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Abstract: The existing methods for functional regression can be roughly di-

vided into two categories: direct functional regression (DFR) and functional

regression based on functional principal component analysis (FR-FPCA). D-

FR may contain too much noise, while FR-FPCA may be inefficient because

FPCA is independent of the response. In this paper, we investigate the effect

of a vector of random curves on a response by extracting the latent features

of the random curves that are associated with the response. Furthermore, to

improve flexibility and predictive accuracy, we propose a generalized addi-

tive multiple index model that captures the relationship between the latent

features and the response, without specifying component and link functions.

We form an objective function based on a penalized quasi-likelihood function

and FPCA to extract features, and to estimate the parameters and functions.

We further develop an iterative algorithm, which is proven to be convergent

and can expediently implement the proposed procedures. The convergence

rates, oracle property, selection consistency and asymptotic normality for

the proposed estimators are established. Numerical studies including exten-
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sive simulation experiments and two empirical applications show that the

proposed procedures and methodology outperform the existing methods in

interpretability, predictive accuracy and computation.

Key words and phrases: Functional principal component analysis (FPCA),

Generalized additive functional regression model (GAFRM), Generalized lin-

ear functional regression (GLFR), Penalized quasi-likelihood, Group-SCAD

penalty.

1. Introduction

New and advanced technologies enable us to collect greater quantities of functional data,

in diverse areas including but not limited to financial exchange, medical data from wear-

able devices, MRI or CT scans, biological growth, climatology, traffic and online auction

data. Consequently, the demands for analysis and prediction based on functional data

have increased exponentially. A challenge analyzing functional data is that functional

data may be irregularly and sparsely observed and typically contain too much noise. As a

result, to build the relationship between a response and functional covariates, it is crucial

to extract features from functional covariates that are associated with the response.

Many researchers have considered functional covariate regression analysis. Examples

include direct functional regression (DFR), including linear (Ramsay and Dalzell, 1991;

Hall and Horowitz, 2007), generalized linear (GLFR, Goldsmith et al., 2012; Müller and

Stadtmüller, 2005), generalized additive (GAFRM, Müller et al., 2013; McLean et al.,

2014) or semiparametric models (McLean et al., 2014; Radchenko et al., 2015). DFR

focuses on the cumulative information of functional covariates and requires that complete

information for the predictor functions be available, which is commonly infeasible in
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practice. As a remedy, various parametric or nonparametric techniques are applied

to recover whole random curves (Müller and Stadtmüller, 2005; James and Silverman,

2005). Such a remedy immediately raises concerns because the resultant curves may

not be accurate when the original observations are sparse or observed at irregular time

points (Yao et al., 2005; Li and Hsing, 2010). Furthermore, even when the whole curve

is observed, it is well known that applying DFR to the whole functions is often not the

best strategy because the functions typically contain too much noise.

To overcome these problems, functional regression based on functional principle com-

ponent (FPC) analysis (FR-FPCA), has been developed recently (Zhu et al., 2014; Wong

et al., 2019; Liu et al., 2021; Xue and Yao, 2021; Zhou et al., 2023). Specifically, Zhou

et al. (2023) studied functional linear regression that involves irregularly, sparsely and

noisily sampled functional covariates, and systematically investigated the theoretical

properties of the estimators within this framework. FR-FPCA utilizes standard func-

tional principal component analysis (FPCA) on the sample variance-covariance matrix

of a multivariate stochastic process Z(t) = {Z1(t), · · · , Zp(t)}′. This approach extracts

FPC scores and then performs regression on these scores. However, FR-FPCA is unsu-

pervised in the sense that the scores are extracted without the use of any information

on the response. As a consequence, the information on the relationship between the

response and covariates is ignored by FR-FPCA. For example, in our motivating data,

the FR-FPCA always picks the first three FPCs, while our method finds the first, fourth

and sixth FPCs for the market index of the Shanghai and Shenzhen Stock Exchange,

and the first, second and seventh FPCs for Alzheimer’s disease, which are important to
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explore the relationship between the response and functional covariates. Both out-of-

sample prediction errors and AUC, displayed in Tables 4 and 6, show that the proposed

method outperforms FR-FPCA in the analysis of real data.

