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Abstract: The generalized estimating equations (GEE) method is a popular ap-

proach for analyzing dependent data of various types. While GEE estimators are

robust against the misspecification of the correlation matrix, their estimation ef-

ficiency can be seriously affected by the choice of the working correlation matrix.

For spatially correlated data, it is difficult to specify the true spatial correlation

structure due to the complexity of dependence and the high dimension of spatial

correlation matrices. To achieve estimation efficiency while allowing flexibility

to capture complex spatial dependence, we propose a new GEE-type approach

based on a mixture of spatial working correlation matrices, referred to as mix-

GEE. We show that the mix-GEE estimator is asymptotically efficient without

any parametric assumption on the distribution as long as one of the candidate
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correlation structures or some linear combination is correctly specified. More-

over, to overcome challenges in obtaining the inverse of the high-dimensional

spatial correlation matrix for the large data set, we develop a tapered mix-GEE

algorithm to reduce the computational cost and guarantee the estimation effi-

ciency when the spatial correlation can be captured by the mixture correlation

structure. The advantages of the proposed methods are demonstrated through

simulations and the analysis of soil chemistry data.

Key words and phrases: Estimation efficiency; generalized estimating equations;

misspecification; spatial data.

1. Introduction

The generalized estimating equation (GEE) method is a widely used ap-

proach for analyzing data with various types of dependence due to several

appealing features (Liang and Zeger, 1986). Firstly, for valid inference,

the method requires no assumption on the distribution but only the cor-

rect specification of the mean function, allowing the misspecification of the

covariance function. Secondly, it can deal with various data types, e.g., con-

tinuous, binary, or count data. Lastly, the estimating equations often have

simple forms and thus are easy to solve. In the last several decades, there

are a large number of works on GEE for analyzing longitudinal data; see

Hardin and Hilbe (2012) for an overview. The GEE has also been used for
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analyzing spatially dependent data; see Oman et al. (2007), Lin (2008), Lin

(2010), Thurman et al. (2015), Adegboye et al. (2018) and Cattelan and

Varin (2018). We aim to develop a flexible and computationally feasible

GEE method to deal with spatial data with complex spatial dependence,

which is commonly seen in practice (Guan et al., 2004).

It is known that while GEE estimators are robust against the misspecifi-

cation of the correlation matrix, their estimation efficiency can be seriously

affected by the choice of the working correlation matrix (Wang and Carey,

2003). Recently, there have been some studies to address this issue with

longitudinal data; see Leung et al. (2009), Xu et al. (2012), Fang et al.

(2019) and Tang and Wang (2019). For spatial data, it is more challenging

to specify a correlation structure with good approximations since the spa-

tial correlation matrix is high-dimensional with the dimension equalling the

sample size, and the correlation structure is often complex. One common

practice in spatial analysis is selecting a spatial correlation function among

a class of known parametric functions, e.g., Matérn correlation function,

based on the shape of the empirical semivariogram (Lin et al., 2005; Oman

et al., 2007; Lin, 2008). However, this approach relies on the assumption

that a single correlation structure applies across space. The assumption may

not be flexible to accommodate complex spatial dependence, such as het-
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erogeneous spatial correlation or spatial correlation from multiple sources.

We propose a new GEE method that is flexible and computationally

feasible to accommodate complex and possibly heterogeneous spatial depen-

dence and also results in theoretical estimation optimality. The proposed

method is based on a single GEE with the spatial working correlation ma-

trix represented by a linear combination of candidate spatial correlation

matrices. The unknown parameters in the combination are estimated by

maximizing the Gaussian pseudo-likelihood with the mixed correlation ma-

trix. We refer to the proposed method as “mix-GEE” since it is based on

a mixture of spatial correlation matrices.

In the literature, there exist two approaches that also use the idea of

the mixture to accommodate correlation from multiple sources: Xu et al.

(2012), and Adegboye et al. (2018). Our proposed work has clear dis-

tinctions from these two works. Xu et al. (2012) focuses on longitudinal

data assuming that the data is from a mixture distribution. The method

requires repeated measurements and a finite dimension of the correlation

matrix, which is not feasible in analyzing spatial data. In addition, the

efficiency of the estimator relies on the Gaussian mixture distribution as-

sumption. Adegboye et al. (2018) proposed a hybrid GEE approach for

analyzing count data. They combined a series of GEEs corresponding to
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different spatial correlation structures using the generalized method of mo-

ments (Hansen, 1982). The sample analog of the optimal weight function

of each GEE is often singular, which is caused by the high dimension of

the stacked estimating equations and the lack of repeated measurements

at each spatial location. The singularity leads to computational prob-

lems, so an identity matrix is added in Adegboye et al. (2018) to make

the weight matrix positive definite. However, the resulting weight matrix

is not optimal and may have adverse effects on the estimation efficiency

(Wang and Carey, 2003; Lin, 2008). Recently, Lu et al. (2024) proposed

a functional-coefficient autoregressive spatio-temporal model, employing a

weight matrix fusion technique to integrate spatial weight matrices. Al-

though our approach shares certain similarities, it is fundamentally distinct

in both concept and methodology. We characterize spatial correlation by

using a mixture of spatial working correlations for approximation, and our

estimation technique leverages the robustness of the GEE estimator to mis-

specification of the correlation structure.

Unlike previous works, our proposed mix-GEE method can handle high-

dimensional and complex spatial correlation, and it can achieve estimation

efficiency without requiring strong assumptions. In particular, for cases

where the spatial dependence comes from a single source, the mix-GEE
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estimator is efficient as long as the dependence is correctly captured by

one candidate correlation structure. For spatial dependence that has either

a complex form or is caused by multiple sources, the mix-GEE estimator

can achieve theoretical efficiency if the dependence can be described as

some linear combination of correlation structures. It also shows competitive

performance even when the structures are misspecified.

Despite its advantages, the proposed method also has some challenges,

which call for the development of new algorithms and theories. First, to

ensure the positive definiteness of the estimated correlation matrix, we pose

some constraints on the weights and correlation parameters in the optimiza-

tion problem; see (2.6). The constraints are also important for achieving

the efficiency of GEE estimators (Sutradhar and Das, 1999). To solve the

constrained optimization problem, the popular Expectation-Maximization

(EM) algorithm used in Xu et al. (2012) is not applicable in our setup

since the pseudo-likelihood function used in our method can not be decom-

posed into a sum of density functions. To overcome this computational

challenge, we develop an adaptive barrier algorithm by utilizing the idea in

Lange (2010). We show that the algorithm can strictly drive the negative

pseudo-log-likelihood function downhill at each iteration step and guarantee

the positive definiteness for the estimated correlation matrix. Secondly, we
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consider the asymptotic properties of the estimator with different situations

of the true correlation, i.e., the true correlation is a linear combination of all

the candidate working correlations, a linear combination of a subset of the

candidate working correlations, or a single candidate working correlation.

Lastly, the analysis of large spatial data could be time-consuming due to

the inversion of a large correlation matrix. To address this computational

issue, we propose a tapered mix-GEE algorithm and show that the method

can still guarantee estimation efficiency under proper assumptions.

