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Abstract:

We propose a new copula-based Markov model to analyze count time series data. One challenge in

using copula to analyze count data is due to the identifiability issue that arises from the discrepancy of

using a continuous copula function to characterize the discrete distribution. We find that identifiability

can be ensured in the regression setup under one sufficient condition. Resolving the identifiability

issue allows us to develop a method to select the appropriate copula to capture different types of

temporal dependence, leading to more flexibility in modeling. We propose an estimation procedure and

establish the asymptotic properties of the proposed estimators. For capturing temporal dependence,

the proposed method is data-adaptive and computationally efficient. It also provides a convenient way

to construct both point and interval predictions at a future time. Through a simulation study and

the analysis of COVID-19 daily death data, we show that our method produces more stable point and

interval predictions than existing methods based on Gaussian copula and autoregression.
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1. Introduction

With a surge in applications from finance, environmental science, and social science, there

has been increasing interest in developing models and methods for analyzing time series

of counts; see Davis and Liu (2016), Jung et al. (2006), Brandt et al. (2000), and Song
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et al. (2009). The analysis of count time series is challenging due to the nonuniqueness

of the dependence measure caused by the existence of ties. There exist some methods in

the literature but many of them either rely on restrictive distributional assumptions, are

computationally intensive, or have limitations for capturing complex dependence. In this

paper, we aim to develop a flexible and computationally convenient procedure with weaker

assumptions that can accommodate various types of dependence.

Some existing methods assume that the data follow a Poisson or Negative Binomial

distribution conditional on past observations or an intensity process; see e.g., Davis and Wu

(2009), Davis et al. (2003), Davis et al. (2000), Fokianos and Tjøstheim (2011) and Fokianos

et al. (2009). Ferland et al. (2006) proposed an integer-valued GARCH (INGARCH) model,

and the observations {Yt} given the intensity process {λt} follow a Poisson distribution and

λt is a linear combination of its lagged values and lagged Yt.

Other researchers have considered copula-based methods for analyzing time series of

counts. One major advantage of copula-based methods is that it can separate the modeling

of marginal and temporal dependence. Denuit and Lambert (2005) studied the concordance

of integer-valued bivariate variables through the continuous extension (CE), and showed that

the CE preserves Kendall’s τ , a measure of rank correlation (Kendall, 1938). The CE works

through constructing continuous variables by adding a random perturbation taking values

in [0,1] to the discrete variables. The constructed continuous variables are also referred

to as jittered data in the literature. Madsen (2009) and Madsen and Fang (2011) applied

the CE idea to analyze discrete longitudinal and spatial data by using a Gaussian copula

to capture the joint distribution of jittered data. Heinen and Rengifo (2007) proposed

multivariate autoregressive models for count time series using CE and Gaussian copula. The
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CE-based methods use jitters to fill in the gap between discrete values, and then estimate

parameters by maximizing the surrogate likelihood of the jittered data. Nikoloulopoulos

(2013, 2016) showed that the maximum surrogate likelihood estimators based on CE may

lead to biased estimates for multivariate discrete data, since they use the information of

jitters that are not in the observed data and the jittering is univariate without accounting

for dependence. In addition, the CE-based methods are often time-consuming since the

surrogate likelihood needs to be approximated by averaging over multiple jitters. More

recently, Jia et al. (2021) developed a general count time series model class using Gaussian

copula with Hermite expansions and particle filtering to approximate the likelihood.

The aforementioned copula-based methods all assume a latent Gaussian process, which

may be restrictive in some applications. To gain more flexibility, we choose a copula from

a class of copula families that better fits the data. However, this task faces a major chal-

lenge caused by the identifiability issue: the copula may not be unique when the marginal

distribution is discrete. This issue arises from the discrepancy of using a continuous copula

function to characterize the discrete distribution. To overcome the limitations of existing

methods, we propose a new copula-based Markov model for analyzing count time series data.

In this model framework, we utilize the copula to capture serial dependence, leveraging the

Markov property, which is in the same spirit as considered in Chen and Fan (2006), Chen

et al. (2009), Rémillard et al. (2012), and Tang et al. (2019) for continuous time series data.

We formally address the identifiability issue and show that the identifiability can be ensured

in the regression setup under one sufficient condition, that is, the dependence of the count

response on one or more continuous covariates. Resolving the identifiability issue allows us

to choose copula from a class of copula families to accommodate different types of temporal
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dependence, including, for instance, lower or upper tail dependence. We develop a maximum

likelihood estimation procedure and establish the asymptotic properties of the proposed es-

timators. Compared to existing approaches for analyzing count time series, the proposed

method is more flexible as it does not restrict to the latent Gaussian process, and it allows

separate treatments of the univariate marginals and the temporal dependence. In addition,

under the Markov assumption, we only need to model the dependence of data from adjacent

time points. Therefore, the proposed procedure is computationally convenient as it avoids

the challenge of high-dimensional integration as in Nikoloulopoulos (2013), Hughes (2015),

Nikoloulopoulos (2016), to name a few.

The rest of this paper is organized as follows. In Section 2, we introduce the copula-

based Markov model and study the identifiability issue. In addition, we present the maximum

likelihood estimator, establish its asymptotic properties, and propose a copula selection pro-

cedure. We assess the numerical performance of the proposed method through a simulation

study in Section 3 and the analysis of Covid-19 mortality data in Section 4. All technical

proofs are provided in a separate supplementary file.

2. Proposed Method

2.1 Copula-based Markov model

Let Y = {Yt, t = 1, 2, . . . , n} be the observed count time serie data at n time points,

and Xn = (X1, . . . ,Xn)T be the corresponding n × d covariate matrix, where Xt =

(Xt1, . . . , Xtd)
T for t = 1, . . . , n and d is the dimension of the covariates. For instance,

in the coastal hurricane study, researchers are interested in predicting the annual hurricane

counts by using covariates information, such as North Atlantic oscillation (NAO), Northwest
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2.1 Copula-based Markov model

African rainfall, etc., from a few months earlier; see Elsner and Jagger (2006); Livsey et al.

(2018).