Concretely, let ui = (ui1, · · · , ui,Kn)′ be the score vector from FPCA, where Kn is

large enough and can diverge to infinity to fully capture the information of functional

covariates Zi(t). The FR-FPCA produces the regression on the score by using the model,

such as Yi = g(uqi ) + εi with the first q FPC scores uqi = (ui1, · · · , ui,q)′ with various link

functions g(·). The first q FPC scores may be important for the functional covariates,

but not for the relationship between the response and covariates. On the other hand,

some important information on the relationship between the response and covariates

may be ignored by FR-FPCA, as mentioned above in two real-data examples.

To extract features for the response, we rewrite the FR-FPCA model as Yi =

g(Hui)+εi, where H is a d×Kn matrix of coefficients. The introduction of H offers us an

opportunity to detect the significant scores or directions, which is realized by distinguish-

ing columns of H = (h1, · · · ,hd)′ = (H·1, · · · ,H·,Kn) zero or nonzero. By excluding all

zero H·j’s, we can discern the important eigenfunction directions of Z(·), which measures

the features concerning the relation between the response and the covariate curves. More-

over, to enhance flexibility and improve predictive accuracy, we introduce a generalized

additive multiple index model. This model effectively describes the relationship between

the latent features Hui and the response variable without specifying component and link

functions. The proposed models have interesting features. First, the proposed models

effectively reduce the dimension from infinity to a fixed d and maintain the flexibility
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of the model by allowing complex patterns of the relationship between the response and

the features; see the related literature later. Second, the proposed models ensure that

all unknown functions are one-dimensional, so they circumvent the problem of fitting

high-dimensional surfaces and avoid the curse of dimensionality, which makes estima-

tion and prediction stable. For example, the out-of-sample prediction errors displayed

in Tables 4 and 6 for the market index of the Stock Exchange and Alzheimer’s disease,

respectively, show that the proposed method performs better than do the existing DFR

and FR-FPCA methods. Finally, by investigating the shape of the eigenfunctions φ(·)

and the sparse pattern of H, we explore the features and understand how the covariate

functions affect the response variable so that interpretability is achieved.

We form an objective function by combining the quasi-likelihood function and FPCA,

with the penalty on H to extract low-dimensional latent features fi. This combination

enables us to simultaneously estimate all unknown quantities and extract related fea-

tures based on all of the available information. As a result, the estimation efficiency is

improved. To overcome the computational problem caused by the nonconvexity of the

quasi-likelihood function, nonsmoothness of the penalty term and the large number of

functions and ultrahigh-dimensional parameters, we propose an iterative algorithm along

with a series of linear approximations, so that the updated estimators of the functions

and high-dimensional parameters in each step can be explicitly expressed. The imple-

mentation and calculations of the proposed procedure hence are straightforward, even

though the expressions of the estimators seem complicated. The algorithm is proven to

be convergent. An efficient and user-friendly R package is available at our GitHub home
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page. After establishing the convergence rate of ûi, we give the asymptotic properties of

the resulting estimators, including the estimation and selection consistency and asymp-

totic normality. As a byproduct, we give the explicit convergence rate for the FPC scores

under a general framework, which allows Kn → ∞, and includes sparse or dense, and

balanced or unbalanced observations. Particularly, when Kn = O(1), the convergence

rate for ûi is consistent with that established for dense observations (Li et al., 2010; Zhu

et al., 2014). The established convergent rate for ûi is also confirmed by our simulation

studies.

The rest of this paper is organized as follows. In Section 2, we describe the model

and estimation procedure. Section 3 presents the algorithm for implementing the pro-

cedure. In Section 4, we establish the estimation consistency, selection consistency and

asymptotic normality for the proposed estimators. Sections 5 and 6 illustrate the nu-

merical performance of the proposed procedure in simulation studies and two empirical

applications. Section 7 includes concluding remarks. The technical proofs are deferred

to the Supplementary Material.