The rest of the paper is organized as follows. We present the proposed

mix-GEE method and the estimation algorithm in detail in Section 2. The

asymptotic properties of the estimator are introduced in Section 3. The

tapered mix-GEE method for large spatial data is introduced in Section

4. We present the simulation study and analysis of soil chemistry data

in Section 5 and 6. All the technical proofs are provided in a separate

supplementary material.

2. Proposed Method

2.1 Notation and model setup

Let Y (si) be the response measured at location si ∈ R2, and X(si) be

the corresponding p-dimensional covariate vector, i = 1, · · · , n. If the ef-
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8 2.1 Notation and model setup

fect of covariates X(si) on Y (si) is of interest, classical spatial regression

methods are often based on maximum likelihood estimation by assuming

that the data follow some parametric distributions, for instance, Gaussian

(Cressie, 2015), transformed Gaussian (Palacios and Steel, 2006), skew-

Gaussian (Zhang and El-Shaarawi, 2010), and skew-t (Bevilacqua et al.,

2021). However, these assumptions of parametric distributions may be re-

strictive in practice. Besides, due to the complexity of spatial dependence,

it is often challenging to maximize the likelihood which takes a complicated

form (McCullagh, 1983; Cressie, 2015; Sun and Stein, 2016).

One alternative approach is the GEE estimator (Liang and Zeger, 1986).

For the dependent measures of spatial data, the joint distribution and the

resulting likelihood are not easy to fully specify. We, rather, rely on a

marginal mean model with a quasi-likelihood (Wedderburn, 1974), where

only the first two moments are required to be specified. Compared to the

likelihood-based methods, the GEE-type approach is simple to construct,

has no requirement on distributions, and the validity only requires the cor-

rect specification of the mean function. We make the following model as-

sumption. Without notation ambiguity, hereafter we write Y (si) andX(si)

as Yi and Xi, respectively. We assume that

E(Yi|Xi) = µ(XT
i β), Var(Yi|Xi) = V {µ(XT

i β)}, (2.1)
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9 2.2 GEE estimator based on a mixed correlation structures

where β are the unknown parameter of interest, and µ(·) and V (·) are the

link and variance functions. Denote Y = (Y1, . . . , Yn)
T ,X = (XT

i , . . . ,X
T
n )

T ,

µ(β) =
{
µ(XT

1 β), . . . , µ(X
T
n β)

}T
, D(β) = ∂µ(β)/∂βT , and A(β) =

diag
[
V {µ(XT

1 β)}, . . . , V {µ(XT
n β)}

]
.

2.2 GEE estimator based on a mixed correlation structures

We define the variance-covariance matrix of Y in the form

A(β)1/2R(α)A(β)1/2, where R(α) is a n × n spatial working correla-

tion matrix of the response Y , characterized by the nuisance parameter

vector α. The conventional spatial GEE estimator of β can be obtained

by solving the following estimating equation,

D(β)TA(β)−1/2R(α)−1A(β)−1/2{Y − µ(β)} = 0.

The GEE-type estimator is consistent even when the working correla-

tion structure is misspecified. However, many studies show that its estima-

tion efficiency can be adversely affected under the misspecification of the

correlation matrix (Wang and Carey, 2003; Xu et al., 2012). In the cur-

rent literature of spatial regression, R(α) is often constructed by choosing

from a class of parametric families such as the Matérn correlation struc-

ture (Lin et al., 2005; Oman et al., 2007; Lin, 2008). In many applications,

it is challenging to approximate the complex and high-dimensional spatial
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10 2.2 GEE estimator based on a mixed correlation structures

correlation matrix by using a single spatial correlation structure.

To accommodate spatial data with complex dependence, we present a

new GEE-based approach based on a mixture of spatial working correlation

matrices. The new mixture correlation can capture complex dependence

coming from multiple sources. We define the following estimating equations,

D(β)TA(β)−1/2

{
K∑
k=1

πkR
(k)(αk)

}−1

A(β)−1/2{Y − µ(β)} = 0, (2.2)

where K is the number of the candidate correlation structures, the weights

πk ≥ 0,
∑K

k=1 πk = 1, R(k)(αk) is kth spatial working correlation matrix

with unknown nuisance parameters αk = (αk,1, · · · , αk,pk)T , where pk is the

dimension of αk. For the commonly used spatial correlation structures, we

have pk = 1 for exponential, Gaussian, and spherical correlation structures

and pk = 2 for Matérn.

The issue of potential anisotropy always happens in spatial data. For

example, the spatial correlation between observations can vary in differ-

ent directions. Thus, we construct the mixture working correlation matrix

based on geometric anisotropy, which is one of the most common forms

of anisotropy (Budrikaite and Ducinskas, 2005). It is defined by a linear

transformation of the coordinate system. Specifically, we define the (i, j)-th

element of R(k)(αk) as

R
(k)
ij (αk) = ρk{∥Bk(λk, ψk)(si − sj)∥,αk}, (2.3)
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doi:10.5705/ss.202022.0401



11 2.2 GEE estimator based on a mixed correlation structures

where ∥ · ∥ represents the L2 norm,

Bk(λk, ψk) =

 1 0

0 λk


 cos(ψk) −sin(ψk)

sin(ψk) cos(ψk)

 , 0 < λk ≤ 1, ψk ∈ [0, π),

λk and ψk represent stretching and rotation parameters, and ρk(·) is a spa-

tial correlation function. The isotropic spatial correlation structure corre-

sponds to λk = 1, for which we have ∥Bk(λk, ψk)(si − sj)∥ = ∥si − sj∥.

Remark 1. Throughout the numerical studies of this paper, we consider

the working mixture correlation structure with K = 3, where each compo-

nent takes the form (2.3) with an exponential function,

ρk{||Bk(λk, ψk)(si − sj)||, αk} = e−αk||Bk(λk,ψk)(si−sj)||, αk > 0, k = 1, 2, 3,

(2.4)

where (λ1, ψ1) = (1, 0), (λ2, ψ2) = (1/6, 0), and (λ3, ψ3) = (1/6, π/2). The

exponential correlation function is popular in spatial analysis. The com-

bination (λ1, ψ1) = (1, 0) represents the isotropic exponential correlation

structure, and (λ2, ψ2) = (1/6, 0) and (λ3, ψ3) = (1/6, π/2) represent two

anisotropic correlation structures, reflecting stronger spatial correlations in

the directions of south-north and east-west, respectively. While our pro-

posed method works and the theoretical results apply for any fixed K, a

large K may cause slow convergence due to the large unknown parameter

space. For practical applications, we found that K = 3 is often sufficient
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12 2.3 Estimation procedure

to provide flexible approximations.

2.3 Estimation procedure

Our primary interest is to estimate the regression coefficients β, but the

nuisance parameters ψ = (αTk , πk)
K
k=1 are still unknown. In this section, we

construct an alternating iterative procedure to simultaneously estimate β

and ψ. We also show that the proposed procedure can automatically select

the most suitable subset of the candidate correlation structures to describe

the true spatial correlation. The procedure is as follows.