We assume that the sequence of count {Yt|X t, t = 1, 2, . . . , n} is a Markov process of

order p with discrete state space, that is, we assume

Yt|Yt−1, . . . , Y1,X t ∼ Yt|Yt−1, . . . , Yt−p,X t. (2.1)

Under this assumption, the probabilistic properties of the sequence are fully determined by

the joint distribution of neighboring time points Yt, . . . , Yt−p, denoted as H(yt, . . . , yt−p|xt).

The Markov property (2.1) assumes that the current outcomes only depend on their recent

past and corresponding covariates. We propose to model H(yt, . . . , yt−p|xt) through copula,

the distribution function of a multivariate uniform distribution. Copulas are popular tools

for multivariate analysis as they allow us to isolate the modeling of marginal distributions

and temporal dependence structure; see a comprehensive review of copula in Nelsen (2006).

In the following, we first formally state the copula-based Markov model assumption for

count time series. The Assumption A1 consists of three parts.

Assumption A1:

A1(a). At each time t, the marginal distribution of Yt is characterized by Yt|X t = xt ∼

G(yt|xt,β), where β is the unknown marginal parameter vector.

A1(b). Given X t, the process {Yt, t = 1, . . . , n} is a stationary p-order Markovian satisfying

P (Yt ≤ y|Yt−1, . . . , Y1,X t) = P (Yt ≤ y|Yt−1, . . . , Yt−p,X t) for any y ∈ R+.

A1(c). There exists a (p+ 1)-dimensional copula C such that for any yt, . . . , yt−p ∈ R+,

H(yt, . . . , yt−p|xt) = C{G(yt|xt;β), . . . , G(yt−p|xt;β);α},
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2.2 Identifiability issue

where C(·;α) is the copula function that does not vary with covariates, and α is the

unknown copula parameter vector. Furthermore, C(·;α) is absolutely continuous with

respect to Lebesque measure on [0, 1]p+1, and is neither the Fréchet-Hoeffding upper

or lower bound.

Throughout we use β0 and α0 to denote the true parameter values. Denote Ut =

G(Yt|xt;β0). Suppose that C(·;α) is the true copula function. Assumptions A1(b)-(c)

imply that the process Ut is geometric ergodic and β-mixing for commonly used copulas

such as Gaussian, Clayton, Gumbel, and t copulas. This can be shown by checking the

sufficient conditions given in Proposition 2.1 of Chen and Fan (2006) and following similar

arguments as in the proof of Theorem 2.1 in Chen et al. (2009).

For continuous time series, by Sklar’s theorem (Sklar, 1959; Nelsen, 2006), we can rep-

resent H(yt, . . . , yt−p|xt) by the marginal conditional distribution function G(·|xt,β) of Yt

and a unique copula function C(·). However, when the marginal distribution function G(·)

is discrete for count data, the joint distribution H(·) is uniquely defined only on the support

of the margins. The discrepancy between the continuity of copula functions and discreteness

of count data leads to the identifiability issue, that is, there may exist more than one copula

satisfying condition A1(c). For now, we assume that C(·) is a prespecified copula function

that satisfies A1(c). We will discuss how to overcome this identifiability issue in Section

2.2. For ease of presentation, we focus on p = 1 hereafter, but the proposed method can be

adapted for general p with some modification and additional computation.

2.2 Identifiability issue

Sklar (1959) suggested that the copula function is unique only over the domain of the
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2.2 Identifiability issue

marginal distributions. For continuous data, the marginal CDF takes value over the en-

tire range of [0, 1]. However, for count data, the marginal CDF can only take countable

values on [0, 1], so the copula is not unique outside the support of the marginal CDF.

Several papers have discussed the identifiability issue of copula for discrete data. Genest

and Nešlehová (2007) pointed out that the identifiability issue could be more damaging

when the marginal distribution concentrates on a small number of values. This issue will

tend to diminish when the discrete variable puts a positive probability on more and more

possible outcomes. Trivedi and Zimmer (2017) conducted some simulations and concluded

that copulas for discrete count outcomes fail to capture the dependence at extremely small

means. Yang et al. (2020) discussed the identifiability issue and proposed a nonparametric

estimation of copula functions under the regression setup when the outcome is discrete.

This paper focuses on copula-based analysis for count data in a regression setup. Under

condition A1, the marginal distributions vary with covariates, so the inclusion of continuous

covariates in the marginal can expand the region of support for copula identifiability. For

example, in the Poisson regression model, G(0|xt,β) = exp{− exp (xt
′β)}. Hence, the

inclusion of continuous covariates widens the range of G(·) from a discrete number of points

to an interval spanning across xt. This, combined with A1(c), ensures that the copula

function can be uniquely determined over the region comprising possible values of [0, 1]p.

Proposition 1. Suppose the conditions in Assumption A1 are met. Additionally, assume

that for any u ∈ (0, 1), there exists a x and a value z that depends on x such that G(z|x,β) =

u. Under these conditions, the copula function over [0, 1]p can be uniquely determined.

The identifiablity condition in Proposition 1 is easily satisfied under the regression setup.

For example, it is guaranteed when there is at least one continuous covariate with a suffi-
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2.3 Parameter estimation

ciently wide support and a nonzero coefficient in the marginal distribution G(·|xt,β).

2.3 Parameter estimation

We present a maximum likelihood estimator for both the marginal parameter β and the

copula parameter α. We first derive the likelihood function for the sequence {Yt} under the

Markov property with order p = 1. From Assumption A1(c) and Song (2000), we can obtain

the joint probability mass function (PMF) of (Yt−1, Yt) for any t > 1 as

P (Yt = yt, Yt−1 = yt−1|X t = xt)

=C{G(yt|xt;β), G(yt−1|xt;β);α} − C{G(yt|xt;β), G(yt−1 − 1|xt;β);α}

− C{(G(yt − 1|xt;β), G(yt−1|xt;β);α}+ C{G(yt − 1|xt;β), G(yt−1 − 1|xt;β);α}

=C(ut, ut−1;α)− C(ut, vt−1;α)− C(ut−1, vt;α) + C(vt, vt−1;α), (2.2)

where ut = G(yt|xt;β) for yt = 0, 1, 2, . . ., and vt = G(yt−1|xt;β) for yt = 1, 2, . . . and vt = 0

for yt = 0. That is, the joint PMF can be expressed as the finite difference of the copula

function, which includes 4 terms of copula distribution functions. For general p-th order

