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1 Finance and Economics College, Jimei University, China

2 ByteDance, United Kingdom

3 Wang Yanan Institute for Studies in Economics, Xiamen University, China

4 School of Business and Economics, Humboldt-Universität zu Berlin, Germany

5 IDA Institute Digital Assets, Bucharest University of Economic Studies, Romania

Abstract: Risk transmission among financial markets and their participants is time-evolving, e-

specially for extreme risk scenarios. Possibly sudden time variation of such risk structures asks

for quantitative techniques that can cope with such situations. Here we present a novel localized

multivariate CAViaR-type model to respond to the challenge of time-varying risk contagion. For

this purpose, we construct a test for parameter homogeneity with totally data-driven critical val-

ues. We prove that these critical values lead to the required confidence level. Based on this test,

we propose an estimation procedure that adapts to a possible time-variation of the parameter. A

comprehensive simulation study supports the effectiveness of our approach in detecting structural

changes in multivariate CAViaR. Finally, when applying for the US and German financial markets,

we can trace out the dynamic tail risk spillovers and find that the US market appears to play a

dominant role in risk transmissions, especially in volatile market periods.
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1. Introduction

Financial risk dependence and the mechanism of risk spillover among international eq-

uity markets have attracted increasing attentions among theorists, empirical researchers,

and practitioners. A risk contagion is generated through dependence between extreme

negative shocks across financial markets. It is well-known that large downside market

movements occurring in one country would unavoidably have substantial effects on other

international equity markets. There now exists a wide-spread consensus in the empirical

literature that the dependence between the returns of financial assets is non-Gaussian with

asymmetric marginals, nonlinear features, and shows massive time-variation (DÍnnocenzo

et al.; 2024; Gong et al.; 2021; Okimoto; 2008).

In order to address some of these properties Engle and Manganelli (2004) propose a

conditional autoregressive value at risk (CAViaR) model to specify the evolution of con-

ditional quantile over time for univariate time series. Later, White et al. (2015) (denoted

as WKM) built up a multivariate framework for multiple time series as well as various

quantile levels. It can be considered as a vector autoregressive extension to quantile

models with the underlying Value at Risk (VaR) processes not only being autocorrelated

but also cross-sectionally intertwined. When applying multivariate CAViaR to financial

institutions, it presents valuable results in capturing the sensitivity of financial entities

to institutional specific and market-wide shocks of the system. However it fails to cope

with time-variation or local stationary regimes. We focus on this essential feature and

propose an extension towards a localized multivariate CAViaR framework that allows us

to estimate and forecast the dynamics of financial risk dependence.

The majority of existing literature uses volatility as a risk measure and investigate

the volatility risk contagions (Engle; 2002; Shahzad et al.; 2021). Although volatility is a

fundamental instrument to measure risk shifts, it has been commonly criticized as only
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capturing the properties of second moments of the return time series and ignoring extreme

market events structure (Hong et al.; 2009; Han et al.; 2016). Besides, the volatility risk

measure is symmetric and equally values the gains and losses, which contradicts the

fact that investors tend to be more sensitive to the negative returns and especially for

significant downside risk, e.g., financial crisis. Therefore, a volatility risk measure is not

enough to evaluate the financial risk interdependence. On the contrary, VaR is commonly

utilized to measure asymmetric risk, i.e., to evaluate the loss given a predetermined

probability of extreme events. Although not a perfect (non-coherent) risk measure, it

has been accepted as a standard for financial regulations, e.g., a criterion by the Basel

committee on banking supervision (Tsay and Chen; 2018).

One commonly observes the unstable and time-varying interdependence of financial

risk and tail contagion in empirical studies (Li et al.; 2023; Mehlitz and Auer; 2021;

Baele and Inghelbrecht; 2010). The risk contagion is caused by dependence between

relatively extreme negative shocks across international financial markets. A constant

parametric model over a long-run time series is certainly at limit to portray elements

of non-stationarity. Gerlach et al. (2011) propose a time-varying quantile model using

a bayesian approach for univariate time series, and specify the model dynamics up to

finite parameters. This research focuses on time-varying parameters in dynamic multi-

variate quantile processes to capture the dynamic interdependence and time-varying tail

spillovers. We propose a framework to localize multivariate autoregressive conditional

quantiles by exploiting a local parametric approach, denoted as LMCR (Local Multivari-

ate CAViaR) model for simplicity. The advantages of our approach are at least twofold:

(1) we investigate the extreme tail risk spillovers among financial time series and (2) we

examine the dynamic interdependence pattern of tail risk contagion in a time-varying

context.
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Our LMCR model is based on the local parametric approach (LPA), which utilizes

a parametric model over an adaptively chosen interval of homogeneity. The so-called

interval of homogeneity is that one can not reject the null hypothesis that the mod-

el parameters are constant within this interval. The essential idea of LPA is to find

the longest homogeneous interval that guarantees a relatively small modeling bias with

sequential backward-looking examination, see, e.g., Spokoiny (1998, 2009). The signifi-

cant advantage of this approach lies in achieving a balance between the modeling bias

and parameter variability, and has been widely exploited in time-varying model analysis,

see, e.g., Chen et al. (2010); Chen and Niu (2014); Niu et al. (2017); Xu et al. (2018);

Zbonáková et al. (2018). Recent advances in multiplier bootstrap (MBS) allow us to con-

struct data-driven critical values for homogeneity tests based on change point detection,

see Suvorikova and Spokoiny (2017); Spokoiny and Zhilova (2015). The MBS only relies

on the model equations and is free from any specific distribution assumptions, which can

favourably eliminate the model misspecification issue. In our research, we extend LPA

to multivariate quantile regression and develop LMCR model with multiplier boostrap

technique. Due to the local homogeneous interval detection, we study the finite sample

properties of WKM rather than asymptotic ones in section 2. In particular, we establish

a bahadur-type expansion based on uniform exponential inequality, see Lemma 1, and

compare it with the multiplier bootstrap counterpart.

Our approach appears to be well suited to capture shifting asymmetric dependence

among different markets. It is worth mentioning that earlier research investigates the

co-movements of substantial changes by utilizing copula-based methods, see Chen et al.

(2022); Lee and Lee (2022). We emphasize that rather than relying on a fixed specification

of a copula, we localize parametric modeling of risk dependence via a multivariate CAViaR

model. A simulation study under various parameter change scenarios demonstrates the
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performance of LMCR. Besides, when applying LMCR to tail risk analysis of the US and

German market index, we find that at 1% quantile level, the typical identified interval

lengths in daily time series include 140 days on average. At the higher quantile level (5%),

the selected interval lengths range roughly between 160-230 days. This is an important

message given the current historical simulation based risk measures are at 250 days.