2. Model and Estimation

2.1 Model

Let Y be the response. We assume that the observations {Zi(·), Yi}, i = 1, · · · , n, are

independent identically distributed (i.i.d.), where Zi(t) is a realization of a vector of

random functions Z(t) with the mean function µ(t) = {µ1(t), · · · , µp(t)}′ and covariance

function G(t, s) = {Gij(t, s)}1≤i,j≤p, Gij(t, s) = cov{Zi(t), Zj(s)}. By the Karhunen-

Loève theorem and considering measurement error, the multivariate random functions
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2.1 Model7

can be expressed as

Zi(t) = µ(t) +
Kn∑
k=1

uikφk(t) + ei(t), (2.1)

with Kn → ∞, where ui1, · · · , uiKn are independent scores with mean zero for the ith

observation, φk(t) = (φk1, · · · , φkp)′(t) are the orthogonal unit-norm eigenfunctions of

G(t, s) (Happ and Greven, 2018), ei(t) = {ei1(t), · · · , eip(t)}′ is the measurement error

vector with Eei(t) = 0, and ei(·) and uik are independent. Let φ = (φ1, · · · ,φKn)′ and

U = (u1, · · · ,un)′. The covariate curves are described by the functions (µ,φ).

Denote fi = Hui = (fi1, · · · , fid)′ and consider the models for mi = E(Yi|Zi) =

E(Yi|fi)

E(Yi|fi) = g{
d∑
j=1

ψj(fij)}=̂g{
d∑
j=1

ψj(h
′
jui)}, (2.2)

and var(Yi|Zi) = V (mi) <∞, where ψj is an unknown j-th component function, g(·) is

an unknown link function, hj = (hj1, · · · , hjKn)′ is the Kn-dimensional parameter vector

with d� Kn, and V (·) is a known variance function and determined by the variable type

of Yi. In practice, it is possible that the directions that contain important information

on the relationship between Zi(·) and Yi may not be important for Zi(·) and can be

easily ignored in the model (2.1). To avoid such a scenario, we take Kn large enough

so that we can keep as much information of Zi(·) as possible. On the other hand, it is

generally common that only a few of the Kn scores are related to the response. Hence,

it is critical to identify the subset of significant scores or directions, which is equivalent

to distinguishing zero and nonzero columns of H.
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2.2 Estimation8

We call models (2.1) and (2.2) the generalized functional feature regression model

(GFFR). When ui is an observable covariate, model (2.2) includes a variety of commonly

used semiparametric regression models, such as generalized linear models, the single

index models, generalized additive models, and the generalized additive index model.

Denote the Euclidean norm by ‖ · ‖, and N =
∑n

i=1 ni where ni is the number of

observations for curve Zi(·). Models (2.1) and (2.2) are not identifiable. We impose the

following assumption to ensure identifiability.

(C1) ‖H‖ = 1 and the first nonzero element of each column H′ is positive, h′jhj∗ = 0 for

all j 6= j∗, E{ψj(h′jui)} = 0 and
∑d

j=1 var{ψj(h′jui)} = 1, E(ui) = 0, cov(ui,ui) =

IKn ,
∫
φ(t)φ(t)′dt is a diagonal matrix with distinct positive elements in decreasing

order, and
∫
φk(t)dt > 0.

Conditions on H are commonly used in multiple-index models (Chiou and Müller,

2004), and conditions on ψj(·) are often used in generalized additive models (Lin et al.,

2018). Conditions on ui and φ(·) are similar to those in the literature of FPCA (Yao

et al., 2005; Happ and Greven, 2018).