Markov processes, the PMF involves 2p+1 terms of copula functions. Then the conditional

PMF of Yt given Yt−1 is given by

P (Yt = yt|Yt−1 = yt−1,xt)

=
P (Yt = yt, Yt−1 = yt−1|xt)
P (Yt−1 = yt−1|xt−1)

=
C(ut, ut−1;α)− C(ut, vt−1;α)− C(ut−1, vt;α) + C(vt, vt−1;α)

ut−1 − vt−1

. (2.3)
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2.3 Parameter estimation

Thus, the likelihood function of β and α can be derived as:

L(β,α) = P (Y1 = y1, Y2 = y2, . . . , Yn = yn|xn;β,α)

= P (Y1 = y1|X1)P (Y2 = y2|Y1 = y1,x2) . . . P (Yn = yn|Yn−1 = yn−1,xn)

=

∏n
t=2{C(ut, ut−1;α)− C(ut, vt−1;α)− C(ut−1, vt;α) + C(vt, vt−1;α)}∏n−1

t=2 (ut − vt)
,

and the log-likelihood function is given by

l(β,α) = log{L(β,α)}

=
n∑
t=2

log{C(ut, ut−1;α)− C(ut, vt−1;α)−C(ut−1, vt;α) + C(vt, vt−1;α)}

−
n−1∑
t=2

log(ut − vt), (2.4)

where β enters this expression through u and v. For scenarios with p > 1, the likelihood

takes a more complex form. A comprehensive derivation of the likelihood for general cases

with p ≥ 1 can be found in Section S1 of the Supplementary Material. The maximum

likelihood estimator of (β, α) is obtained by

(β̂, α̂) = argmax
β,α

l(β,α).

For many copulas such as Gaussian and t copula, the copula function C(·) does not

have a closed form, so numerical approximation is needed. If we use the finite difference

likelihood (FDL) expression in (2.4), the estimator may be imprecise due to the accumulated

approximation error involved in the four numerically computed orthant probabilities. The

numerical error may even lead to negative values for the PMF in (2.2). The damage can

be more severe when p > 1, for which the joint PMF involes 2p+1 numerically computed

orthant probabilities. Moreover, this FDL may also slow down the computation for larger p.

To overcome this issue, we adapt the simulated likelihood (SL) proposed in Nikoloulopoulos
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2.4 Point and interval prediction

(2013) for Gaussian copula, which can be used to calculate the joint PMF with only one-time

approximation:

l(β,α) = log{P (Y1 = y1, . . . , Yn = yn|xn)}

= log{P (y1 − 1 < Y1 ≤ y1, . . . , yn − 1 < Yn ≤ yn|xt)}

=
n∑
t=2

log

{∫ Φ−1(ut−1)

Φ−1(vt−1)

∫ Φ−1(ut)

Φ−1(vt)

φα (z1, z2) dz1dz2

}
−

n−1∑
t=2

log(ut − vt),

(2.5)

where Φ denotes the standard normal CDF and φα denotes the bivariate normal density

with correlation α for p = 1. The same technique can also be applied to other elliptical

copulas such as t copula. For such copulas, since the method involves a one-time numerical

approximation, it can improve the accuracy and reduce the computing time.

Throughout our implementation, we consider the simulated likelihood approach only for

elliptical copulas such as Gaussian copula and t copula. For other copula families such as

Archimedean copula with closed expressions for the copula distribution functions, the finite

difference likelihood can be calculated directly using (2.4).

2.4 Point and interval prediction

For time series data analysis, one common question of interest is prediction at future time

points. We now discuss the one-step-ahead prediction, that is, prediction of Yn+1, based on

the proposed model and estimator. The conditional distribution of Yn+1 given Yn and Xn+1

can be well characterized by the conditional quantiles. Through conditional quantiles, we

can not only construct point prediction of Yn+1 by using, e.g. the conditional median, but

also prediction intervals. To accommodate discrete distributions, we adopt the generalized
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2.4 Point and interval prediction

definition of quantile and define the qth quantile of a random variable Y as

Qq(Y ) = inf{y : P (Y ≤ y) ≥ q},

for any given quantile level 0 < q < 1.

For {Yt, t = 1, · · · , n} satisfying Assumption A1, the conditional quantile function of Yn+1

given (Yn,Xn+1) can be easily estimated. Define G−1(v|X;β) = inf{y : G(y|X;β) ≥ v}.

Note that G−1(v|X;β) is a monotonic transformation of v. Hence the q-th conditional

quantile of Yn+1 is given by

Qq (Yn+1|Y1, . . . , Yn,Xn+1) = Qq (Yn+1|Yn,Xn+1)

= G−1
[
Qq {Un+1|Un = G (Yn|Xn+1;β) ;α}

∣∣Xn+1;β
]
, (2.6)

where Qq (Un+1|Un;α) is the conditional quantile function of Un+1 given Un, that is,

Qq (Un+1|Un = u;α) = C−1
2|1 (q|u;α) ,

in which C2|1 (·|u;α) = ∂C (u, ·;α) /∂u is the conditional distribution of Un+1 given Un = u.

It follows from (2.4) and (2.5) that the plug-in estimator of the conditional quantile of Un+1

given Un = u is

Q̂U
q (u) = QU

q (u; α̂) = C−1
2|1 (q|u; α̂) ,

and the plug-in estimator of the qth conditional quantile Yn+1 given (Yn = y,Xn = xn) is

Q̂Y
q (Y |y,xn+1) = G−1

[
Q̂U
q

{
G
(
y
∣∣xn+1; β̂

)
; α̂
} ∣∣∣xn+1; β̂

]
= G−1

[
C−1

2|1

{
q
∣∣G(y∣∣xn+1; β̂

)
; α̂
} ∣∣∣xn+1; β̂

]
.