Given ψ = (αTk , πk)
K
k=1, we estimate β by solving (2.2). Then given

β, we update the nuisance parameter by the pseudo-likelihood estimator

defined as follows. Denote ϵ(β) = A(β)−1/2{Y − µ(β)}. We adopt the

Gaussian pseudo-likelihood with the mixed working correlation structure,

for which the corresponding twice negative pseudo-log-likelihood is

ℓn(ψ,β) =
1

n
log

{∣∣∣∣∣
K∑
k=1

πkR
(k)(αk)

∣∣∣∣∣
}

+
1

n
ϵ(β)T

{
K∑
k=1

πkR
(k)(αk)

}−1

ϵ(β).(2.5)

The maximum pseudo-likelihood estimator of ψ can be obtained by mini-

mizing (2.5) under the constraints,
K∑
k=1

πk = 1, πk ≥ 0, αk,l > 0, k = 1, · · · , K, l = 1, · · · , pk. (2.6)

The constraints αk,l > 0 guarantee the positive definiteness of commonly-

used working spatial correlation matrices, such as the exponential corre-
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doi:10.5705/ss.202022.0401



13 2.3 Estimation procedure

lation matrices in (2.4) (Furrer et al., 2016). The positive definiteness of

the mixed correlation matrix is guaranteed when the constraints in (2.6)

are satisfied. When the working correlation structure is correctly specified,

maximizing the Gaussian pseudo-likelihood over the nuisance parameters

is equivalent to solving an unbiased estimating equation (Wu et al., 2001;

Sun et al., 2009). Thus, the maximum pseudo-likelihood estimator of ψ

still converges to the true value even if the Gaussian assumption is violated

with a correctly specified correlation structure.

Suppose that the objective function (2.5) with linear constraints (2.6)

is twice continuously differentiable, which commonly-used spatial working

correlation matrices satisfy, such as exponential and Gaussian correlation

matrices. Lange (2010) proposed a general effective algorithm to minimize

a convex function subject to linear constraints, called the adaptive barrier

algorithm. We adapt the algorithm to minimize the objective function in

(2.5) with linear constraints (2.6), and refer to it as the pseudo-likelihood

adaptive barrier (PLAB) algorithm. The adaptive barrier algorithm has the

general property that the objective function is ensured to not increase after

each iteration. In contrast, it can be proved that our proposed algorithm

will drive the pseudo-likelihood function in (2.5) strictly downhill, which

will be discussed in detail later.
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doi:10.5705/ss.202022.0401



14 2.3 Estimation procedure

Below we present the steps of the PLAB algorithm. First, we construct

the adaptive barrier function, which involves lnπk and lnαk,l, k = 1, · · · , K,

l = 1, · · · , pk, and πK = 1−
∑K−1

k=1 πk. The adaptive barrier function allows

the convergence to a boundary point of the feasible region defined by the

constrained (2.6). The proposed objective function (2.5) also ensures that

the updated parameters are feasible if the initial values are in the feasible

region (Lange, 2010). Let ψ(t) represent the value of ψ at the t-th step,

and δ be a small positive constant. Then the adaptive barrier function at

the t-th step is defined as

F(ψ|ψ(t)) = δ

{
K∑
k=1

(
π
(t)
k lnπk

)
+

K∑
k=1

pk∑
l=1

(
α
(t)
k,llnαk,l − αk,l

)}
. (2.7)

Following the general theory of the adaptive barrier algorithm in Section

16.3 of Lange (2010), F(ψ|ψ(t)) is concave and attains its maximum at

ψ = ψ(t). Therefore, the minimization of ℓn(ψ,β) with constraints can be

transformed to the problem of minimizing the surrogate function without

constraints, that is,

ψ(t+1) = arg min
ψ

S(ψ|ψ(t)) and S(ψ|ψ(t)) = ℓn(ψ,β)−F(ψ|ψ(t)),

(2.8)

because ℓn(ψ
(t+1),β) = S(ψ(t+1)|ψ(t)) + F(ψ(t+1)|ψ(t)) ≤ S(ψ(t)|ψ(t)) +

F(ψ(t)|ψ(t)) = ℓn(ψ
(t),β). The updated value ψ(t+1) can be obtained by

using existing optimization methods such as Newton, quasi-Newton, or

Statistica Sinica: Preprint 
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15 2.3 Estimation procedure

Nelder-Mead methods. The iteration is repeated until the difference be-

tween ψ(t+1) and ψ(t) is sufficiently small, and the estimate of ψ is taken

to be the value at the last iteration step. For the Gaussian pseudo-

likelihood, the following theorem illustrates that the PLAB algorithm drives

ℓn(ψ
(t+1),β) strictly downhill because we can show that F(ψ|ψ(t)) in (2.7)

is strictly concave.

Theorem 1. Suppose that the initial value ψ(0) is within the feasible region

and ψ(t+1) ̸= ψ(t), then ℓn(ψ
(t+1),β) < ℓn(ψ

(t),β) for every t, and the value

of ψ at every iteration step satisfies the constraints.

Theorem 1 indicates that if ℓn(ψ,β) has a unique minimum under the

constraints in (2.6), then the PLAB algorithm may converge to the global

minimum. Our numerical experience suggests that the PLAB algorithm is

not sensitive to the initial value ψ(0). In practice, we can take a random

initial value within the region of constraints or use the initial value that

minimizes ℓn(ψ,β) over a small number of grid points. The choice of δ in

(2.7) is not essential, and we simply take δ = 10−4. We summarize the

proposed alternating iterative algorithm to estimate β and ψ in Algorithm

1. We denote the final iterative values of (β,ψ) as (β̂, ψ̂), and refer them

to as the mix-GEE estimations.

In Algorithm 1, as the sample size n goes to infinity, the difference

Statistica Sinica: Preprint 
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between the (m + s)th and mth updates of β in Algorithm 1 vanishes in

probability for any m and s. The initial values β(0) based on the working

independence correlation structure is
√
n-consistent (Lin, 2008). The van-

ishing difference can be verified by the consistency of β(0) and Lemma 1

and 2 in the Supplementary material. It indicates that a good choice of the

initial values leads to fast convergence.

Algorithm 1 Mix-GEE algorithm

Set the initial values of parameters of interest as β(0).
while The convergence criterion does not satisfy do

In the mth iteration: fix β(m−1)

Compute ϵ(β(m−1)) = A(β(m−1))−1/2{Y − µ(β(m−1))}.
Set the initial values of nuisance parameters as ψ(0)

while The convergence criterion does not satisfy do
In the tth iteration: update the nuisance parameters ψ(t) by (2.8)

with ϵ(β(m−1)) plugged in.
end while
The final iterative values of ψ are denoted as ψ(m).
Update the parameter of interest β(m) by solving the equation (2.5)

with ψ(m) plugged in.
end while

The initial values β(0) are the GEE estimator based on the working independence cor-

relation. The initial values ψ(0) must be in the feasible region.

Remark 2. The PLAB algorithm has three main features that make it

appealing to compute the mix-GEE estimator. Firstly, the monotonicity

property, ℓn(ψ
(t+1),β) ≤ ℓn(ψ

(t),β), promotes numerical stability. Sec-

ondly, this algorithm allows πk, k ∈ {1, · · · , K}, to approach the boundary

of the feasible region constructed by the constraints (2.6), i.e., πk = 0, be-
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cause the barrier function is adaptive in the sense that the coefficient π
(t)
k

of the barrier term lnπk changes from one iteration to the next. Therefore,

when π
(t)
k tends to zero, the term π

(t)
k lnπk can be very small allowing πk to

approach the boundary πk = 0. This property can be rigorously proven for

convex programming problems (Lange, 1994). Thirdly, if we let the initial

values of αk,l strictly larger than 0 for k = 1, . . . , K and l = 1, . . . , pk, the

updated value of αk,l will also be strictly larger than 0 (Lange, 1994).