These findings might therefore change the regulatory risk measurement tools. The model

also presents appealing merits in tracing the dynamics of tail risk spillover. We find that

the US market appears to play a dominant role in risk transmissions of shocks to the

German market, especially in volatile market periods.

The rest of this paper is structured as follows. In Section 2, we derive new high-

probability bounds and a Bahadur-type expansion for the multivariate CAViaR model.

The results serve as a non-asymptotic extension of WKM. In Section 3, we propose a

homogeneity test based on a sequential change point detection, in which the critical

values are evaluated via the novel multiplier bootstrap technique. We also present the

corresponding theoretical results. In Section 4, we propose the adaptive approach for

WKM under the possible time variation estimation, and summarize the implementation

procedure for our LMCR model. In Section 5 and Section 6, a simulation study and an

empirical application examine the performance of our approach. Section 7 concludes the

paper. The proofs of the theorems are relegated to the Supplementary Material.

2. Model

We consider time-varying multivariate quantile regression in time series analysis. Define

the data set Y = {Yt : t = 1, . . . , T}, with each Yt being a n × 1 column, and Yit is

referred to ith component of this vector. Denote the natural filtration Ft = σ{Y1, . . . ,Yt}

and we wish to estimate the quantiles of Yit conditioned on Ft−1 at any given moment
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t = 1, . . . , T .

Similar to multivariate CAViaR (WKM), our LMCR model also assumes that con-

ditional quantiles qit(θ,Y) = inf{y : P(Yit ≤ y | Ft−1) ≥ τ} follow an autoregressive

process as,

qit(θ,Y) = Ψ>t γi +

q∑
k=1

n∑
j=1

βijkqjt−k(θ,Y), (2.1)

where Ft−1–measurable Ψt ∈ Rd denote predictors available at time t, which typical-

ly include lagged values of times series Yt. We assume that the parameter set θ =(
(γi)

n
i=1, (βijk)

n,n,q
i,j,k=1

)
∈ Rnd+n2q is finite in the above parametric model. For the sake of

simplicity, omitting the dependence on the time series outputs, we write qit(θ) = qit(θ,Y)

in what follows below. Besides, we denote ‖ · ‖ as the Euclidian norm of a vector or the

spectral norm of a matrix, and denote | · | as the absolute value except that |I| means

the number of observations within the sample interval I in the following.

For any sample interval I = [a, b] with the integers a, b ∈ {1, 2, . . . , T} and a < b, i.e.

the interval [a, b] denotes the interval of integers from a to b, we write

(Yit,Ψt)t∈I ∼ LMCR(θ), (2.2)

if the equation (2.1) is fulfilled on this interval with parameter θ, which is the localized

multivariate CAViaR model, denoted as LMCR. This model characterizes a local tail

behavior of the observed time series. Note that it may not hold in the whole historical

sample due to the potential structural change, whereas we assume that there is a local

data interval within which the equation (2.1) is satisfied with constant parameters.

The parameter set θ in equation (2.1) can be estimated via the quasi-maximum

likelihood estimation (QMLE), which is mathematically equivalent to minimizing the

loss function typical for quantile regression. For a given quantile level τ ∈ (0, 1), we

denote the check function ρτ (u) = u(τ − 1[u≤0]) where 1[·] is the indicator function, and
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take

`t(θ) = −
n∑
i=1

ρτ{Yit − qit(θ)}, (2.3)

as the quasi log-probability of the observation t. The log-likelihood based on the sample

interval I for a fixed quantile level τ is written as

LI(θ) =
∑
t∈I

`t(θ) (2.4)

and the estimator based on this set of observations is

θ̃I = arg max
θ∈Θ0

LI(θ), (2.5)

where the parameter set Θ0 is a certain bounded subset from Rn2+np.

Note that the major contribution of LMCR is to analyze the time-varying parameter

characteristics in multivariate quantile regressions. A constant parametric model over

long-run time series is certainly at limit to portray the features of non-stationarity, which

widely exist in empirical financial time series. We endeavor to capture the potential struc-

tural change through monitoring an ”optimal” longest sample interval, i.e. homogeneous

interval, at each time point t. The so-called homogeneous interval is the largest sample

interval within which one can not reject the null hypothesis that the model parameters

are constant under a certain significance level. For more details we refer to Section 3.

In this context, we are interested in the local properties of the response variables

within a certain finite sub-interval I ⊆ [1, T ], see Equation (2.2). Hence we need to derive

the non-asymptotic bounds concerning the corresponding estimators with exponentially

high probabilities in the following. Specifically, we will show that under certain conditions,

for any positive value x > 0, it holds with probability at least 1− 6e−x that

‖θ̃I − θ∗‖ . C1

√
x + log |I|
|I|

, (2.6)

where θ∗ is the true parameter set defined in the following assumption 1, and C1 is a

positive constant. This type of bounds are requisite in LMCR model since they allow to
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2.1 Assumptions

take union bounds over a growing amount of intervals I, which is crucial in Section 3

when dealing with the local change point test. We emphasize that in the analysis, we do

not take into account the dependence on n and p and treat them as constants.

Before we discuss the finite sample properties, some assumptions are introduced in

the following part. In order to obtain the bounds with exponentially high probabilities

in Equation (2.6), it requires an almost sure boundedness of the functions qit(θ) as well

as for their derivatives up to the second order.

2.1 Assumptions

We say that the LMCR model is “homogeneous” on an interval I if it satisfies the

following assumption.

Assumption 1. We assume that there exists the “true” parameter set θ∗ ∈ Θ0 such

that q∗it = qit(θ
∗,Y) for each i = 1, . . . , n and t ∈ I, and we label that the model is

homogeneous within the time interval I ⊆ [1, T ].

Assumption 1 delivers the correct specification and ensures the identification of the

model. By assuming the existence of the unknown true parameter within a certain

sample interval (the so-called homogeneous interval), it ensures the parameter set θ∗

optimizes the estimation objective function locally. Obviously, Assumption 1 implies

that θ∗ = arg maxE`t(θ) for each t ∈ I, then we can obtain that θ∗ = arg maxELI(θ),

which falls into the general framework of maximum likelihood estimators (White; 1996;

Spokoiny; 2017), and is prepared for the following local change point test for homogeneity

in Section 3. The next assumption controls the values and derivatives of the quantile

regression functions.