After the conditional quantiles are estimated, we can construct the 100(1−ν)% prediction

interval [L,U ] for the one-step ahead observation Yn+1, which satisfies

P (L ≤ Yn+1 ≤ U |X; β̂) ≥ 1− ν. (2.7)
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2.5 Asymptotic properties

For continuous distributions, a standard method to construct prediction intervals is to use

appropriate pivotal quantities. This is not possible for discrete distributions since such

pivotal quantities are not available; see Bain and Patel (1993) and Kim et al. (2021) for some

related discussions. If we simply take L = Q̂Y
ν/2(Y |y,xn+1) and U = Q̂Y

1−ν/2(Y |y,xn+1), we

have P (Y ≤ L;θ|X) ≥ ν/2 and P (Y ≥ U ;θ|X) ≥ 1−ν/2, and (2.7) is not ensured to hold.

To ensure the coverage probability of the prediction interval, we define the lower and upper

bound of the prediction interval as follows:

L = sup{y : G(y − 1|X; β̂) ≤ ν/2}, U = inf{y : G(y|X; β̂) ≥ 1− ν/2}. (2.8)

By doing so, we can ensure that (2.7) holds.

2.5 Asymptotic properties

Denote θ = (αT ,βT )T as the parameter vector with dimension m, θ0 = (αT0 ,β
T
0 )T as the

true value, and Θ as the parameter space. Let ln(θ) and sn(θ) denote the log-likelihood and

its first order derivatives, respectively. Define ft(yt;θ) = P (Yt = yt|Yt−1 = yt−1,xt;θ). The

following set of conditions are needed to ensure the consistency and asymptotic normality

of θ̂ = (α̂, β̂).

A2. (a) Θ is a compact subset of Rm, m ∈ N; (b) ft(yt;θ) is continuous on Θ a.s.; (c)

E{ln(θ)} has identifiably unique maximizer interior to Θ.

A3. E[log{ft(yt;θ)}] exists, and it is finite and continuous on Θ.

A4. Given X t, the process {Yt, t = 1, . . . , n} is β-mixing with β = O(t−b) for b > r−1
r

, r > 1.

A5. ft(yt;θ) is continuously differentiable of order 2.

A6. (a) n−1OE{ln(θ)} = n−1E{Oln(θ)} < ∞; (b) n−1O2E{ln(θ)} = n−1E{O2ln(θ)} < ∞;

(c) E{O2ft(yt;θ)} is continuous on Θ.
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2.6 Copula selection

A7. Let An0 = n−1O2E{ln(θ0)}, and An0 is O(1) and negative definite uniformly in n.

A8. (a) E[supθ∈Θ log{ft(yt;θ)}2] <∞; (b)E[supθ∈Θ |O2 log{ft(yt;θ)}|2] <∞; (c)E[{Oft(yt;

θ)}2] <∞.

Theorem 1. Suppose that A1 - A8 hold, then we have (i) θ̂
P−→ θ0; (ii) B

−1/2
n0 An0

√
n(θ̂ −

θ0)
D−→ N(0, Im), where An0 = n−1O2E{ln(θ0)} and Bn0 = n−1V ar{sn(θ0)}.

Assumptions A2, A3, A5 and A6 can be easily verified. Assumption A4 concerns the

mixing property of the process. Beare (2012, 2010) have shown that series generated from

most Archimedean copulas satisfy A4, while Chen and Fan (2006) and Chen et al. (2009)

established the mixing properties for Gaussian and t copulas, respectively, in cases where

the marginal distributions are continuous. These results, along with Lemma 1 presented in

the supplementary material, ensure that A4 holds for most Archimedean, Gaussian, and t

copulas. Assumptions A7 and A8 are similar to A1(ii) and A5 in Chen and Fan (2006).

2.6 Copula selection

In Section 2.2, we discussed the identifiability issue and presented one sufficient condition to

ensure the identifiability of copula under the proposed model. Resolving the identifiability

issue allows us to select a parametric form for the copula from existing copula families.

Focusing on multivariate discrete responses, Yang et al. (2020) suggested a method to

select copula by minimizing a L2-norm distance between the fitted parametric copulas with

their proposed nonparametric copula estimator. We considered this approach in our setup,

but our numerical studies show that this method is time consuming with unstable perfor-

mance. The main challenge is that the criterion is based on the integration of squared

distance, which requires repeated kernel-type estimation at multiple points. The computa-
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2.6 Copula selection

tion and performance are further complicated by the selection of bandwidth involved in the

smoothing. To overcome these challenges, we propose a cross-validation (CV) procedure to

select copula for count time series data. Let k be a pre-set minimum number of observations

in the training data. We repeat the validation sequentially for a total of n − k times. To

assess the performance of the predictive models for count data based on a candidate copula,

we focus on probabilistic forecasts, that is, evaluating the predictive distribution generated

by the copula and parameters estimated by the training data. The reason we focus on

probabilistic forecasts instead of using the commonly used mean squared error (MSE) for

point prediction is that count data is often skewed so that the MSE will be dominated by

predictions at the tails. The detailed procedure is as follows.

For the ith cross-validation, choose observations at time 1, 2, . . . , k+ i−1 as the training

data and let the observation at time k+ i be the test data. Fit the proposed model with the

candidate copula by using the training data and let θ̂∗ denote the estimated parameter. The

predictive distribution for Yt at t = k+i can be obtained by P (Yt = y|Yt−1,X t; θ̂
∗)

.
= P̂ ∗; see

the expression in (2.3). To assess the performance of the resulting predictive distribution,

we adapt the logarithmic score (LOGS), proposed in (Czado et al., 2009), at time t = k+ i,

defined as

LOGS(P̂ ∗, yt) = − log{P (Yt = yt|Yt−1 = yt−1,X t); θ̂
∗},

where yt is the observed response at time t. LOGS is a measure that evaluates probabilistic

forecasts of count data based on a predictive distribution and observations at testing time.

A smaller LOGS value indicates that the predictive distribution fits the data more closely.

We repeat the above step for i = 1, 2, . . . , n − k, and compute the average of LOGS

across n − k validations. The copula is then chosen to be the one that gives the smallest
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average LOGS. The CV procedure is also applicable to determine the Markovian order p

and this process can be conducted simultaneously with the selection of the copula.