2.2 Estimation

We first consider the estimation of µ(·),φk(·), g(·) and ψj(·) based on spline smoothing

for its easy computation (Huang, 2003). For an easy presentation, we assume all functions

have a common compact support, and without loss of generality, to be [0, 1]. We approx-

imate µq(·), φkq(·), g(·), ψj(·) by µnq(t) = α′qBn(t), φnkq(t) = γ ′kqBn(t), gn(x) = δ′Sn(x)

and ψnj(x) = ϑ′jSn(x), respectively, where Bn(·) and Sn(·) are kn and k̃n-dimensional

spline basis functions, respectively. Here, we utilize two sets of spline basis function-
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2.2 Estimation9

s due to the different space complexities of {µq(·), φkq(·)} and {g(·), ψj(·)}. Denote

α = (α1, · · · ,αp) and γk = (γk1, · · · ,γkp).

Similar to Zhou et al. (2008), we modify the identifiability Condition (C1) to the

following empirical version (C1’) after spline approximation.

(C1’) ‖H‖ = 1 and the first nonzero element of each column H′ is positive, h′jhj∗ = 0 for

all j 6= j∗. LetN−1
n∑
i=1

niϑ
′
jSn(h′jui) = 0 for j = 1, . . . , d, N−1

d∑
j=1

n∑
i=1

ni
{
ϑ′jSn(h′jui)

}2
=

1, N−1
n∑
i=1

niui = 0 and N−1
n∑
i=1

niuiu
′
i = IKn . Suppose that

∫
Bn(t)Bn(t)′dt =

Ikn , ΓΓ′ is diagonal with decreasing order, and the first nonzero element of each

row of Γ is positive, where Γ = (−→γ 1, · · · ,−→γ Kn)′, and −→γ k denotes the vector formed

by concatenating the volumes of matrix γk.

To reflect the situation of irregular and possibly subject-specific time points, we

assume that Zi(·) is measured at ti = (ti1, · · · , ti,ni)′. Let n−1
∑n

i=1 `(mi, Yi; ui) be the

log quasi-likelihood function of Y = (Y1, · · · , Yn) given (u1, · · · ,un), with `(mi, Yi; ui)

being defined through ∂`(mi,Yi;ui)
∂mi

= Yi−mi
V (mi)

. Denote ϑ = (ϑ1, · · · ,ϑd)′, Θn = (H, δ,ϑ)

and Ωn = (α,Γ,U,H, δ,ϑ), we propose to estimate Ωn by maximizing

l(Ωn; Y,Z) = n−1
n∑
i=1

`(Θn; ui)− wn−1
n∑
i=1

p∑
q=1

‖Ziq −Bn(ti)αq −
Kn∑
k=1

uikBn(ti)γkq‖2(2.3)

under the constraints in (C1’), where Z = (Z11,Z12, · · · ,Znp), Ziq = Ziq(ti), `(Θn; ui)

is `(mi, Yi; ui) with g and ψj replaced by gn and ψnj, and w = mini n
−v
i for v > 0.

We can view (2.3) as a penalized log quasi-likelihood function, in which we shrink ui’s

toward the principal components of Zi(·). In addition, l(Ωn; Y,Z) can also be regarded

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0379



2.2 Estimation10

as the conditional joint likelihood of (Yi,Zi) given ui by taking w = 1/(2σ2) when

var{ei(t)} = σ2Ip.

In practice, there are only a few latent scores related to the response. In particular,

if score uik is not significant, then the component k of all hj, j = 1, · · · , d is zero, that is,

the k-th column of H is zero. Hence, the importance of the k-th score can be evaluated

by the k-th column of H. We then use a group-penalty to simultaneously detect the

significant scores and estimate unknown functions and parameters by maximizing

Lp(Ωn) = n−1
n∑
i=1

`(Θn; ui)−
Kn∑
k=1

pλ(‖H·k‖)

−wn−1
n∑
i=1

p∑
q=1

‖Ziq −Bn(ti)αq −
Kn∑
k=1

uikBn(ti)γkq‖2, (2.4)

where pλ(·) is a group-SCAD penalty function with the regularization parameter λ.