Assumption 2. For any ε > 0 there exists δ = δ(ε) > 0 such that whenever ‖θ−θ∗‖ ≥ ε,

it holds that
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2.1 Assumptions

P

(
max
i≤n
|qit(θ)− qit(θ∗)| ≥ δ

)
≥ δ, for all t ∈ I. (2.7)

Recall that ‖ · ‖ denotes the Euclidian norm of a vector and the spectral norm of

a matrix. In addition, we denote fit(·) as the density of the innovations εit = Yit − q∗it

conditional on Ft−1. A bound is commonly required for this density function in quantile

regressions, see Koenker and Machado (1999); Koenker and Xiao (2006). For instance,

the value of this density at point 0 appears in the median asymptotic distribution, which

is a classical result in statistics. The next assumption ensures the desired boundedness

of the density function fit(·). To avoid technical difficulties, we assume that a uniform

bound exists everywhere.

Assumption 3. (i) For s = 0, 1, 2 there are constants Ds > 0 such that for each i, t

and for each θ ∈ Θ0 it holds pointwise |qit(θ)| ≤ D0, ‖∇qit(θ)‖ ≤ D1 and ‖∇2qit(θ)‖ ≤

D2. (ii) the conditional density function of innovations εit are bounded from above, i.e.

fit(x) ≤ f̄ for each i, t and x ∈ R. (iii) Additionally, the conditional density of innovations

satisfies fit(x) ≥ f for |t| ≤ δ0, and δ0 is a positive constant.

Assumption 3 (i) ensures the quantile function as well as its derivatives up to sec-

ond order are bounded. Assumption 3 (ii) is the standard bounded conditional density

assumption in the literature of quantile regression. Assumption 3 (iii) ensures the den-

sity is bounded from below, which means we have even a small testing interval enough

observations. Note that Assumption 3 is akin to Assumption 5 of WKM, but we replace

the bounds in mean with almost sure boundness. This is a payment for finite sample

exponential bounds that follow below.

The set of assumptions has to be different since the essence of our paper is to localize

the WKM model. This requires finer and possibly stronger appearing assumptions since

WKM are only dealing with a single-likelihood optimization problem. In contrast, we

need to handle the fluctuations of the maximum of likelihood ratios over time-varying
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2.1 Assumptions

intervals. There are potential structural breaks for the response variable, which is the

main focus of our localizing Multivariate CAViaR model.

Furthermore, in extending the setting to dependent situations, we impose the fol-

lowing assumptions. Recall the definition of the mixing coefficients, see Chanda (1974);

Bradley (2005). For any sub σ-fields A1,A2 of same probability space (Ω,F ,P), we define

α(A1,A2) = sup
A∈A1,B∈A2

|P(A ∩B)− P(A)P(B)| ,

β(A1,A2) = sup
(Ai)⊂A1,(Bi)⊂A2

∑
i,j

|P(Ai ∩Bj)− P(Ai)P(Bj)| ,

where in the latter the supremum is taken over all finite partitions (Ai) ⊂ A1 and (Bj) ⊂

A2 of Ω. Then the coefficients

ak((Xt)) = sup
t
α(σ(X1, . . . , Xt), σ(Xt+k, . . . , XT )),

bk((Xt)) = sup
t
β(σ(X1, . . . , Xt), σ(Xt+k, . . . , XT ))

denote α– and β–mixing coefficients of the process (Xt)t≤T , respectively.

Assumption 4. (i) Suppose that the sequence of vectors (q·t(θ),∇q·t(θ)) is α–mixing

with α(m) ≤ exp(−γm) for some constants γ > 0; (ii) The sequence of vectors ∇q·t(θ∗)

is β–mixing with coefficients β(m) ≤ m−δ
′

for some constants δ′ > 1; (iii) for each

i = 1, . . . , n, the innovations (εit)t∈I are independent and satisfy P(εit < 0) = τ .

Assumption 4 helps us in controlling the stochastics of random sums of the involved

test elements and it is deeply rooted in the strong results from mixing theory. Assumption

4 (i) is designed for the whole parameter set and it is weaker than (ii) which controls the

dependencies at the true parameters, while β-mixing implies α-mixing. We use different

conditions under different reference that we need as precise as possible. The last part (iii)

is natural and standard in quantile regressions which fixes the quantile level. Assumption
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2.2 Consistency of the estimator

4 is required to prove Lemma 1 and Theorem 1, and it basically ensures the sequence is a

β-mixing process. Since the GARCH process is β-mixing, it makes sense that we generate

GARCH processes in the simulation at Section 5, which fulfill all these assumptions.

Before imposing the last assumption, we introduce some additional notations. The

score function of the likelihood in Equation (2.4) is written as

∇LI(θ) =
∑
t∈I

∇`t(θ) =
∑
t∈I

gt(θ),

where we denote gt(θ) = ∇`t(θ). Using the definition of log-likelihood in Equation (2.3),

we can explicitly write gt(θ) =
∑

i∇qit(θ)ψτ (Yit−qit(θ)), where ψτ (u) = τ−1[u≤0] is the

directional derivative of ρτ (u). The assumption below touches the information matrix

as well as the variance of the score and is required to obtain the boundedness of the

estimator in finite sample.

Assumption 5. The vector (q∗t ,∇qt(θ
∗), εt), t ∈ I is a stationary process. Additionally,

the matrices

Q =
n∑
i=1

E
{
fit(0)∇qit(θ∗)[∇qit(θ∗)]>

}
, V = Var{gt(θ∗)}

are strictly positive definite and symmetric.

2.2 Consistency of the estimator

Here we present the consistency properties of the estimator θ̃I , as the length of the interval

|I| tends to infinity. Note that instead of showing the standard asymptotic results such

as convergence in probability or square mean, we provide bounds with exponentially large

probabilities. This allows us to consider the growing amount of intervals simultaneously

and it is crucial for the sequential interval test in Section 3.

Denote λt(θ) = Egt(θ). Recall that one of the main tools in providing convergence

and asymptotic normality of M -estimators is to derive uniform deviation bounds for the
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2.3 Local quadratic expansion

score function, see e.g., White (1996); Spokoiny (2017). The following lemma provides a

uniform deviation bound with an exponential probability.