3. Simulation study

We conduct a simulation to compare the finite sample performance of the proposed method

with existing approaches for analyzing count time series data. In Sections 3.1-3.2, we consider

generating data {Yt, t = 1, . . . , n} from the Markov process with bivariate copula C(u, v;α)

and Poisson regression model Yt|X t ∼ Poisson(λt), where log(λt) = β1 + β2Xt. Below

are the steps used for data generation. Specifically, we first generate an i.i.d. sequence

from Unif(0, 1), denoted as {vt}nt=1, and {Xt, t = 1, . . . , n} from N(0, 1). Let U1 = v1 and

Ut = C−1
2|1(vt|U = Ut−1;α) for t = 2, . . . , n. Then for t = 1, . . . , n, we set Yt = inf{y :

G(y;λt) ≥ Ut}, where G(y;λt) = P (Yt ≤ y|X t) is the CDF of Poisson(λt) with log(λt) =

β1 + β2Xt. To reach the stationarity of Ut, we generate sequences with a length of burn-in

periods of 2,000. We consider two sample sizes, n = 200 and 500, and two different levels

of temporal dependence with Kendall’s τ = 0.3 and 0.7 for Joe, Gaussian, and t copulas,

respectively. Kendall’s τ is a measure of rank correlation between two variables, defined as

the probability of concordance minus the probability of discordance (Kendall, 1938; Nelsen,

2006). We consider two cases for data generating process: Case 1 with β1 = 2, β2 = 1, and

Case 2 with β1 = 0, β2 = 1. In Section 3.3, we consider an additional simulation design

where data are generated from the Poisson Autoregressive (PA) model: Yt|(Yt−1, Xt) ∼

Poisson (exp{a+ b log(Yt−1 + 1) + cXt}) for t = 2, . . . , n with a = 0.8, b = 0.4, c = 0.5 and

{Xt, t = 1, . . . , n} ∼i.i.d N(0, 1). For each scenario, the simulation is repeated 500 times.

Henceforth, we will refer to the proposed estimation method for the Copula-based Markov
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3.1 Parameter estimation

Model for Count data as “COMC.”

3.1 Parameter estimation

We first assess the performance of the proposed estimator for the copula parameter α and

the marginal parameters (β1, β2) assuming the correct specification of the copula function.

For data generated with Gaussian copula, the model assumption in Jia et al. (2021) also

holds and parameters in the two models coincide. Therefore, besides the proposed COMC

estimator, we also include the Gaussian copula-based particle filtering estimator (PF) in Jia

et al. (2021) as a comparison. In the proposed method, we use the simulated likelihood (SL)

method to calculate the likelihood for data generated with a Gaussian copula.

Table 1 summarizes the averaged bias and root mean squared error (RMSE) of COMC

and PF estimators when α = 0.454 in Case 1 and 0.891 in Case 2, corresponding to Kendall’s

τ = 0.3 and 0.7. Figure 1 shows boxplots of estimations across 500 simulations. The white

plots correspond to n = 200 while the grey ones correspond to n = 500. The first row

is for Case 1 and the second row is for Case 2. The dashed lines correspond to the true

parameter values. Results suggest that the two methods are comparable in Case 1 with

a weaker temporal dependence. However, for Case 2 with a higher temporal dependence,

COMC gives significantly more efficient estimations than PF.

3.2 Conditional quantile estimation with selected copula

We assess the performance of the proposed estimator of QY
q (Yn+1|Yn, X), the q-th conditional

quantile of Yn+1 at time n + 1 given the observed data, when the true copula is unknown

and chosen from a class of candidate families, including Gaussian, t, Joe, Frank and Clayton

copulas. Note that here we only consider these 5 candidate families, and in practice, any
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3.2 Conditional quantile estimation with selected copula

Table 1: 1000×bias and 1000×RMSE of different estimators of β1, β2 and α in Cases 1-2

with Gaussian copula.

β̂1 β̂2 α̂

Case n Method Bias RMSE Bias RMSE Bias RMSE

1 200 COMC -1.2 (2.0) 43.7 (1.5) 0.6 (1.0) 21.6 (0.9) -1.5 (2.4) 54.7 (1.6)

PF -1.4 (2.0) 44.3 (1.5) 0.5 (1.0) 21.3 (0.9) -0.0 (2.5) 55.3 (1.6)

500 COMC -0.1 (1.2) 27.7 (0.8) 0.7 (0.6) 13.3 (0.4) -2.3 (1.6) 35.8 (1.1)

PF -0.4 (1.3) 28.9 (0.9) 0.9 (0.6) 13.7 (0.5) 0.9 (1.7) 37.2 (1.1)

2 200 COMC 7.4 (10.2) 227.0 (7.4) 1.4 (3.3) 73.5 (2.4) 2.6 (1.0) 23.0 (0.7)

PF -39.5 (12.7) 286.6 (10.3) 12.2 (4.3) 96.2 (3.6) -19.0 (1.2) 32.4 (1.1)

500 COMC 0.9 (6.7) 150.2 (4.7) -0.2 (2.2) 48.5 (1.5) -0.4 (0.6) 14.0 (0.5)

PF -18.5 (9.1) 205.1 (6.9) 6.4 (3.0) 68.1 (2.3) -34.5 (1.0) 40.7 (1.0)

COMC: copula-based Morkov model for count data; PF: particle filtering. Values in the

parentheses are standard errors.

copula family can be considered. We consider Cases 1-2 and two quantile levels q = 0.5 and

0.9. For comparison, we include two estimators from COMC: COMCTC, COMCSC, and two

other methods: PF and PA. The method COMCTC provides estimation with the true copula,

while COMCSC gives estimation with the selected copula. The method PF is the Gaussian

copula-based particle filtering approach proposed in Jia et al. (2021). The PA method is the

Poisson autoregression method proposed in Fokianos and Tjøstheim (2011).

Table 2 summarizes the copula selection results based on the cross-validation method.

Results show that the cross-validation method works well for selecting the correct copula,

and the selection accuracy increases with the sample size. Table 3 summarizes the MSE of
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3.3 Prediction at future time points

Figure 1: Boxplots of β̂1, β̂2 and α̂ for n = 200 (white) and 500 (grey) across 500 simulations

with α corresponding to τ = 0.3 and τ = 0.7. True values are shown as a horizontal dashed

line. COMC: copula-based Morkov model for count data; PF: particle filtering.