3. Asymptotic Properties

We establish the asymptotic properties of the mix-GEE estimator (β̂, ψ̂)

under some conditions, including the following important identifiability con-

ditions 1-2, and other regularity conditions (C1)-(C6) given in the supple-

mentary material. All the properties are obtained under the increasing

domain, i.e., the minimum distance between any two locations is bounded

away from zero (Furrer et al., 2016).

Let Ψ be the nuisance parameter space, defined by Ψ =
{
(αTk , πk)

K
k=1 :

αk ∈ Ψαk
, πk ∈ [0, 1],

∑K
k=1 πk = 1

}
, where Ψαk

is a compact subset of

(0,∞) × · · · × (0,∞). Suppose that E{ℓn(ψ,β0)} converges uniformly to

ℓ(ψ,β0) over Ψ, where β0 is the true value of the regression parameter.

Condition 1. Let Ψ0 =
{
ψ0 ∈ Ψ : ℓ̄(ψ0,β0) = infψ∈Ψ ℓ̄(ψ,β0)

}
. For
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every ξ > 0 and ψ0 ∈ Ψ0, inf
ψ∈Ψ,d(ψ,Ψ0)≥ξ

ℓ̄(ψ,β0) > ℓ̄(ψ0,β0), where

d(ψ,Ψ0) = inf
ψ0∈Ψ0

{||ψ −ψ0||} represents the distance from point to set.

Condition 2. Ψ0 may either contain a unique point or more than one

point. If it contains more than one point and for any two different points

ψ1 = (αTk,1, πk,1)
K
k=1, ψ2 = (αTk,2, πk,2)

K
k=1 ∈ Ψ0, it satisfies that πk,1 = πk,2

for all k ∈ {1, · · · , K}, and πk∗,1 = πk∗,2 = 0 with k∗ corresponding to

αk∗,1 ̸= αk∗,2.

According to the definition in Condition 1, it is obvious that Ψ0 may

not be a single point. When ℓ̄(ψ,β0) obtains the minimum on the bound-

ary of the feasible region of Ψ, for example, when πk = 0 for some

k ∈ {1, · · · , K}, the values of ℓn(ψ,β0) are the same for αk ∈ Ψαk

with the corresponding πk = 0. Under this situation, Ψ0 contains mul-

tiple points by its definition. The boundary situation when Ψ contains

more than one point may happen when the true correlation structure

is a linear combination of a proper subset of the candidate correlation

structures. Condition 2 specifically states the different situations of Ψ0.

When the two conditions and Condition (C6) in the supplementary mate-

rial hold, it is obvious that if π0
k = 0 for some k ∈ {1, · · · , K}, we have

Ψ0 = {(αkT , π0
k)
K
k=1 : αk = α0

k with π0
k > 0, and αk ∈ Ψαk

with π0
k = 0}.

Otherwise, we have Ψ0 = {(α0
k
T
, π0

k)
K
k=1}.
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The regularity conditions (C1)-(C6) are detailed in the supplementary

material. Conditions (C1)-(C3) are regular requirements to derive asymp-

totic properties in spatial analysis; similar conditions can be found in Shaby

and Ruppert (2012), Furrer et al. (2016), and Bachoc et al. (2018). Con-

dition (C1) asserts that the asymptotic properties are deduced under the

increasing domain framework. Two primary asymptotic frameworks in spa-

tial literature are the increasing domain asymptotics and the infill asymp-

totics, for which more details can be found in Jenish and Prucha (2009).

Condition (C2) ensures certain eigenvalue properties of high-dimensional

matrices and is met by many standard spatial correlation functions, such

as exponential and Gaussian. Condition (C3) is a regular assumption on

the true covariance matrix. Further, Conditions (C4)-(C5) are discussed in

Lin (2008). Condition (C4) pertains to the GEE method, while Condition

(C5) controls the rate of correlation decay for products of random variables.

Lastly, Condition (C6) can be easily verified, as by Kaufman et al. (2008),

we have ∂E{ℓn(ψ,β0; γ2)}/∂ψ = 0 at ψ0 = (α0
k
T
, π0

k)
K
k=1.

Theorem 2. Under the model assumption (2.1), and if Conditions 1 and

(C1)-(C5) in the supplementary material hold, we have that for every ζ > 0,

as n→ ∞, P
{
d(ψ̂,Ψ0) ≥ ζ

}
→ 0.

Theorem 2 shows that the distance between ψ̂ and Ψ0 will converge in
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probability to zero. Since Ψ0 are allowed to contain multiple points, the

asymptotic variance of β̂ may not be unique. To guarantee the uniqueness of

the asymptotic variance over Ψ0 and establish the asymptotic distribution

of β̂, the identifiable condition, i.e., Condition 2 is necessary.

Let Σ0 = Cov(Y ) be the true variance-covariance matrix of Y , and

R(ψ) =
∑K

k=1 πkR
(k)(αk) be the working correlation matrix. If Condition

2 holds, then R(ψ0) for all ψ0 ∈ Ψ0 is a unique value. Furthermore, we

denote

Π(β,ψ) =
√
n
{
D(β)TA(β)−1/2R(ψ)−1A(β)−1/2D(β)

}−1
D(β)TA(β)−1/2R(ψ)−1A(β)−1/2.

The asymptotic distribution of β̂ is as follows,

Theorem 3. Under the model assumption (2.1), and if Conditions 1-2 and

(C1)-(C5) in the supplementary material hold, suppose that for ψ0 ∈ Ψ0,

Π(β0, ψ0)Σ0Π(β0, ψ0)
T converges to a positive definite matrix Ξ(β0,ψ0),

then we have
√
n(β̂ − β0)

D→ N {0,Ξ(β0,ψ0)} .

The convergence condition of Π(β0, ψ0)Σ0Π(β0, ψ0)
T in Theorem 3 is

mild. Condition (C5) controls the rate of correlation decay for products of

random variables. Lin (2008) demonstrated that if Condition (C5) holds,

it is easy to show that Π(β0, ψ0)Σ0Π(β0, ψ0)
T converges to a positive

definite matrix Ξ(β0,ψ0), as n → ∞. There are many processes for which
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Condition (C5) holds.

When establishing the asymptotic property in Theorem 3, it is not

necessary that the true correlation of Y is of the form {
∑K

k=1 πkR
(k)(αk) :

(πk,αk) ∈ Ψ}. When Condition (C6) holds, which means that the true cor-

relation matrix of Y is
∑K

k=1 π
0
kR

(k)(α0
k), if π

0
k > 0 for all k ∈ {1, · · · , K},

we have Ψ0 = {(α0
k
T
, π0

k)
K
k=1}, otherwise Ψ0 = {(αkT , π0

k)
K
k=1 : αk =

α0
k for π0

k > 0, and αk ∈ Ψαk
for π0

k = 0}. Furthermore, when Condi-

tion (C6) holds, the working correlation matrix R(ψ0), ψ0 ∈ Ψ0 is equal

to the true correlation matrix. Consequently, the mix-GEE estimator β̂ is

asymptotically efficient, in the sense that the asymptotic variance of the

mix-GEE estimator β̂ is the smallest among the GEE estimators with all

the possible working correlation matrices.