Lemma 1. Suppose that Assumptions 3 and 4 hold on an interval I. Then, for any

x > 0,

sup
‖θ−θ∗‖≤r

1

|I|1/2

∥∥∥∥∥∑
t∈I

gt(θ)− λt(θ)− gt(θ
∗) + λt(θ

∗)

∥∥∥∥∥ ≤ ♦(|I|, r, x),

with probability at least 1− e−x, where

♦(T, r, x) = C0

{
r
√
x + r1/2

√
x + log T + T−1/2(log T )2(rx + x + log T )

}
and C0 is a positive constant that does not depend on T, r, x, and r is a positive constant.

Remark 1. In the above error term ♦(T, r, x), the second item with r1/2 comes from the

fact that gt(θ) contains non-differentiable generalized errors, ψτ (Yit − qit(θ)) = 1[Yit ≥

qit(θ)]−τ , which are Bernoulli random variables and can not be handled by chaining-type

argument. This is different from the case of smooth score, see Spokoiny (2017).

Given the above results we can further bound the score function uniformly over the

whole parameter set. This allows us to have the following consistency results. One can

find the detailed proof in online appendix.

Proposition 1. Suppose that Assumptions 1–5 hold on the interval I. It holds with

probability ≥ 1− 6e−x,

‖θ̃I − θ∗‖ ≤ C1

√
x + log |I|
|I|

,

where C1 is a positive constant and does not depend on |I| and x.

2.3 Local quadratic expansion

The next step is to provide the analogous asymptotic normality properties of the estimator

θ̃I by utilizing a local Fisher expansion. The main tool explores a linear approximation of
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the gradient of the likelihood function, which can be achieved by means of Proposition 1,

see the detailed proof in the online appendix. The following results can serve as a non-

asymptotic adaptation of the classical asymptotic normality by central limit theorem.

Proposition 2. Suppose that Assumptions 1–5 hold on the interval I. Then, for any

0 < x ≤ |I|, it holds with probability at least 1− 3e−x,∥∥∥√|I|Q(θ̃I − θ∗)− ξI
∥∥∥ ≤C̄ (x + log |I|)3/4

|I|1/4
,∣∣∣L(θ̃I)− L(θ∗)− ‖ξI‖2/2

∣∣∣ ≤ ¯̄C
(x + log |I|)3/4

|I|1/4
,

(2.8)

where ξI = 1√
|I|

∑
t∈I Q

−1gt(θ
∗), and C̄, ¯̄C are some positive constants which do not

depend on |I| and x.

Remark 2. The above inequalities (2.8) serve as a non-asymptotic version of the central

limit theorem (CLT) for the estimators as Theorem 2 in WKM. This follows from the

fact that the sequence (Q−1gt(θ
∗))t≤T satisfies CLT as a martingale difference sequence,

see also Theorem 5.24 in White (2014). Specifically, with probability close to one (for

example, by letting x = c log |I| with a large c > 1), the distance between
√
|I|Q(θ̃I−θ∗)

and ξI can be bounded by a quantity that is O((log |I|)3/4/|I|1/4), which can be relatively

small by choosing a large interval length |I|.

3. Homogeneity testing via local change point detection

The essential element of the LMCR technique is to find an ”optimal” interval I at each

time point t. Generally there is a trade-off between modelling bias and variability, i.e.,

within a longer (shorter) sample interval the parameter variability is relatively small

(large) while the model bias is potentially large (small). Here we present the established

standard on how to find the longest sample interval within a certain acceptable modelling

bias, i.e. the homogeneous interval.
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3.1 Local change point detection

3.1 Local change point detection

For a given interval I = [a, b] ⊆ [1, T ] with a, b ∈ {1, 2, . . . , T} and a < b, we test

whether there is a structural change in the parametric model (2.1). A natural alternative

is that there exists a break point s ∈ (a, b) such that there are different parameters

on sub-interval As = [a, s] and sub-interval Bs = [s + 1, b]. Hence one tests the null

hypothesis

H0(I) : (Yit,Ψt)t∈I ∼ LMCR(θ∗I), θ
∗
I ∈ Θ0,

against the alternative hypothesis

H1(I) : (Yit,Ψt)t∈As ∼ LMCR(θ∗As
),

(Yit,Ψt)t∈Bs ∼ LMCR(θ∗Bs
) with θ∗As

6= θ∗Bs
.

This is a natural idea and has been put forward in numerous papers, e.g. Härdle

et al. (2022). In order to construct the test statistics, we consider a set of candidates for

a break point S(I) ⊂ (a, b) and for each such candidate s ∈ S(I) the test statistics is

written as,

TI,s = LAI,s(θ̃AI,s) + LBI,s(θ̃BI,s)− LI(θ̃I), (3.1)

where AI,s = [a, s] represents observations to the left from break point and BI,s = [s+1, b]

are the observations to the right from break point candidate s ∈ I. The existence of break

point among the candidates is detected using

TI = max
s∈S(I)

TI,s. (3.2)

Given a certain confidence level α, we need to construct a critical value zI,α such that

under the null hypothesis it holds

P (TI > zI,α) = α, (3.3)
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3.1 Local change point detection

which stands for the false alarm rate. Determining there critical values is a crucial task

to be discussed later.

Note that Spokoiny (2009) has initiated this local change point detection approach

and guaranteed the theoretical foundations, see also Suvorikova and Spokoiny (2017).

The asymptotic distribution of the test statistics TI in (3.2) will consolidate the theoret-

ical foundations of the judgment of breakpoints. A derivation of asymptotic properties,

requiring (unrealistically) increasing test intervals, is challenging but doable. There are

two ways to address this issue: First one could rely on Andrews (1993) to describe the

limiting distribution where each sub-interval length goes to infinity. Second, one could

employ the multiplier bootstrap technique, also used in Jirak (2015); Suvorikova and

Spokoiny (2017), where critical values for uniform confidence bands are derived. Both

ways would go beyond the scope and message of this paper though. Meanwhile, in our

local change point detection, we perceive the change point within a finite sample interval,

which implies the sample size can not go to infinity and the candidate locations I are

fixed. Hence, the distribution of TI in (3.2) is not of standard form and depends on the

chosen likelihood and the data, see Spokoiny and Zhilova (2015). In addition, in order to

obtain the asymptotic distribution, we need to know in advance the distribution of the

change point candidate set S(I) relative to the sample size (Andrews; 1993).