Q̂q(Yn+1|Yn, X) from four methods. As expected, COMCTC is the most efficient estimator

as it is based on the correct copula function. In all cases considered, the COMCSC estimator

is competitive to COMCTC, and it has smaller MSE than PF and PA, even when the copula

was occasionally misspecified in COMCSC.

3.3 Prediction at future time points

We consider the following metrics to assess the prediction performance of different methods

at time t = n + 1: (i) the coverage percentages (CPs) and average lengths (ALs) of the

90% prediction intervals for predicting Yn+1; (ii) logarithmic score (LOGS) of the predictive
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3.3 Prediction at future time points

Table 2: Percentages of copulas chosen by cross-validation across 500 simulations.

Selected copula

Case True n Clayton Gumbel Joe Gaussian t

1 Joe 200 0.2 21.0 74.6 1.6 2.6

500 0.0 15.6 83.8 0.2 0.4

Gaussian 200 5.6 17.0 3.6 52.0 21.8

500 0.2 10.2 0.0 67.2 22.4

t2 200 4.4 29.0 6.4 6.0 54.2

500 0.8 17.6 1.2 1.0 79.4

2 Joe 200 0.2 19.0 77.6 1.0 2.2

500 0.0 9.6 90.4 0.0 0.0

Gaussian 200 12.2 15.8 3.6 48.2 20.2

500 3.0 8.0 0.0 72.8 16.2

t2 200 3.6 8.6 4.0 1.0 82.8

500 0.8 0.2 0.0 0.0 99.0

conditional distribution P and the realized count Yn+1. For comparison, we include three

methods from COMC: COMC0, COMCTC, COMCSC and two other methods: PF and PA.

To evaluate the sensitivity of various methods to model misspecification, we generated data

using three different copulas (Cases 1 and 2) within the copula-based Markov model and

also from the Poisson Autoregressive (PA) model. The method COMC0 is based on the true

copula and true parameters, while COMCTC provides estimations using the true copula. In

contrast, COMCSC uses the selected copula for estimation. Note that both COMC0 and
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COMCTC are not applicable to the PA model. Due to the discrete nature of the data,

achieving an exact 90% prediction interval coverage is infeasible. Therefore, we use the

coverage percentage of method COMC0 as the baseline in Cases 1 and 2, and the PA method

as the baseline in the PA model when comparing methods. Table 4 summarizes the coverage

percentages (CPs) and the average lengths (ALs) of 90% prediction intervals, and Table

5 summarizes the logarithmic score (LOGS) from the five methods. In Cases 1 and 2,

where data were generated from the copula-based Markov model, the proposed COMCSC

performs comparably to COMCTC and COMC0. When the true copula is Gaussian, PF

and COMCSC exhibit similar performance. However, COMCSC outperforms PF and PA for

all other copulas: it provides prediction intervals with coverage similar to that of COMC0

but shorter than those of PF and PA. The smaller LOGS values obtained from COMCSC

also suggest higher prediction accuracy compared to PF and PA. When data were generated

from the PA model, for which the model assumed by COMC is misspecified, COMCSC

demonstrates performance similar to PF, albeit slightly worse than the PA method in terms

of LOGS; however, this difference is not statistically significant.

4. Real data analysis

In this section, we analyze the count time series of daily deaths from COVID-19 in Virginia.

The dataset contains the daily deaths in Virginia due to COVID-19 from June 22, 2020, to

December 31, 2021, which is maintained and archived by the Centers for Disease Control

and Prevention. The dataset contains 400 daily observations in Virginia, with the first 320

time points being used as training data, while the last 80 being used as testing data. We

include linear and quadratic terms of time and the number of confirmed cases 10 days ago
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as covariates.

The data are over-dispersed, with a sample mean of 29.3 and a sample variance of 1063.9.

We choose the marginal model to be generalized Poisson (GP) with the dispersion parameter

ϕ > 1 fixed in time and the rate parameter λt varying in time with the log link:

log(λt) = β1 + β2t+ β3t
2 + β4 log(xt−10 + 1),

where xt−10 is the number of confirmed cases 10 days ago. In this application, t, t2 and xt−10

can all be considered as continuous covariates due to their large ranges. We conduct a cross-

validation with k = 320 to choose the order p and copula among five families: Gaussian,

t, Joe, Gumbel, and Clayton. Based on the cross-validation, we choose the model with t2

copula and p = 1 corresponding to the first-order Markov process.

By fitting the model using the full sample, we obtain the coefficient estimates and

standard errors (in the parentheses) as follows: α̂ = 0.82(0.02), β̂1 = −0.88(0.29), β̂2 =

−0.0016(0.0011), β̂3 = 3.1×10−6(2.6×10−6), β̂4 = 0.60(0.04) and ϕ̂ = 7.64(0.07). Kendall’s

τ corresponds to a t copula with a coefficient of 0.82 is 0.61, indicating a strong first-order

temporal dependence. Marginal model estimates confirm the overdispersion of data and

suggest that the mean death rate at day t, λt, relates positively to xt−10.

We conduct a cross-validation using the last 80 observations as the testing data to com-

pare the prediction accuracy of the proposed method with four alternatives: (1) the integer-

valued ARCH model (INARCH) with log link, which assumes Yt|(Yt−1, Xt) ∼ GP(exp{a +

b1 log(Yt−1 + 1) + c1t + c2t
2 + c3 log(Xt−10 + 1)}, ϕ); (2) the integer-valued GARCH model

(INGARCH) with log link, which assumes Yt|(Yt−1, Xt) ∼ GP(exp{a + b1 log(Yt−1 + 1) +

b2 log(λt−1) + c1t+ c2t
2 + c3 log(Xt−10 + 1)}, ϕ); (3) the INGARCH model with softplus link

(Softplus-INGARCH), which assumes Yt|(Yt−1, Xt) ∼ GP(log[1 + exp{a+ b1 log(Yt−1 + 1) +
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b2 log(λt−1) + c1t + c2t
2 + c3 log(Xt−10 + 1)}], ϕ), and (4) the particle filtering (PF) method

of Jia et al. (2021) assuming the latent process follows an AR(1) model. For more details on

these alternative models, refer to Cui and Zhu (2018), Cui et al. (2020), Fokianos et al. (2020)

and Weiß et al. (2022). Table 6 summarizes the coverage percentages and average lengths of

95% prediction intervals, the LOGS and mean squared relative prediction error (MSRPE) of

point predictions from various methods for one-step-ahead predictions, along with the AIC

and BIC values. Results suggest that prediction intervals from log-INARCH, log-INGARCH

and Softplus-INGARCH all exhibit notably low coverage. While both COMC and PF pro-

vide prediction intervals with similar coverage, those from PF are significantly wider. In

terms of point predictions, COMC also demonstrate advantages over all the competitors

by yielding lower LOGS and MSPRE values. Additionally, the COMC method yields the

smallest AIC and BIC values, indicating a better fit to the data.