Remark 3. Our proposed approach assumes that the working correlations,

represented by parameters α, are distinct from those in the marginal mean

function, β. However, in certain scenarios, the correlation and marginal

mean functions might share commonalities, such as shared parameters, or

be subject to specific constraints. For instance, (Huang and Pan, 2021) de-

veloped a GEE method for jointly modeling the mean and within-subject

correlation in longitudinal binary data, ensuring that the correlation ad-
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heres to upper bound constraints. It is possible to extend the joint mod-

eling approach to spatially dependent data to incorporate commonality or

prior information. This could improve estimation efficiency and warrants

further investigation.

4. Tapered mix-GEE method for analyzing large spatial data

For large spatial data set, it is computationally challenging to solve the

equation (2.2) and minimize (2.5) due to the difficulty of inverting the

large n×n spatial working correlation matrix. To reduce the computational

cost, we propose a tapered estimation procedure. Kaufman et al. (2008)

proposed the covariance tapering for minimizing the Gaussian likelihood

with large spatial data. The main idea is to make the original correlation

matrix sparse by multiplying it with a sparse correlation matrix element-

wise so that efficient sparse matrix algorithms can be used to reduce the

computational cost.

There are two commonly used tapering methods: the one-taper approx-

imation and the two-taper approximation. Kaufman et al. (2008) pointed

out that the two-taper approximation is computationally slower than the

one-taper approximation. However, the two-taper approximation is unbi-
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ased for the estimation of covariance parameters when the correlation struc-

ture is correctly specified, and the bias for the one-taper approximation is

usually larger. Furrer et al. (2016) refined the one-taper approximation by

letting the tapering range increase to infinity, which can guarantee consis-

tency for the estimation of covariance parameters.

Let T (γ) be a n× n tapering matrix, a sparse correlation matrix with

elements equal zero if the distance between two locations exceeds a pre-

specified tapering range γ. For any two n×n matrices A and B, let A◦B

define the Schur product, that is, element-wise matrix product. We propose

the tapering version of (2.5) as

D(β)TA(β)−1/2 {R(ψ) ◦ T (γ1n)}−1A(β)−1/2{Y − µ(β)} = 0, (4.9)

where R(ψ) =
∑K

k=1 πkR
(k)(αk). In (4.9), the mixed working correlation

matrix is tapered by T (γ1n) with the range parameter γ1n. This tapering

version is inspired by the refined one-taper approximation in Furrer et al.

(2016), and through letting γ1n → ∞, we can obtain an efficient regres-

sion estimator under certain conditions (see Theorem 4). To estimate the

nuisance parameter ψ, we propose the tapering version of (2.5) as

ℓn(ψ,β; γ2) =
1

n
log

{∣∣∣R(ψ) ◦ T (γ2)
∣∣∣}+

1

n
ϵ(β)T

[
{R(ψ) ◦ T (γ2)}−1 ◦ T (γ2)

]
ϵ(β),

(4.10)

where γ2 is a range parameter of the tapering matrix T (·). The tapering
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version (4.10) is called two-taper approximation in Kaufman et al. (2008).

When the working correlation structure R(ψ) is correctly specified, mini-

mizing the two-taper approximation (4.10), w.r.t., ψ, is equivalent to solve

an unbiased estimating equation (Kaufman et al., 2008), so that the estima-

tor ofψ from the two-taper approximation is still expected to be consistent.

There exist several commonly used tapering functions, such as

Wendland1 and Bohman; see Stein (2013). In this paper, we adopt the

Wendland1 tapering function T (γ) whose ij-th element is defined as

Tij(γ) =

(
1− ||si − sj||

γ

)4(
1 +

4||si − sj||
γ

)
I(||si − sj|| ≤ γ).

The parameter γ controls the degree of approximation, with smaller values

indicating more severe tapering. In the tapered mix-GEE method, through

letting γ1n → ∞ in (4.9), we can pursue the estimation efficiency. The-

oretically, there is no restriction on γ1n, so we can take a small rate, i.e.,

severe tapering, to reduce the computational cost. Moreover, for the esti-

mator of the nuisance parameter ψ, we only need its consistency instead

of efficiency. Thus we can fix γ2 to largely reduce the computational bur-

den. Under some regularity conditions, we can prove that the estimator of

β under the tapering version is still efficient when the working correlation

structure is correctly specified; see details in Theorem 4.
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Denote β̂T and ψ̂T as the tapered mix-GEE estimators of β and ψ, ob-

tained by using the similar iterative algorithm as in Section 2, with (2.5) and

(2.6) replaced by (4.9) and (4.10), respectively. To establish the asymptotic

properties of the tapered estimators, we assume the following additional

conditions.

Condition 3. Tapering range condition: Assume that γ2 > 0 is a fixed

constant, and γ1n → ∞ as n→ ∞.

Condition 4. Identifiability condition under tapering: Suppose that

E{ℓn(ψ,β0; γ2)} converges uniformly to ℓ̄(ψ,β0; γ2) over Ψ. Let Ψ̃0 ={
ψ0 ∈ Ψ : ℓ̄(ψ0,β0; γ2) = inf

ψ∈Ψ
ℓ̄(ψ,β0; γ2)

}
. For every ξ > 0 and ψ0 ∈ Ψ̃0,

assume that inf
ψ∈Ψ,d(ψ,Ψ̃0)≥ξ

ℓ̄(ψ,β0; γ2) > ℓ̄(ψ0,β0; γ2).

Condition 3 shows that there is no restriction on the rate of γ1n, as long

as it tends to infinity, which is consistent with the requirement in Furrer

et al. (2016) for the refined one-taper approximation approach. In this

paper, we simply take γ1n = ⌊n2/5⌋, where ⌊·⌋ is the floor function. For

the two-taper approximation, Kaufman et al. (2008) pointed out that even

quite sparse tapered correlation matrix R(ψ) ◦ T (γ2) can produce decent

results. Thus, we take the value of γ2 corresponding to 4% sparse rate,

defined as the proportion of nonzero elements in R(ψ) ◦ T (γ2).
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Theorem 4. Under the model assumption (2.1), Conditions 1-3 and (C1)-

(C6), for every ζ > 0, we have, P
{
d(ψ̂T , Ψ̃0) ≥ ζ

}
→ 0, as n → ∞.

Furthermore, suppose that the identifiability condition 2 holds for Ψ̃0, and

for ψ0 ∈ Ψ̃0, Π(β0, ψ0)Σ0Π(β0, ψ0)
T converges to a positive definite ma-

trix Ξ(β0,ψ0), then we have
√
n(β̂T − β) D→ N {0,Ξ(β0,ψ0)} , as n→ ∞.