Remark 1. If we ignore the information hidden in the relationship between Yi and ui,

the first two terms n−1
∑n

i=1 `(Θn; ui) and
∑Kn

k=1 pλ(‖H·k‖) in (2.4) are dropped and

our estimator for ui simplifies to that for the FPCA (Happ and Greven, 2018). By

maximizing Lp(Ωn), our estimators of ui use not only the information in the covariates

Zi(·), but also the information of the relationship between Yi and Zi(·). Hence the

estimators for ui are an integration of non-supervised and supervised estimators. This

is different from FR-FPCA, which estimates ui just based on Zi(·).
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3. Algorithm

3.1 An Iterative Algorithm for Implementation

The penalized likelihood Lp(Ωn) involves high dimensional parameters and nonparamet-

ric functions, so a direct maximization is not a wise choice. We develop an iterative

procedure where high dimensional parameters α, Γ, U and δ are separately estimated

given others, and their estimators can be explicitly expressed in each step.

To start the iterative algorithm, we first obtain an initial value {α(0),Γ(0),U(0)} for

(α,Γ,U) by multiple FPCA on Zi(·), which can be implemented by using an existing

R package such as MFPCA (Happ and Greven, 2018). Then, we obtain an initial value

H(0) for H from directional regression of Yi on u
(0)
i for i = 1, . . . , n (Li and Wang, 2007),

and finally obtain initial values ϑ(0) and δ(0) for ϑ and δ by the iterative backfitting

algorithm (Lin et al., 2018) with U and H fixed at their initial values.

Denote Vi1 = BniZi, Vi2 = BniB
′
ni, Zi = (Z′i1, · · · ,Z′ip)′, and Bni is the pkn × pni

block diagonal matrix with block elements Bn(ti)
′. Let Ω(o−1)

n be the estimates of Ωn

after the (o− 1)-th iteration. In the o-th iteration, we update the estimates as follows.

Update α,Γ,U. Differentiating Lp(Ωn) with respect to α, γk and ui respectively, and

setting the derivatives to zero leads to the following solutions:

−→α (o) =

(
n∑
i=1

Vi2

)−1 n∑
i=1

(Vi1 −Vi2Γ
′ui) , (3.1)

−̃→γ k =

{
n∑
i=1

(u2ik)Vi2

}−1 n∑
i=1

(
Vi1 −Vi2

−→α −Vi2

∑
r 6=k

uir
−→γr

)
uik, (3.2)

ũi = (2wΓVi2Γ
′)
−1
{
Yi −mi

V (mi)
× ∂mi

∂ui
+ 2wΓ(Vi1 −Vi2

−→α )

}
, (3.3)
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3.1 An Iterative Algorithm for Implementation12

where mi = g{
∑d

j=1 ψj(h
′
jui)}, g(·) = δ′Sn(·), ψj(·) = ϑ′jSn(·). To adhere to the

identification condition on Γ, we further perform a singular value decomposition (SVD)

on Γ̃ = (−̃→γ 1, · · · , −̃→γ Kn)′ to obtain Γ̃ = S1Λ
1/2
1 D1 and Γ(o) = Λ

1/2
1 D1 with the first

nonzero element of each row of Γ(o) positive. Likewise, denoting Ũ = (ũ1, · · · , ũn)′ −

1
N

∑n
i=1 niũ

′
i and P = diag{√n1, · · · ,

√
nn}, we perform the SVD on PŨ to obtain

PŨ = S2Λ2D2 and U(o) =
√
NP−1S2.

Update H. To address the nonsmoothness of the SCAD penalty, we adopt the local

quadratic approximation for the penalty pλ(·) (Fan and Li, 2001):

pλ(‖H·k‖) ≈ pλ(‖H0
·k‖) +

ṗλ(‖H0
·k‖)

2‖H0
·k‖
{(H·k)′H·k − (H0

·k)
′H0
·k},

when H·k ≈ H0
·k. Let R(H) = 1

n

∑n
i=1 `(H, g,ψ′; ui)− 1

2

−→
H ′G{H(o−1)}

−→
H, where G(H) =

diag
{
ṗλ(‖H·1‖)
‖H·1‖ , · · · , ṗλ(‖H·Kn‖)‖H·Kn‖

}
⊗ Id with Kronecker product ⊗. To estimate H(o), we

first obtain H̃ = arg max‖H‖=1R(H) by one-step updating:

−̃→
H =

−→
H(o−1) −

[
∂2{‖Ṙ(H(o−1))‖2}

∂
−→
H∂
−→
H ′

]−1
∂{‖Ṙ(H(o−1))‖2}

∂
−→
H

. (3.4)

We then perform the SVD to obtain H̃ = S3Λ3D3, and H(o) = D3/‖D3‖, and adjust

the signs of each column H(o)′ to ensure that the first nonzero element is positive.