Previous research use the so-called propagation approach to construct critical values

(Xu et al.; 2018; Niu et al.; 2017). This technique is based on simulated test statistics

under a predetermined data distribution assumption. For instance, the latter paper

calculates the critical values via a skewed normal distribution. However, in practice the

true distribution is unfortunately unknown, hence a predetermined model is possibly mis-

specified. Rather than relying on a prescribed data distribution assumption, we construct

critical values zI,α(Y) in a completely data-driven way. With the corresponding data
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interval for testing, we exploit the multiplier bootstrap technique to construct the critical

values, which is introduced in the next section.

3.2 Multiplier bootstrap

In this section we present more details about the multiplier bootstrap (MBS ) used to

calculate the critical values needed in (3.3). Due to the unavailability of the asymptotic

distribution of the breakpoint test statistic TI in (3.2), we apply MBS and introduce

the corresponding bootstrap test statistics. Theorem 1 justifies that the distribution

of statistics in the bootstrap world can mimic the unknown distribution of the original

statistics TI . MBS is a very flexible tool to replicate the distribution in a data-driven

way, and we can choose the critical values for the test without any knowledge of the

asymptotic or pivotal distribution.

Its idea is to simulate the unknown distribution of the original log-likelihood by

introducing MBS with each item reweighted,

L◦I(θ) =
∑
t∈I

wt`t(θ),

where (wt)t≤T is a given random sequence of i.i.d. weights independent of the sample.

For sake of simplicity, we additionally assume that they have sub-Gaussian tails.

Assumption 6. The weights (wt)t≤T are independent with E(wt) = 1 and Var(wt) = 1.

Besides there is a positive constant Cw such that for each t it holds E exp{(wt/Cw)2} ≤ 2.

Denote the corresponding bootstrap estimator

θ̃
◦
I = arg maxL◦I(θ),

while the expectation of bootstrap log-likelihood with respect to the simulated weights

is obviously maximized by the original estimator,

θ̃I = arg maxE◦L◦I(θ) = arg maxLI(θ),

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0397



3.2 Multiplier bootstrap

where E◦[·] = E[· | Y ] denotes the expectation in the ”bootstrap world”. Spokoiny and

Zhilova (2015) show that with a high probability the distribution of simulated likeli-

hood ratio L◦I(θ̃
◦
I)−L◦I(θ̃I) in the “bootstrap world” mimics the distribution of original

likelihood ratio LI(θ̃I)−LI(θ∗) up to some errors that decrease with a growing sample.

Proposition 3. Suppose that Assumptions 1–5 and 6 hold on the interval I. Then, there

is T0 > 0 such that T ≥ T0 and x ≤ T on the probability of at least 1− e−x, it holds with

probability at least 1− e−x conditioned on the data, that

∥∥∥√|I|Q(θ̃
◦
I − θ̃I)− ξ◦I

∥∥∥ ≤ C ′
(x + log T )3/4

T 1/4
,∣∣∣L◦I(θ̃◦I)− L◦I(θ̃I)− ‖ξ◦I‖2/2

∣∣∣ ≤ C ′′
(x + log T )3/4

T 1/4
,

where ξ◦I = 1√
T

∑
t∈I wtQ

−1gt(θ
∗) and C ′, C ′′ are positive constants which do not depend

on T and x.

The multiplier bootstrap technique has been applied to change point detection in time

series, see Suvorikova and Spokoiny (2017); Avanesov and Buzun (2018). The bootstrap

test for a local change point s on the interval I is introduced as,

T ◦I,s =L◦As
(θ̃
◦
As

) + L◦Bs
(θ̃
◦
Bs

)− sup{L◦As
(θ) + L◦Bs

(θ + θ̃Bs − θ̃As)}, (3.4)

T ◦I = max
s∈S(I)

T ◦I,s.

Note that the shift θ̃Bs − θ̃As in Equation (3.4) is devoted to compensate the biases

of estimators θ̃
◦
As

and θ̃
◦
Bs

in the bootstrap world, which is not required in the original

test in Equation (3.1). The bootstrap bias originates from the fact that the resampled

datasets are drawn from the empirical distribution of the observed data, which might

not be an accurate representation of the true population distribution. This bias exists

noticeable for small sample size, or when the sample is skewed, see Hall (1986); Efron and

Tibshirani (1994); Abadie and Imbens (2008); Hesterberg (2011). The error correction
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has been throughly discussed as early as in Härdle and Mammen (1993) in which the

proposed wild bootstrap is equivalent to MBS here, see also Hall (1994); DiCiccio and

Efron (1996); Davison and Hinkley (1997); MacKinnon (2006).

The above test can further be used to simulate the critical values, since its distribution

conditioned on the data mimics the distribution of original test TI in Equation (3.2) with

a high probability, as the following theorem states.

Theorem 1. Suppose that Assumptions 2-5 and 6 hold on an interval I ⊆ [1, T ]. Suppose

that the set of break points satisfies for some constants α0 > 0,

max
s∈S(I)

(|AI,s|, |BI,s|) ≥ α0|I|. (3.5)

Then, there are positive constants C, c > 0 that do not depend on |I|, such that it holds

with probability at least 1− 1/|I|,

sup
z∈R
|P (TI > z)− P◦(T ◦I > z)| . C|I|−c.

This theorem justifies that the distribution of the bootstrap statistics T ◦I mimics the

unknown distribution of the original statistics TI . Hence one can construct critical values

from the bootstrap statistics:

z◦I(α) = z◦I(α; Y) = inf{z : P◦(T ◦I > z) ≤ α}. (3.6)

The resulting values are fully data-dependent and can be estimated via Monte-Carlo

simulations with arbitrary precision (see Sections 5 for details). Given the theorem above,

we can use these data-dependent critical values for the original test in Equation (3.2) on

the same data interval.

Corollary 1. Under the assumptions of Theorem 1, we have

|P{TI > z◦I(α)} − α| ≤ C|I|−c,

where some positive constants C, c > 0 do not depend on the interval length.
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4. Localizing Multivariate CAViaR

A real data time series can not be globally fitted by one single parametric model with

constant parameters. In this context we assume that at each time point t ∈ {1, . . . , T},

there exists a historical sample interval [t −m, t], over which the data process follows a

constant parametric model, in our case equation (2.1). The essential idea of LMCR is to

identify the longest sample interval, i.e. the interval of homogeneity, in which a stable

parametric model can be achieved. For the sake of computation simplicity, the interval

of homogeneity will be selected among a set of nested interval candidates through a

sequential detesting procedure. Finally, the parameter vector at every time point t is

estimated using the adaptively selected homogeneous data interval.