Supplementary material

The online supplementary material includes technical proofs, a discussion of the basic statis-

tics of the proposed model, and the derivation of the likelihood for p > 1.
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Table 3: 100×MSE of Q̂q(Yn+1|Yn) from different methods at q = 0.5 and q = 0.9.

Model Case n Quantile COMCTC COMCSC PF PA

Joe 1 200 0.5 6.0 (1.1) 6.6 (1.3) 15.6 (1.9) 252.8 (29.7)

0.9 5.8 (1.0) 7.2 (1.2) 28.7 (2.5) 200.8 (37.5)

1 500 0.5 2.6 (0.7) 2.6 (0.7) 20.0 (3.1) 291.0 (34.2)

0.9 4.4 (1.2) 4.4 (1.2) 38.6 (4.9) 231.8 (36.8)

2 200 0.5 27.6 (3.4) 40.4 (8.1) 181.2 (28.7) 749.4 (108.8)

0.9 26.8 (4.2) 28.2 (4.3) 108.8 (11.0) 486.6 (51.4)

2 500 0.5 19.0 (2.6) 20.4 (2.8) 159.6 (28.5) 605.0 (89.2)

0.9 16.8 (2.5) 19.4 (2.6) 106.2 (14.8) 444.4 (49.8)

t2 1 200 0.5 2.4 (0.7) 4.0 (0.9) 17.8 (2.6) 222.0 (18.3)

0.9 6.4 (1.1) 10.4 (1.5) 27.2 (3.0) 157.8 (20.8)

1 500 0.5 1.2 (0.5) 2.0 (0.6) 18.0 (2.1) 241.6 (23.0)

0.9 4.4 (0.9) 6.8 (1.1) 29.6 (2.3) 186.0 (23.7)

2 200 0.5 20.4 (7.5) 50.2 (18.1) 146.2 (73.1) 752.2 (324.4)

0.9 29.4 (16.3) 54.4 (20.5) 612.2 (443.3) 392.0 (118.1)

2 500 0.5 8.6 (1.3) 9.0 (1.5) 73.4 (18.9) 376.0 (65.3)

0.9 11.2 (2.2) 11.8 (2.2) 118.2 (11.7) 298.2 (42.1)

Gaussian 1 200 0.5 8.0 (2.1) 7.2 (1.3) 11.0 (2.2) 246.8 (31.3)

0.9 15.8 (3.6) 16.4 (2.0) 15.0 (2.5) 233.8 (34.5)

1 500 0.5 5.2 (1.0) 4.8 (1.0) 7.6 (1.2) 183.2 (14.6)

0.9 7.4 (1.2) 8.0 (1.2) 11.2 (1.4) 170.0 (18.2)

2 200 0.5 69.8 (25.8) 70.4 (25.9) 65.8 (21.8) 400.0 (74.1)

0.9 81.0 (26.0) 85.0 (26.1) 73.8 (21.9) 453.8 (90.2)

2 500 0.5 70.8 (51.2) 74.2 (51.3) 79.6 (57.8) 350.0 (107.2)

0.9 71.4 (51.2) 75.2 (51.3) 75.2 (51.2) 423.8 (146.9)

COMCTC: COMC based on true copula; COMCSC: COMC based on selected copula; PF:

particle filtering method from Jia et al. (2021); PA: Poisson autoregression method from Fokianos

and Tjøstheim (2011). Values in the parentheses are standard errors.
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Table 4: Coverage percentages and 10×average lengths of 90% prediction intervals for pre-

dicting Yn+1.

Model Case n Coverage Percentages 10×Average Lengths

COMC0 COMCTC COMCSC PF PA COMC0 COMCTC COMCSC PF PA

Joe 1 200 97.4 97.2 97.0 98.2 98.4 18.4 18.3 18.7 24.1 34.2

500 96.2 96.0 96.2 97.6 99.0 19.5 19.8 20.1 26.8 37.6

2 200 96.4 96.4 96.2 96.6 93.8 93.1 93.0 93.4 97.7 107.4

500 95.0 95.2 95.4 96.0 93.8 92.0 91.8 91.9 96.4 106.6

t2 1 200 98.2 97.8 97.4 97.8 98.8 23.4 23.7 23.3 26.1 34.2

500 97.0 96.2 96.6 97.4 98.8 23.2 23.3 23.1 27.3 34.6

2 200 94.4 94.4 94.0 94.4 96.6 95.5 94.8 94.4 96.7 106.2

500 96.4 96.6 96.6 96.2 96.2 93.0 93.2 93.2 98.2 106.7

Gaussian 1 200 98.0 98.2 97.8 98.4 99.0 24.8 24.7 24.6 26.1 36.1

500 99.0 99.0 99.0 99.2 98.0 24.1 24.2 23.9 25.9 34.8

2 200 95.8 96.2 96.8 96.2 95.8 99.3 99.4 99.6 99.1 108.6

500 95.0 94.4 94.2 94.0 93.0 100.7 100.2 100.3 99.9 109.9

PA 200 92.0 93.4 95.0 6.8 6.8 6.9

500 96.0 96.2 97.0 6.6 6.5 6.7

COMC0: COMC based on the true copula and true parameters; COMCTC: COMC based on the

true copula; COMCSC: COMC based on the selected copula; PF: particle filtering method from

Jia et al. (2021); PA: Poisson autoregression method from Fokianos and Tjøstheim (2011). Values

in the parentheses are standard errors.
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Table 5: 100× LOGS of prediction for Yn+1 by different methods.

