop technologies for biological applications. Thus, they

should cite papers in fields such as machine learning and computer vision as

well as biology papers which is the citation behavior we see in the figure.

We immediately notice that this journal has a strong footprint and unique

identity. Most of the papers within Bioinformatics have a high membership

in topic 2, which corresponds to biology and biological related fields. Many
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of papers in published in Bioinformatics cite papers with high membership

in topic 4 which correspond to artificial intelligence and machine learning.

There are also a significant number of papers being cited in fields such as

mathematics and logic.

The bottom of Figure 6 shows the topic terrain plot for Bioinformatics

using results from Gopalan and Blei (2013)’s stochastic variational algorithm.

First notice that the word clouds are much more homogeneous, indicating

their algorithm has difficulty detecting meaningful communities. Also, most

of the papers belong exactly to one community; that is, papers do not

exhibit mixed membership. This could be due to the fact that the topics

themselves are not very distinct from one another or the algorithm has

difficulty capturing interdisciplinary papers.

Figure 7 shows the topic terrain plots of the Journal of Machine Learning

and Research (JMLR) from the two algorithms. Although JMLR is a

journal in machine learning, we expect papers to be broadly spread out

among many communities since machine learning can be organized into

smaller communities within its broad research landscape. It covers natural

language processing, mathematics, logic, machine learning with biological

applications, control theory, physics, vision and robotics. In the top plot

of Figure 7, the half circle represents the foundations and applications of

machine learning. Topic 4 has the highest concentration which contains

journals based in artificial intelligence (AI) and neuroscience inspired AI,

such as neural networks. Moreover, there is a large concentration in topic 17
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which corresponds to AI without neuroscience. This agrees with our view of

ML as a field. It confirms our method is recovering meaningful structure in

the citation network.

The bottom plot in Figure 7 continues the trend of having all the papers

stuck on the edges, meaning that most papers belong to solely one topic.

Thus, the algorithm cannot capture the interdisciplinary nature of many of

the computer science papers that have applications in other areas. Also, the

topics themselves do not have strong separation between fields. For instance,

computer systems and ML Topics are mixed together and are dominated

more by application areas rather than research areas.

By comparing the two plots, we illustrate how integrating nodal infor-

mation can greatly improve results on real-world networks. For JMLR, our

method divides the topic terrain plot into two half circles, one half being

ML and the other about hardware, system design, security, etc. This is

due to incorporating journal information which is essentially human-curated

structure. Leveraging extra information allows ARDMMSB to uncover more

structure in the citation network.

Figure 8 shows quantitative measures of comparison between our in-

ference procedure and Gopalan and Blei (2013)’s stochastic variational

inference algorithm. The left panel shows the ROC curves. The middle and

right panels show boxplots of the area under the curve and relative ranks of

both methods respectively. These plots were formed by subsampling 10,000

links and nonlinks and computing the probability of a link. Each of these
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subsamples forms an average rank measure and ROC curve which admits an

area under the curve. The rank measure was formed by taking the average

rank of the links according to their predictive probabilities. We see that our

method performs worse with regards to these metrics.

Although ARDMMSB does not do as well according to these measures,

we only pick up communities formed by topics. ARD does not use paper

to paper links. This can be beneficial as it removes some of the noise in

link formation within the network. Since journals are human-curated by

topics, aggregating links by journals ensure that ARD most likely uses

link structure driven by topics. By only using paper to journal links,

ARD removes some of the nuances due to other social structure such as

community structure formed from coauthorships. Gopalan and Blei (2013)’s

algorithm may capture this kind of structure, which is different from structure

solely from topics. We have also created a Shiny app, available at https:

//jyr123456.shinyapps.io/Topic_Terrain_Visualizer/, to allow the

exploration and interactive visualization of these results, allowing to user to

specify a selection of topics and journals.