Interval Selection

The practical way of selecting this homogeneous interval is as follows. To alleviate

the computational burden, choose (K + 1) nested intervals with length nk = |Ik|, k =

0, . . . , K, i.e., I0 ⊂ I1 ⊂ · · · ⊂ IK . Interval lengths are usually taken to be geometrically

increasing with nk = dn0c
ke, where a constant c > 1 is slightly greater than one, so that

in the worst case one only neglects a small proportion of unknown homogeneous intervals.

We assume that the initial interval I0 is small enough, so that the model parameters are

constant within this interval.

Local Change Point Detection Test

Our target is to detect the longest homogeneous interval by conducting a sequential

testing procedure based on Section 3. At each time t, we examine the homogeneity of the

parameter over interval Ik against the alternative of homogeneity over interval Ik−1 for

every k = 1, . . . , K sequentially. By our assumption, I0 is homogeneous. The resulting
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interval of homogeneity would then be the last before the first rejected one. Therefore,

for each k = 1, . . . , K we examine a set of breaking points within Sk = Ik \ Ik−1 outside

of the interval that we already tested. The algorithm at step k is visualized in Figure 1.

kt n t
1kt n 1kt n  s

kS

Test homogeneity of kI

1kI 

1  is homogenouskI 

Figure 1: Sequential testing for parameter homogeneity in interval Ik with length nk

ending at fixed time point t.

The hypotheses of the test at step k read as

H0 : parameter homogeneity of Ik vs H1 : ∃ change point within Sk = Ik \ Ik−1.

The test statistics, i.e. the statistics in equation (3.1), is

TIk,s = LAIk,s
(θ̃AIk,s

) + LBIk,s
(θ̃BIk,s

)− LIk+1
(θ̃Ik+1

), (4.1)

where AIk,s = [t−nk+1, s] and BIk,s = [s+1, t] are sub-intervals of Ik+1. Since the change

point position is unknown, we test every point s ∈ Sk = [t− nk, t− nk−1].

According to the homogeneous testing procedure in Section 3, we reject the kth

interval, if

max
s∈Sk

TIk,s > z◦Ik(α), (4.2)

where z◦Ik(α) is generated through multiplier bootstrap in equation (3.6).

Note that if the model is homogeneous on a historical interval [t− n∗, t], then due to

Corollary 1 we will accept homogeneity of each interval Ik = [t−nk, t] with nk ≤ n∗ with



a high probability. If an interval Ik remains homogeneous, then the estimator θ̃Ik has

small bias, while the variance decreases with growing number of observations according to

Proposition 2. Hence the candidate with least variance corresponds to the largest chosen

interval of homogeneity, and the final estimator reads as

θ̂ = θ̃I
k̂
, k̂ = max{k : Ik is not rejected against Ik−1}. (4.3)

Critical Values

The critical value defines the level of significance for the aforementioned test statistic

(4.1). In classical hypothesis testing, critical values are selected to ensure a prescribed

test level, the probability of rejecting the null hypothesis under null hypothesis is true

(type I error). In the considered framework, we similarly control the loss of this ’false

alarm’ of detecting a non-existing change point. Based on Theorem 1 in section 3.2, we

can mimic the distribution of the test statistic (4.1) using the corresponding one with

multiplier bootstrap in (3.4). We can use the critical values in the bootstrap world given

a significance level for the test statistic on the same data interval by Equation (3.6).

Summary of LCMR Approach

Before we numerically analyze the proposed procedure in the next two sections, we sum-

marize the LCMR scheme:

1. Select intervals Ik, Sk, Ak,s and Bk,s, and at each time point t compute the test

statistics TIk for the step k = 1, . . . , K, see equation (4.1).

2. Testing procedure - select the set of critical values given a tuning parameter α , see

section 3.2.

3. Interval of homogeneity is considered as the interval Ik̂ for which the null has been
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first rejected at step k̂ + 1; k̂ = max
k≤K

{
k : TI` ≤ z◦I`(α), ` ≤ k

}
.

4. Adaptive estimation - the adaptively estimated parameter vector at the interval of

homogeneity θ̂ = θ̃I
k̂
.

5. Simulation

In this section we study the effectiveness of our adaptive approach in detecting the struc-

ture breaks in numerical analysis. Following the setup of WKM and the simulation study

in Gerlach et al. (2011) and Hong et al. (2009), we generate the data time series using a

two-variate GARCH process:

σ1t = β̃11σ1t−1 + β̃12σ2t−1 + γ̃11|y1t−1|+ γ̃12|y2t−1|+ c̃1 (5.1)

σ2t = β̃21σ1t−1 + β̃22σ2t−1 + γ̃21|y1t−1|+ γ̃22|y2t−1|+ c̃2

Yit = σitεit, εit ∼ N(0, 1) i.i.d. i = 1, 2

Denote the parameter set θ̃ = (β̃ij, γ̃ij, c̃i) where i, j = 1, 2.

Note that at a given quantile level τ , the quantile process qit(τ) = Quantτ (Yit | Ft−1)

satisfies qit(τ) = Φ−1(τ)σit, where Φ−1(τ) is the quantile function of the standard normal

distribution. Therefore, we have the following equations

q1t(τ) = β11q1t−1(τ) + β12q2t−1(τ) + γ11|y1t−1|+ γ12|y2t−1|+ c1 (5.2)

q2t(τ) = β21q1t−1(τ) + β22q2t−1(τ) + γ21|y1t−1|+ γ22|y2t−1|+ c2,

where the parameter set θτ = (βij, γij, ci) consists of ten coefficients βij = β̃ij, γij =

Φ−1(τ)γ̃ij, and ci = Φ−1(τ)c̃i for i, j = 1, 2.

In the simulation we generate the time series (Yit)
500
t=1 with the initial variances σi1 = 1

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0397



and two parameter sets

θleft = (0.5, 0, 0, 0.5, 0, 0.2, 0.2, 0, 0.5, 0.5),

θright = (−0.5, 0, 0, 0.5, 0, 0.2, 0.2, 0, 0.5, 0.5),

so that before the break t ≤ s = 250 the time series satisfy the GARCH process (5.1) with

the parameter set θleft and after the break with the parameter set θright. For each time

point we test a nested sequence of intervals I0 ⊂ I1 ⊂ · · · ⊂ IK with lengths nk = dck|I0|e.

Following the Interval Selection part in Section 4, we take K = 9, |I0| = 60 and c = 1.2.