Update ϑ, δ. Let R(ϑj) = 1
n

∑n
i=1 `(H, g,ψ′; ui), and denote A⊗2 = AA′ for any ma-

trix A. Similar to (3.4), we obtain a one-step updating estimate ϑ̃j for ϑj by maximizing

R(ϑj). We further standardize ϑ̃ = (ϑ̃1, · · · , ϑ̃d) by (C1’) to obtain

ϑ
(o)
j =

ϑ̃j − [ 1
N

∑n
i=1 ni{Sn(h′jui)}⊗2]−1{ 1

N

∑n
i=1 niSn(h′jui)}⊗2ϑ̃j{∑d

j=1 v̂ar(ψj)
}1/2

, (3.5)
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3.1 An Iterative Algorithm for Implementation13

where ψij = ϑ′jSn(h′jui), and v̂ar(ψj) is the empirical variance of ψij. Similar to (3.1),

δ(o) =

(
n∑
i=1

[Sn{
∑d

j=1 ψj(h
′
jui)}]⊗2

V (mi)

)−1 n∑
i=1

YiSn{
∑d

j=1 ψj(h
′
jui)}

V (mi)
. (3.6)

We estimate Ωn iteratively using expressions (3.1)-(3.6) until ‖Ω(o)
n )−Ω(o−1)

n ‖/‖Ω(o−1)
n ‖ ≤

ε or the relative difference of objective function |Lp(Ω(o)
n )−Lp(Ω(o−1)

n )|/|Lp(Ω(o−1)
n )| ≤ ε,

where ε is a prespecified small number. We summarize the computational steps in

Algorithm 1.

Algorithm 1 The proposed iterative algorithm

Input: {Zi(·), Yi}, maximum iterations NI , relative tolerance of the objective function
ε.

Output: (α̂, Γ̂, Û, Ĥ, ϑ̂, δ̂).
1: Initialize {α(0),Γ(0),U(0),H(0),ϑ(0), δ(0)}.
2: for each o = 1, · · · , NI do
3: Update Ω(o)

n = {α(o),Γ(o),U(o),H(o),ϑ(o), δ(o)} based on Equations (3.1)–(3.6);
4: Evaluate the objective function Lo = Lp(Ω

(o)
n ) by (2.4).

5: if ‖Ω(o)
n )−Ω(o−1)

n ‖/‖Ω(o−1)
n ‖ ≤ ε or |Lo − Lo−1|/|Lo−1| ≤ ε then

6: break;
7: end if
8: end for
9: return (α̂, Γ̂, Û, Ĥ, ϑ̂, δ̂).

Remark 2. The estimators of α,Γ,U and δ have closed forms and are easy to cal-

culate. We cannot obtain the estimators of H and ϑ directly due to the inclusion of

nonlinear unknown functions g(·), ψj(·) and their derivatives. One-step updating is used

to calculate H and ϑ, together with the convenient usage of the R function jacobian for

calculating the derivatives. The overall computational cost is reasonable. In addition, in

Proposition 1 of Section S2 in the Supplementary Material, we show that the proposed

iterative algorithm converges.
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3.2 Selection of tuning parameters14

3.2 Selection of tuning parameters

The proposed estimation procedure involves the selection of several tuning parameters:

the numbers of FPCKn and splines kn, the dimension of index d, the tuning parameters w

and λ. The details of selection criteria are illustrated in Section S6 of the Supplementary

Material. We also test the performance of our tuning procedure via simulation studies

in Section 5, the results in Supplementary Material shows that the selection procedure

works well.