Theorem 4 suggests that when Condition (C6) holds, the tapered mix-

GEE estimator β̂T achieves the same asymptotic efficiency as the untapered

mix-GEE estimator β̂. Condition (C6) entails that the true correlation

structure is a linear combination of the candidate correlation structures.

Moreover, if Condition (C6) is satisfied with π0
k ≥ 0 for k = 1, · · · , K and

the sum
∑K

k=1 π
0
k = 1, we have Ψ̃0 equals Ψ0.

5. Simulation Study

We conduct a simulation study of both continuous and binary spatial data

to assess the finite sample performance of the proposed methods. We con-

sider n = 225 for studying the performance of the mix-GEE method and

n = 900 for the tapered mix-GEE method. For each case, the simulation is

repeated 200 times.
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5.1 Assessment of the mix-GEE method

We compare the performance of the proposed mix-GEE method with four

methods: (1) the GEE estimator assuming working independence (IND);

(2) the GEE estimator assuming the anisotropic Matérn correlation struc-

ture (Matern); (3) the hybrid GEE method (HGEE Adegboye et al., 2018);

and (4) the omniscient method (OMNI), which is the GEE estimator based

on the true covariance matrix and serves as the benchmark. The Matern

method is based on the anisotropic Matérn correlation structure, defined

as

ρMAT(||B(λ, ψ)(si − sj)||, θ, υ) =
1

Γ(υ)

(
θ||B(λ, ψ)(si − sj)||

2

)υ
2Kυ(θ||B(λ, ψ)(si − sj)||),

where υ > 0, θ > 0 and Kυ(·) is the modified Bessel function of the

second kind of order υ, Γ(·) is the gamma function, and θ controls the

strength of spatial dependence. IND and OMNI are implemented using their

closed expression and the function nleqslv in the R package nleqslv. The

Matern method is implemented using the function likfit in the R package

geoR. The HGEE method is implemented using the program provided by

the authors.

The locations are generated as s =

{r + U(−0.2, 0.2), c+ U(−0.2, 0.2)}, where r = 1, · · · , 15, c = 1, · · · , 15,
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and U(−0.2, 0.2) is the uniform distribution in [−0.2, 0.2]. Thus, we have

225 irregularly spaced locations, denoted as si, i = 1, · · · , 225. For the con-

tinuous spatial data, we generate responses from Y (si) =X(si)
Tβ0+η(si),

where X(si) = (X1(si), X2(si))
T , X1(si), X2(si)

i.i.d.∼ N(0, 1), β0 = (1,−1).

We generate the binary spatial responses from the Probit regression model

Y (si) = I{η(si) ≤ X(si)
Tβ0}, where X1(si), X2(si)

i.i.d.∼ Bernoulli(0.5)

and β0 = (0.2,−0.2). For both continuous and binary data, we consider

four cases to generate η(si) from the standard Gaussian random field with

the following spatial correlation functions:

Case 1 the isotropic exponential correlation function ρEX(||si − sj||, α) with

α = −ln(0.7), where ρEX(||si − sj||, α) = e−α||si−sj ||, α > 0.

Case 2 the anisotropic exponential correlation function ρEX(||B(λ, ψ)(si −

sj)||, α), with α = −ln(0.7), stretching parameter λ = 1/4, and rota-

tion parameter ψ = π/2.

Case 3 the anisotropic mixed correlation function formed by two anisotropic

exponential correlation functions, i.e., π1ρEX(||B1(λ1, ψ1)(si −

sj)||, α1) + (1 − π1)ρEX(||B2(λ2, ψ2)(si − sj)||, α2), where

π1 = 0.5, (α1, λ1, ψ1) = (−ln(0.7), 1/5, 0) and (α2, λ2, ψ2) =

(−ln(0.7), 1/5, π/2).
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Case 4 the anisotropic mixed correlation function formed by an anisotropic

exponential correlation function and an anisotropic spherical cor-

relation function, i.e., π1ρEX{||B1(λ1, ψ1)(si − sj)||, α1} + (1 −

π1)ρSP{||B2(λ2, ψ2)(si − sj)||, α2}, where π1 = 0.5, (α1, λ1, ψ1) =

(−ln(0.7), 1/5, π/2), (α2, λ2, ψ2) = (5, 1/5, 0), and ρSP{||si−sj||, α} =

(1− 1.5||si − sj||/α + 0.5||si − sj||3/α3) I(||si − sj|| < α), α > 0.

For the mix-GEE method, we use the mixture of three candidate cor-

relation structures given in Remark 1. Note that the correlation structures

used in the mix-GEE are misspecified under Cases 2-4.

Tables 1 and 2 summarize the mean squared errors (MSE) of different

methods for continuous and binary responses, respectively. The results

show that the IND estimator has the lowest efficiency under all scenarios

considered, suggesting that ignoring the spatial dependence could have a

severe adverse effect on the estimation efficiency. The mix-GEE method

performs similarly to the benchmark OMNI and generally has a smaller

MSE than the other methods under all scenarios considered. Although both

mix-GEE and HGEE can handle complex spatial dependence, simulation

results show that the HGEE is more efficient than IND but less efficient

than the mix-GEE method. There are two possible reasons. One is that the
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estimated weight matrix in HGEE is not optimal; see discussions in Section

1. The other is that the HGEE method uses an empirical semivariogram to

estimate the nuisance parameters, which could be unstable in finite samples.

Table 1: MSE×103 of different methods for continuous responses. The
reported MSE is the average of all regression coefficients. Values in the
parentheses are the standard errors.

Method Case 1 Case 2 Case 3 Case 4
IND 6.50 5.63 5.98 6.47

(0.48) (0.39) (0.42) (0.47)
Matern 1.95 1.19 1.08 1.01

(0.14) (0.08) (0.08) (0.07)
HGEE 4.28 1.95 2.97 3.51

(0.34) (0.15) (0.25) (0.32)
mix-GEE 2.02 0.76 0.81 0.75

(0.15) (0.06) (0.06) (0.06)
OMNI 1.94 0.75 0.81 0.75

(0.14) (0.06) (0.06) (0.06)

mix-GEE: the proposed method; IND: the GEE estimator assum-
ing working independence; Matern: the GEE estimator assuming the
anisotropic Matérn correlation; HGEE: the hybrid GEE method from
Adegboye et al. (2018); OMNI: the GEE estimator based on the true
covariance matrix.

5.2 Assessment of the tapered mix-GEE method

In this subsection, we assess the finite sample performance of the pro-

posed tapered mix-GEE (Tmix-GEE) method for analyzing large spa-

tial data. We consider spatial data from 900 irregularly spaced loca-

tions s = {r + U(−0.2, 0.2), c+ U(−0.2, 0.2)}, where r = 1, · · · , 30, and
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Table 2: MSE×10 of different methods for binary responses. The reported
MSE is the average of all regression coefficients. Values in the parentheses
are the standard errors.