The considered lengths of intervals are therefore,

{60, 72, 87, 104, 125, 150, 180, 215, 258}. (5.3)

Figure 2 presents the results of the detected homogenous interval length. Figures 3

and 4 show the estimated conditional quantiles q̂it based on the observations available at

a point t−1 with the corresponding selected homogeneity intervals. One can observe that

the proposed LMCR model favourably forecasts the swift of both time series. Figure 3

displays a natural lag situation, since we assume the smallest homogeneous test internal

as given in (5.3) has a length of 60 observations. Hence the forecasting of reaching time

for the switch (change point) is a bit lagged. It means even at point t there is a change

point, since the smallest homogeneous interval is 60, one can not cut the sample at change

point t and naturally there is a bit lag with the forecasting of change point based on the

detecting procedure. These results are also consistent with the selected homogeneous

intervals in Figure 2.

Note that the optimization problem (2.5) is computationally involved. We deal with

a highly non-concave target function that may even have various local maxima. Indeed,

the quantile functions (2.1) are polynomials of a multivariate parameter, with the total

degree growing up to the number of observations. Notice also that the equation (2.1) is a
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Figure 2: Selected length of homogeneous intervals for timepoints 80 to 500.

Figure 3: LMCR’s predicted quantile one step ahead (red solid line), actual quantile (blue

dashed line) and the original simulated time series (green plus points) for i = 1 in (5.2).
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Figure 4: LMCR’s predicted quantile one step ahead (red solid line), actual quantile (blue

dashed line) and the original simulated time series (green plus points) for i = 2 in (5.2).

simple recurrent neural network with a linear activation function and one can use software

developed specifically for fitting neural networks. In the simulations, we use python’s

Keras package, which exploits gradient descent, and the procedure is well optimized.

6. Application

6.1 Data and Parameter Dynamics

We consider two stock markets, namely, the S&P 500 and DAX series. Daily index

returns are obtained from Datastream and our data cover the period from 3 January

2005 to 29 December 2017, in total 3390 trading days. The daily returns evolve similarly

across the selected markets and all present relatively large variations during the financial

crisis period from 2008–2010, see Figure S1 in online appendix S8. Although the return

time series exhibit nearly zero-mean with slightly pronounced skewness values, all present
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comparatively high kurtosis, see Table T1 that collects the summary statistics in online

appendix S8.

We utilize the bivariate model (5.2) to study the selected (daily) stock market indices.

Indeed it is better to study higher time series dimensions. However, more variates lead to

more parameters need to be estimated, which tremendously affects the model estimation

accuracy and stability in practice. For instance, under the three dimensions data scenario,

the estimated parameters in the model alike (5.2) is 21 (one 3 by 3 parameter matrix for

the lag quantile items, plus another one 3 by 3 parameter matrix for the lag return items,

and 3 intercepts for each time series) with only one lag order for each variables, compared

with 10 parameters in bivariate scenario. Hence the parameters to be estimated are

more than two times, which will terrifically reduce the estimation efficiency. Particularly,

the proposed LMCR model is to detect the longest sample intervals under which the

model parameters are constant using a sequential test. Using this finite sub-interval,

more parameters underlie larger challenges to obtain the global optimal parameter set

in computation. Following the application set in White et al. (2015) with WKM model,

which utilize the bivariate model to analyze 230 financial time series through each pair

of variables between the market index and each of the financial institutions, the LMCR

application still study the bivariate situation with model (5.2).

We firstly consider different interval lengths (e.g., 60 and 500 observations) and ana-

lyze the corresponding time-variation estimates via two quantile levels, namely τ = 0.01

and τ = 0.05. Due to page limit, the results are moved to the online appendix, see Figures

S2 and S3 in online Appendix S8. One may observe a relatively large variability of the

estimated parameters while fitting the model over short data intervals and vice versa.

Key empirical results from the presented fixed rolling window exercise can be sum-

marized as follows: (a) there exists a trade-off between the modeling bias and parameter
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variability across different estimation setups, (b) the characteristics of time series of esti-

mated parameter values as well as the estimation quality results demand the application

of an adaptive method that successfully accommodates time-varying parameters, (c) data

intervals covering 60 to 500 observations may provide a good balance between the bias

and variability. Motivated by these findings, we now turn to LMCR.

We exactly follow the steps as described in Section 4 to implement LMCR in the

application. In line with the aforementioned empirical results, we select (K + 1) = 13

intervals, starting with 60 observations (three months) and ending with 500 observations

(two trading years), i.e., we consider the set

{60, 75, 94, 118, 148, 185, 231, 289, 361, 451, 500}

with the coefficient c = 1.25 in accordance with the literature. In addition, we assume

the model parameters are constant within the initial interval I0 = 60.

Meanwhile, we use the initial two-year time series, i.e. from 3 January 2005 to 30

December 2006, as the training sample to simulate the critical values. We exactly follow

the procedure described in Section 3.2 to operate the simulation. We set two cases of the

tuning parameter: the conservative case α = 0.8 and the modest case α = 0.9 to choose

the critical values. We present the empirical results in the next section.

6.2 Results

LMCR accommodates and reacts to structural changes. From the fixed rolling window

exercise in subsection 6.1 one observes time-varying parameter characteristics while facing

the trade-off between parameter variability and the modelling bias. How to account

for the effects of potential market changes on the tail risk based on the intervals of

homogeneity? In the application, we employ LMCR to estimate the tail risk exposure

as well as to analyze the cross-sectional spillover effects between the two selected stock
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markets. Using the time series of the adaptively selected interval length, one can trace

out the dynamic tail risk spillovers and identify the distinct roles in risk transmissions.

A. Homogeneous Intervals

The interval of homogeneity in tail quantile dynamics is obtained here by the LMCR

framework for the time series of DAX and S&P 500 returns. Using the sequential local

change point detection test, the optimal interval length is considered at two quantile

levels, namely, τ = 0.01 and τ = 0.05, see Figures 5 and 6. All figures present the

estimated lengths of the interval of homogeneity in trading days using the selected stock

market indices from 1 January 2007 to 29 December 2017. The upper panel depicts the

conservative risk case α = 0.8, whereas the lower panel denotes the modest risk case

α = 0.9.

In a similar way, the intervals of homogeneity are slightly shorter in the conservative

risk case α = 0.8, as compared to the modest risk case α = 0.9. The average daily selected

optimal interval length supports this, see, e.g., Table 1. The results are presented for the

selected quantile levels at the conservative and modest risk cases, α = 0.8 and α = 0.9,

respectively. In general the average lengths of selected intervals range between 7-10

months of daily observations across different markets. At quantile levels τ = 0.05, the

intervals of homogeneity are slightly larger than the intervals at τ = 0.01.