6. Conclusion

The MMSB is popular model-based method of community detection of over-

lapping communities. However, this model is difficult to scale to networks on

the order of millions of nodes since it parameterizes each pair of nodes. The

algorithm from Gopalan and Blei (2013) implements a stochastic variational
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inference algorithm with a sampling scheme that takes advantage of the

sparseness found in real-world networks. Although this algorithm works

quite well, it ignores nodal information commonly found in networks that

could reduce computational costs and improve model convergence.

In this paper, we introduced aggregated relational data for the MMSB

(ARDMMSB) that incorporates such information with the present link

structure. ARDMMSB lends itself to a mini-batch strategy that can be

carried out in parallel which can drive down computation times. It works by

aggregating sets of links to form a bipartite graph which is of much smaller

dimension than the network’s adjacency matrix. It retains information

from the original graph and can be used to estimate the parameters of the

MMSB directly. Our simulation studies and real-world application to a

citation network illustrate how our algorithm can achieve improved results

by leveraging information outside of the links themselves. There are several

important extensions of this procedure which should be considered in future

work. Jin et al. (2024) have extended the MMSB model to incorporate a

degree correction parameter, which leads to better model fitting with real

networks. Incorporating such a degree correction here is an important future

direction. We have also made all code used to create the figures in this

paper publicly available in a github repo.

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0411



REFERENCES

Supplementary Materials

The attached supplementary material include multiple additional simulation

results which were omitted due to space constraints in the in main text.

These serve as further demonstration of the performance of our proposed

algorithm. We include additional details on our inference scheme, including

omitted algorithms and details of the approximate lower bound which is

considered. We also describe the impact of performing multiple passes of

our algorithm on the fitted model for the citation network.
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Algorithm 1 Variational inference procedure for ARD mini-batches
Initialize the variational parameters γ, ϕ, B. Cycle through the following steps

until all nodes are sampled.

1. Randomly sample n nodes without replacement, obtaining sample S.

2. Randomly sample k of the κ subpopulations without replacement.

3. Initialize local auxiliary probability variables p and step size st = 1. Cycle

through steps 4 to 8 until convergence.

4. Update B using a gradient step, B̂mn =
∑

i,k yikp
(mn)
ik∑

i,k Nk
γm
i∑
d γd

i

ϕn
k∑

d ϕd
k

for a uniform prior

for Bmn.

5. Update γi ← (1 − st)γi + stγ̂i for i ∈ S where γ̂i = I−1
γi ∇γiEq[log p(y,Θ)]. If

any element of γi ≤ 0, reduce st (say by half each time) until γi > 0. Accept

update only if L∗ increases.

6. Update p by tightening the lower bound L∗, p(mn)
ik ∝ exp [Eq log(π

m
i Bηnk )]

7. Update ϕl ← (1−st)ϕk+stϕ̂l for l ∈ 1, . . . ,K where ϕ̂l = I−1
ϕl
∇ϕl

Eq[log p(y,Θ)].

If any element of ϕl ≤ 0, reduce st (say by half each time) until ϕl > 0. Accept

update only if L∗ increases.

8. Update p given these variational estimates, p
(mn)
ik ∝ exp [Eq log(π

m
i Bηnk )]

9. Average the subpopulation parameters ϕl and blockmatrix B across mini-

batches.
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Figure 6: Top: Topic terrain plot of Bioinformatics using results from

ARDMMSB. Bottom: Topic terrain plot of Bioinformatics using results

from Gopalan and Blei (2013)’s stochastic variational inference. A word

cloud of the top seven words is displayed with each topic. The font size is

proportional to the term frequency.
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Figure 7: Top: Topic terrain plot of JMLR using results from ARDMMSB.

Bottom: Topic terrain plot of JMLR using results from Gopalan and Blei

(2013)’s stochastic variational inference. A word cloud of the top seven

words is displayed with each topic. The font size is proportional to the term

frequency.
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Figure 8: Comparison between ARDMMSB and Gopolan et. al.’s Stochastic

Variational Inference. Left: ROC curves. Middle: Boxplot of the average

area under the curve. Right: Boxplot of relative ranks.
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