Method Case 1 Case 2 Case 3 Case 4
IND 1.78 3.52 3.44 2.88

(0.20) (0.36) (0.33) (0.28)
Matern 0.37 0.35 0.38 0.34

(0.04) (0.04) (0.03) (0.03)
HGEE 0.97 2.82 2.61 2.56

(0.29) (0.74) (0.65) (0.67)
mix-GEE 0.31 0.25 0.29 0.29

(0.02) (0.02) (0.02) (0.02)
OMNI 0.31 0.24 0.28 0.29

(0.02) (0.02) (0.02) (0.02)

mix-GEE: the proposed method; IND: the GEE estimator assum-
ing working independence; Matern: the GEE estimator assuming the
anisotropic Matérn correlation; HGEE: the hybrid GEE method from
Adegboye et al. (2018); OMNI: the GEE estimator based on the true
covariance matrix.

c = 1, · · · , 30. The responses are generated in the same way as that in Sec-

tion 5.1. The mix-GEE and Matern methods are about five times slower

than the Tmix-GEE method for analyzing the large spatial data generated

in this subsection. Therefore, we only compare the results of Tmix-GEE,

HGEE, and OMNI based on 200 simulation replicates.

Table 3 summarizes the estimation performance of the Tmix-GEE,

HGEE, and OMNI methods and the average computing time of Tmix-

GEE and HGEE. The computing time is averaged over 200 replicates and

four different cases. From the computational aspect, HGEE is faster than
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the Tmix-GEE, which is because HGEE estimates the nuisance parameters

through the empirical semivariogram, which does not involve solving the

inverse of a high dimensional matrix. However, the estimation efficiency

of the HGEE estimator is lower than the Tmix-GEE estimator under all

scenarios considered. The MSE of the Tmix-GEE method is closer to the

benchmark method OMNI, indicating that the Tmix-GEE is an effective

method to analyze large spatial data.

Table 3: The estimation performance of different methods for analyzing continuous
and binary responses. The reported MSE is the average of all regression coefficients.
The reported results are MSE×104 for continuous responses and MSE×102 for binary
responses. Values in the parentheses are the standard errors.

Response Method Case 1 Case 2 Case 3 Case 4 Time/s

Continuous

Tmix-GEE 6.10 2.50 2.45 2.20 29.25
(0.45) (0.20) (0.18) (0.16)

HGEE 13.28 7.85 9.17 9.86 17.70
(0.90) (0.63) (0.66) (0.72)

OMNI 5.90 2.30 2.44 2.20
(0.43) (0.18) (0.17) (0.16)

Binary

Tmix-GEE 0.82 0.70 0.82 0.71 48.00
(0.05) (0.05) (0.06) (0.05)

HGEE 1.60 3.46 5.85 2.85 16.20
(0.22) (0.90) (2.38) (0.57)

OMNI 0.76 0.64 0.73 0.64
(0.05) (0.04) (0.05) (0.05)

Tmix-GEE: the tapering version of the mix-GEE; HGEE: the hybrid GEE method
from Adegboye et al. (2018); OMNI: the GEE estimator based on the true covari-
ance matrix.
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6. Application to The Soil Chemistry Data

In this section, we apply the proposed mix-GEE method to analyze the

soil chemistry data set, soild250, in the R package geoR. The data set was

collected on a 25 × 10 regular grid, resulting in 250 observations on 22

variables measuring various soil chemistry properties. The locations are

recorded in Linha (x-coordinate) and Coluna (y-coordinate). As in Lu

et al. (2014), we consider eight variables, including Ca (calcium content),

Mg (magnesium content), K (potassium content), Al (aluminum content),

C (carbon content), N (nitrogen content), pHKCl (soil PH by KCl) and

CEC (Cation exchange capacity). Zheng et al. (2010) analyzed the spatial

spectral density for the CEC. We focus on studying the impacts of the soil

contents of Ca, Mg, K, Al, C, N, and PHKCl on the CEC, where the CEC

is an important soil characteristic that measures the soil’s ability to hold

nutrients, water, herbicides, and other soil amendments.

We assume the linear model:

E{Y (si)|Xi} =X(si)
Tβ, i = 1, . . . , 250,

where Y (si) denotes the CEC measurement at location si, and β is an 8-

dimensional vector representing the intercept and the coefficients of PHKCl,

Ca, Mg, K, Al, C, and N, respectively.
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Figure 1 plots the empirical semivariograms of the data against the

distance calculated at four different directions, that is, north (0◦), north-

east (45◦), east (90◦), south-east (135◦). Figure 1 shows that the empirical

semivariograms at 45◦ and 135◦ are similar, but quite different from those

at 0◦ and 90◦, indicating the possibility of anisotropy. The anisotropy is

further confirmed by the result of a nonparametric test for isotropy (Guan

et al., 2004) with a p-value less than 0.0025. The potential anisotropy and

the spatial dependence make it challenging to specify a proper correlation

structure for the GEE-based analysis. The proposed mix-GEE approach

would appeal to analyzing such data with complex spatial dependence.

Table 4 shows the results of coefficient estimation. Since the true spa-

tial correlation structure is unknown, we calculate the standard errors of

the estimates by IND, Matern, and mix-GEE from the sandwich formula

with the potential correlation structure. The standard errors of the HGEE

estimates are obtained by the resampling method suggested by Adegboye

et al. (2018). The results from the mix-GEE method suggest that PHKCl

has a significant negative effect. In contrast, the soil contents of Ca, Mg,

and K have significant positive effects on CEC, and the effects of Al, C,

and N are not significant. These findings are also supported by the results
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in Lu et al. (2014). The CEC measures the volume of all the exchangeable

cations (Rhoades, 1983; Ross and Ketterings, 1995), so the cations Ca, Mg,

K, and Al are expected to have positive effects. Among these cations, Ca,

Mg, and K are more likely to have significant impacts on CEC than Al since

the former three cations widely exist in the soil while the content of Al is

usually smaller; see Bear (1964). Among these four methods, the HGEE

estimates have the largest standard errors, which makes the method miss

the significance of Mg. Moreover, the estimates by IND and Matern show

a significant negative effect of C, which is surprising since C only exists in

the anions CO2−
3 and HCO−

3 , which are known not directly related to CEC

(Rhoades, 1983).
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Figure 1: Empirical semivariograms against the distance calculated at four
different directions of 0◦, 45◦, 90◦, 135◦ for the soil data.
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Table 4: The estimated coefficients of different methods for analyz-
ing the soil data.

Coefficient IND Matern HGEE mix-GEE
Intercept 15.77(1.51) 11.25(1.49) 15.79(2.23) 8.82(1.16)
PHKCl -2.97(0.30) -1.83(0.31) -2.98(0.50) -1.22(0.25)
Ca 1.61(0.12) 1.41(0.14) 1.61(0.15) 1.21(0.11)
Mg 1.27(0.47) 1.04(0.50) 1.27(0.80) 1.00(0.38)
K 1.16(0.38) 0.90(0.36) 1.16(0.46) 0.82(0.26)
Al 0.28(1.06) 1.28(1.04) 0.22(1.50) 1.18(0.79)
C -0.96(0.33) -0.62(0.29) -0.96(0.48) -0.13(0.22)
N 4.94(3.43) 1.10(3.07) 4.96(2.82) -2.10(2.51)

Values in the parentheses are the standard errors.

Supplementary Materials

The supplementary material contains the technical proofs of Theorems 1-4

in the main paper.
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gaussian geostatistical modeling using (skew) t processes. Scandinavian Journal of Statis-

tics 48 (1), 212–245.