B. One-Step-Ahead Forecasts of Tail Risk Exposure

Based on LMCR, one can directly estimate dynamic tail risk exposure. The tail risk at

smaller quantile level is relatively lower than risk at higher levels, see Figure 7. Here the

estimated quantile risk exposure for the two stock market indices from 1 January 2007

to 29 December 2017 is displayed for two quantile levels. The left panel represents the
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Figure 5: Estimated length of the interval of homogeneity for the selected stock markets

for the conservative (upper panel, α = 0.8) and the modest (lower panel, α = 0.9) risk

cases, for quantile level τ = 0.01. The red solid line denotes one-month smoothed values.

α = 0.8 α = 0.9

τ = 0.05 159 231

τ = 0.01 143 171

Table 1: Mean value of the adaptively selected intervals. Note: the average number of

trading days of the adaptive interval length is provided for the DAX and S&P 500 market

indices at quantile levels, τ = 0.05 and τ = 0.01, and the conservative (α = 0.80) and the

modest (α = 0.90) risk case.
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Figure 6: Estimated length of the interval of homogeneity for the selected stock markets

for the conservative (upper panel, α = 0.8) and the modest (lower panel, α = 0.9) risk

cases, for quantile level τ = 0.05. The red solid line denotes one-month smoothed values.
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conservative risk case α = 0.8 results, whereas the right panel considers the modest risk

case α = 0.9. The latter leads on average to slightly lower variability, as compared to the

conservative risk case which results in marginally shorter homogeneity intervals.

Figure 7: One-step ahead forecasts of quantile risk exposure at level τ = 0.05 (blue

dashed line) and τ = 0.01 (red solid line) for return time series of DAX and S&P 500

indices (grey plus points) from 1 January 2007 to 29 December 2017. The left panel

shows results of the conservative risk case α = 0.8 and the right panel depicts results of

the modest risk case α = 0.9.

We also provide the out-of-sample forecasting performance of LMCR, see Table 2.

We report the results for two quantile levels τ = 0.01 and τ = 0.05, as well as the results

for WKM estimation with rolling window 250 observations, listed as WKM rolling. The
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performance is evaluated using the number of VaR exceedances. The return time series

is transformed into a time series of indicator functions which take value one if the return

exceeds the VaR and zero otherwise. For the estimation at quantile level τ = 0.01

(τ = 0.05), one would expect returns exceeding the VaR 1% (5%) on average. The table

reveals that the prediction of LMCR are relatively more precise, in which the values are

more closed to the targets 1% (5%) compared to WKM with rolling window estimation,

either for conservative risk case α = 0.8 or modest risk case α = 0.9 for both time series

DAX and S&P 500 at the two selected quantile levels.

LMCR WKM rolling

α = 0.8 α = 0.9

DAX S&P 500 DAX S&P 500 DAX S&P 500

τ = 0.01 1.25% 1.18% 1.22% 1.04% 1.39% 1.71%

τ = 0.05 5.33% 5.47% 5.08% 5.44% 5.79% 5.45%

Table 2: Out-of-sample predictive performance using the number of VaR exceedances.

WKM rolling denotes WKM estimation with rolling window 250 observations.

C. Time-Varying Coefficient Estimates

The transitions among the financial markets are revealed by the cross-sectional coef-

ficients (Adams et al.; 2014). The dynamics of the two coefficients, β12 and β21, are

representations of spillover effects. Figures 8 and 9 plot their dynamics from S&P 500 to

DAX, β12 and the ones from DAX to S&P 500, β21. The upper (lower) panel represent the

case of quantile level τ = 0.01 (τ = 0.05). The blue lines show results of the conservative

risk case α = 0.8 and the red lines depict results of the modest risk case α = 0.9.

Moreover, it shows that the cross-sectional coefficient β12 presents larger and more
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volatile dynamics compared with the coefficient β21 for both quantile levels τ = 0.01 and

τ = 0.05. The shifting of the risk spillovers from US market to German market tend to

be more intensive, especially during the unstable market period, e.g. the 2008 financial

crisis period and the 2012 European sovereign debt crisis. Hence, compared with the

spillovers from DAX to S&P 500, the US market appears to play dominate role in risk

transmissions of shocks to DAX indice, especially in volatile time.

Besides, the time series in Figures 8 and 9 at different quantile levels are obviously

quite different. The reason is twofold, first the lower quantile level (τ = 0.01) are showing

higher variation and second the α sensitivity as described via Figures 6 and 5 yields

shorter intervals for the conservative case. This is clearly visible in the upper panel of

Figure 8, where in the financial crisis the blue (conservative case) are indicating heavier

tail spillovers. The visible difference between 0.01 and 0.05 quantile levels are driven by

the tail behaviour of the data and in our opinion can not be attributed to a theoretical

feature since the tail behaviour varies over time.

7. Conclusion

The cross-sectional tail risk dependence among financial markets is time-varying, and

LMCR is constructed to cope with this challenge in evaluating the risk contagion. A local

adaptive approach assumes that at any given point of time, there is a historical interval

of observations over which the time series follows a parametric model. By utilizing a

local change point detection procedure, one can sequentially determine the interval of

homogeneity over which the time series behavior can be approximated described by a

fixed parameter. LMCR estimates the tail risk transmission by relying on the longest

detected interval of homogeneity.

A comprehensive simulation study supports the effectiveness of our approach in de-

tecting structural changes in multivariate tail risk estimation. When setting the quantile
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Figure 8: Time-varying coefficients β12 at quantile level τ = 0.01 (upper panel) and τ = 0.05

(lower panel) between DAX and S&P 500. The blue dashed lines show results of the conservative

risk case α = 0.8 and the red solid lines depict results of the modest risk case α = 0.9.

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0397



Figure 9: Time-varying coefficients β21 at quantile level τ = 0.01 (upper panel) and τ = 0.05

(lower panel) between DAX and S&P 500 . The blue dashed lines show results of the conservative

risk case α = 0.8 and the red solid lines depict results of the modest risk case α = 0.9.
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levels at τ = 0.05 and τ = 0.01 in an application of stock market indices DAX and S&P

500, the dynamic tail risk measures are successfully obtained. Besides, the developed

approach permits a delineation of the shifting tail risk spillover effects. We find that the

US market tends to play a prominent role in risk transmissions of shocks to the German

market, especially in volatile times.

Supplementary Material

The online Supplementary Material includes the appendix for proofs.
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