Model Case n COMC0 COMCTC COMCSC PF PA

Joe 1 200 80.4 (3.6) 79.8 (3.6) 79.7 (3.5) 85.2 (3.4) 125.0 (3.6)

500 84.0 (3.4) 85.0 (3.5) 85.1 (3.5) 93.0 (3.3) 133.3 (3.5)

2 200 221.6 (4.0) 221.0 (3.9) 221.6 (3.9) 229.8 (4.0) 243.0 (4.1)

500 225.8 (3.9) 226.1 (3.9) 225.8 (3.9) 229.6 (3.9) 243.7 (4.0)

t2 1 200 89.5 (3.6) 89.8 (3.7) 90.0 (3.7) 93.7 (3.7) 124.5 (3.4)

500 91.4 (4.4) 92.1 (4.5) 93.8 (5.0) 100.1 (5.2) 129.2 (3.7)

2 200 223.4 (4.2) 223.6 (4.2) 225.0 (4.3) 233.5 (5.7) 239.6 (4.1)

500 217.0 (3.7) 217.0 (3.7) 217.1 (3.6) 222.9 (4.0) 233.1 (3.6)

Gaussian 1 200 90.8 (3.5) 92.6 (3.7) 93.1 (3.7) 93.0 (3.5) 127.6 (3.6)

500 87.6 (3.6) 87.3 (3.5) 87.3 (3.6) 87.9 (3.3) 125.2 (3.7)

2 200 230.4 (3.9) 231.0 (3.9) 230.3 (3.9) 231.1 (3.9) 239.7 (3.8)

500 232.9 (3.9) 233.5 (4.0) 233.7 (4.0) 233.6 (4.0) 246.8 (4.3)

PA 200 224.8 (4.5) 223.7 (4.4) 217.2 (3.8)

500 211.8 (4.6) 212.1 (4.9) 207.7 (3.8)

COMC0: COMC based on the true copula and true parameters; COMCTC: COMC based on the

true copula; COMCSC: COMC based on the selected copula; PF: particle filtering method from

Jia et al. (2021); PA: Poisson autoregression method from Fokianos and Tjøstheim (2011). Values

in the parentheses are standard errors.
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Table 6: Performance of different methods for one-step-ahead prediction of COVID-19 data.

95% prediction interval

Method CP AL LOGS MSRPE AIC BIC

COMC 97.5 89.3 (2.5) 4.12 (0.07) 0.14 (0.07) 3206 3210

PF 98.8 107.7 (3.3) 4.25 (0.06) 0.17 (0.03) 3277 3281

Log-INARCH 70.0 23.5 (0.4) 5.17 (0.49) 0.19 (0.07) 5657 5677

Log-INGARCH 74.0 23.4 (0.4) 5.49 (0.55) 0.19 (0.07) 5405 5729

Softplus-INGARCH 60.0 19.8 (0.3) 5.52 (0.48) 0.16 (0.04) 5311 5312

COMC: the proposed copula-based Morkov model for count data; PF: particle filtering method;

log-INARCH: integer-valued ARCH model with the log link; log-INGARCH: integer-valued

GARCH model with the log link; Softplus-INGARCH: INGARCH model with the softplus link;

CP: coverage percentage; AL: average length; MSRPE: mean squared relative prediction error.

Values in the parentheses are standard errors.

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0406



REFERENCES

References

Bain, L. J. and J. K. Patel (1993). Prediction intervals based on partial observations for some discrete distributions.

IEEE Transactions on Reliability 42 (3), 459–463.

Beare, B. K. (2010). Copulas and temporal dependence. Econometrica 78 (1), 395–410.

Beare, B. K. (2012). Archimedean copulas and temporal dependence. Econometric Theory 28 (6), 1165–1185.

Brandt, P. T., J. T. Williams, B. O. Fordham, and B. Pollins (2000). Dynamic modeling for persistent event-count

time series. American Journal of Political Science 44 (4), 823–843.

Chen, X. and Y. Fan (2006). Estimation of copula-based semiparametric time series models. Journal of Economet-

rics 130 (2), 307–335.

Chen, X., W. B. Wu, Y. Yi, et al. (2009). Efficient estimation of copula-based semiparametric Markov models. The

Annals of Statistics 37 (6B), 4214–4253.

Cui, Y., Q. Li, and F. Zhu (2020). Flexible bivariate poisson integer-valued garch model. Annals of the Institute of

Statistical Mathematics 72 (6), 1449–1477.

Cui, Y. and F. Zhu (2018). A new bivariate integer-valued garch model allowing for negative cross-correlation.

Test 27, 428–452.

Czado, C., T. Gneiting, and L. Held (2009). Predictive model assessment for count data. Biometrics 65 (4), 1254–1261.

Davis, R. A., W. T. Dunsmuir, and S. B. Streett (2003). Observation-driven models for poisson counts.

Biometrika 90 (4), 777–790.

Davis, R. A., W. T. Dunsmuir, and Y. Wang (2000). On autocorrelation in a Poisson regression model.

Biometrika 87 (3), 491–505.

Davis, R. A. and H. Liu (2016). Theory and inference for a class of nonlinear models with application to time series

of counts. Statistica Sinica 26 (4), 1673–1707.

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0406



REFERENCES

Davis, R. A. and R. Wu (2009). A negative Binomial model for time series of counts. Biometrika 96 (3), 735–749.

Denuit, M. and P. Lambert (2005). Constraints on concordance measures in bivariate discrete data. Journal of

Multivariate Analysis 93 (1), 40–57.

Elsner, J. B. and T. H. Jagger (2006). Prediction models for annual us hurricane counts. Journal of Climate 19 (12),

2935–2952.

Ferland, R., A. Latour, and D. Oraichi (2006). Integer-valued garch process. Journal of Time Series Analysis 27 (6),

923–942.

Fokianos, K., A. Rahbek, and D. Tjøstheim (2009). Poisson autoregression. Journal of the American Statistical

Association 104 (488), 1430–1439.

Fokianos, K., B. Støve, D. Tjøstheim, P. Doukhan, et al. (2020). Multivariate count autoregression. Bernoulli 26 (1),

471–499.

Fokianos, K. and D. Tjøstheim (2011). Log-linear poisson autoregression. Journal of Multivariate Analysis 102 (3),

563–578.
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