Budrikaite, L. and K. Ducinskas (2005). Modelling of geometric anisotropic spatial variation.

Mathematical Modelling and Analysis, 361–366.

Cattelan, M. and C. Varin (2018). Marginal logistic regression for spatially clustered binary

data. Journal of the Royal Statistical Society: Series C (Applied Statistics) 67 (4), 939–959.

Cressie, N. (2015). Statistics for spatial data. John Wiley & Sons.

Fang, F., J. Li, and J. Wang (2019). Optimal model averaging estimation for correlation

structure in generalized estimating equations. Communications in Statistics-Simulation

and Computation 48 (5), 1574–1593.

Furrer, R., F. Bachoc, and J. Du (2016). Asymptotic properties of multivariate tapering for

estimation and prediction. Journal of Multivariate Analysis 149, 177–191.

Guan, Y., M. Sherman, and J. A. Calvin (2004). A nonparametric test for spatial isotropy using

subsampling. Journal of the American Statistical Association 99 (467), 810–821.

Hansen, L. P. (1982). Large sample properties of generalized method of moments estimators.

Econometrica: Journal of the econometric society 50 (4), 1029–1054.

Hardin, J. W. and J. M. Hilbe (2012). Generalized estimating equations. chapman and hall/CRC.

Huang, Y. and J. Pan (2021). Joint generalized estimating equations for longitudinal binary

data. Computational Statistics & Data Analysis 155, 107110.

Jenish, N. and I. R. Prucha (2009). Central limit theorems and uniform laws of large numbers

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0401



38 REFERENCES

for arrays of random fields. Journal of econometrics 150 (1), 86–98.

Kaufman, C. G., M. J. Schervish, and D. W. Nychka (2008). Covariance tapering for likelihood-

based estimation in large spatial data sets. Journal of the American Statistical Associa-

tion 103 (484), 1545–1555.

Lange, K. (1994). An adaptive barrier method for convex programming. Methods and Applica-

tions of Analysis 1 (4), 392–402.

Lange, K. (2010). Numerical analysis for statisticians. Springer Science & Business Media.

Leung, D. H., Y.-G. Wang, and M. Zhu (2009). Efficient parameter estimation in longitudinal

data analysis using a hybrid gee method. Biostatistics 10 (3), 436–445.

Liang, K.-Y. and S. L. Zeger (1986). Longitudinal data analysis using generalized linear models.

Biometrika 73 (1), 13–22.

Lin, P.-S. (2008). Estimating equations for spatially correlated data in multi-dimensional space.

Biometrika 95 (4), 847–858.

Lin, P.-S. (2010). A working estimating equation for spatial count data. Journal of statistical

planning and inference 140 (9), 2470–2477.

Lin, P.-S., M. K. Clayton, et al. (2005). Analysis of binary spatial data by quasi-likelihood

estimating equations. Annals of statistics 33 (2), 542–555.

Lu, Z., X. Ren, and R. Zhang (2024). On semiparametrically dynamic functional-coefficient au-

toregressive spatio-temporal models with irregular location wide nonstationarity. Journal

of the American Statistical Association 119 (546), 1032–1043.

Lu, Z., Q. Tang, L. Cheng, et al. (2014). Estimating spatial quantile regression with functional

coefficients: A robust semiparametric framework. Bernoulli 20 (1), 164–189.

McCullagh, P. (1983). Quasi-likelihood functions. The Annals of Statistics 11 (1), 59–67.

Oman, S. D., V. Landsman, Y. Carmel, and R. Kadmon (2007). Analyzing spatially distributed

binary data using independent-block estimating equations. Biometrics 63 (3), 892–900.

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0401



39 REFERENCES

Palacios, M. B. and M. F. J. Steel (2006). Non-gaussian bayesian geostatistical modeling.

Journal of the American Statistical Association 101 (474), 604–618.

Rhoades, J. (1983). Cation exchange capacity. Methods of Soil Analysis: Part 2 Chemical and

Microbiological Properties 9, 149–157.

Ross, D. S. and Q. Ketterings (1995). Recommended methods for determining soil cation

exchange capacity. Recommended soil testing procedures for the northeastern United

States 493, 62–69.

Shaby, B. and D. Ruppert (2012). Tapered covariance: Bayesian estimation and asymptotics.

Journal of Computational and Graphical Statistics 21 (2), 433–452.

Stein, M. L. (2013). Statistical properties of covariance tapers. Journal of Computational and

Graphical Statistics 22 (4), 866–885.

Sun, W., J. Shults, and M. Leonard (2009). A note on the use of unbiased estimating equations

to estimate correlation in analysis of longitudinal trials. Biometrical Journal: Journal of

Mathematical Methods in Biosciences 51 (1), 5–18.

Sun, Y. and M. L. Stein (2016). Statistically and computationally efficient estimating equations

for large spatial datasets. Journal of Computational and Graphical Statistics 25 (1), 187–

208.

Sutradhar, B. C. and K. Das (1999). Miscellanea. on the efficiency of regression estimators in

generalised linear models for longitudinal data. Biometrika 86 (2), 459–465.

Tang, N. and W. Wang (2019). Robust estimation of generalized estimating equations with

finite mixture correlation matrices and missing covariates at random for longitudinal data.

Journal of Multivariate Analysis 173, 640–655.

Thurman, A. L., R. Fu, Y. Guan, and J. Zhu (2015). Regularized estimating equations for

model selection of clustered spatial point processes. Statistica Sinica 25 (1), 173–188.

Wang, Y.-G. and V. Carey (2003). Working correlation structure misspecification, estima-

tion and covariate design: implications for generalised estimating equations performance.

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0401



40 REFERENCES

Biometrika 90 (1), 29–41.

Wedderburn, R. W. (1974). Quasi-likelihood functions, generalized linear models, and the

gauss—newton method. Biometrika 61 (3), 439–447.

Wu, C.-t., M. L. Gumpertz, and D. D. Boos (2001). Comparison of gee, minque, ml, and reml

estimating equations for normally distributed data. The American Statistician 55 (2),

125–130.

Xu, L., N. Lin, B. Zhang, and N.-Z. Shi (2012). A finite mixture model for working correlation

matrices in generalized estimating equations. Statistica Sinica 22 (2), 755–776.

Zhang, H. and A. El-Shaarawi (2010). On spatial skew-gaussian processes and applications.

Environmetrics: The official journal of the International Environmetrics Society 21 (1),

33–47.

Zheng, Y., J. Zhu, and A. Roy (2010). Nonparametric bayesian inference for the spectral density

function of a random field. Biometrika 97 (1), 238–245.

1 Department of Statistics, The Chinese University of Hong Kong, China

E-mail: zhuhuichenecho@gmail.com

2 Department of Statistics, Fudan University, China

3 Department of Statistics, The George Washington University

3 Department of Statistics, Fudan University, China

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0401


	Introduction
	Proposed Method
	Notation and model setup
	GEE estimator based on a mixed correlation structures
	Estimation procedure

	Asymptotic Properties
	Tapered mix-GEE method for analyzing large spatial data
	Simulation Study
	Assessment of the mix-GEE method
	Assessment of the tapered mix-GEE method

	Application to The Soil Chemistry Data