4. Theoretical properties

We now establish the large sample properties, including estimation and selection consis-

tency as well as the asymptotic normality of the proposed estimators. Their proofs are

deferred to the Supplementary Material. Throughout the paper, we use the subscript

“0” for the true value; for example, the true value of H is denoted by H0 and s0 is the

true number of the active group. We allow s0 to grow with the sample size n.

Denote the L2 norm by ‖ · ‖2. Define the distance between Θ1 = (
−→
H1
′, g1,ψ

′
1)
′

and Θ2 = (
−→
H2
′, g2,ψ

′
2)
′ as d(Θ1,Θ2) = ‖H1 −H2‖ + ‖g1 − g2‖2 + ‖ψ1 − ψ2‖2. Given

nonnegative integers l, s, define the Hölder space of order r = l + s as Hr = { f(·) :

|f (l)(t1) − f (l)(t2)| ≤ c|t1 − t2|s, for any 0 ≤ t1, t2 ≤ 1 } , where c is a finite positive

constant. To establish the asymptotic properties, we need the following regularity con-

ditions.

(A1) µq0(t), φkq0(t), g0, ψj0 are in Hölder space of order r ≥ 2.

(A2) The second derivatives of `(m,Y ; u) with respect to m and u are locally Lipschitz
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continuous and bounded.

(A3) The fourth moment
∑p

q=1

∫ 1

0
E[{Zq(t)− µq(t)}4]dt is finite.

(A4) There exist c0 > 1 and 0 < M <∞ such that λk−λk+1 ≥Mk−c0−1. Furthermore,

eigenfunctions satisfy supk,q,t∈[0,1] |φkq(t)| ≤M <∞.

(A5) Kn = O(n%) with % < 1/{2(c0 + 3)}, kn = O(nν) with %(c0 + 3)/r < ν < 1/2, and

k̃n = O(nν̃) with 0 < ν̃ < 1/2.

(A6) m=̂ mini{ni} = O(nε) with ε > %(2c0 + 5) + 2ν.

Condition (A1) imposes smoothing and bounded restrictions, that are commonly

used in the semiparametric regression literature (Xie and Huang, 2009). Condition (A2)

is a mathematical regular condition on the objective function so that the objective func-

tion is manageable. Conditions (A3) and (A4) have been used in the literature of FPCA

(Zhu et al., 2014), which implies λk ≥ Mk−c0 . Condition (A5) is a restriction on the

number of the knots and the principle components. This condition was also required by

Happ and Greven (2018). Note that we have different requirements on kn and k̃n. The

condition on k̃n is standard (Xie and Huang, 2009), while kn is larger than the usual one

to ensure Kn eigenfunctions to be approximated well when Kn → ∞. Condition (A6)

indicates that each functional covariate has enough observations. Conditions (A5) and

(A6) are required to assure that the scores ui can be consistently estimated.

We first provide the rates for the case without the penalty on H, which is crucial to

establish the theoretical results for the proposed estimators. Denote (ᾰ, Γ̆, Ŭ, H̆, δ̆, ϑ̆)

to be the maximizer of (2.3) without the penalty on H, ğ(·) = δ̆
′
Sn(·), ψ̆j(·) = ϑ̆

′
jSn(·),

ψ̆ = (ψ̆1, · · · , ψ̆d) and Θ̆n is the corresponding estimator of Θ.
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Lemma 1. Let ρn = k−rn +
√
Kn

√
n
N

+ kn√
Kn

√
n
N

+ 1√
n

, where r is defined in Condition

(A1). Under Conditions (C1’) and (A1)-(A6), for any i = 1, . . . , n, we have

‖ŭi − ui‖ = Op

(
Kc0+3
n ρn

)
, (4.1)

d(Θ̆n,Θ0) = Op

√ k̃n +Kn

n
+ k̃−rn +Kc0+3

n ρn

 . (4.2)

Remark 3. In (4.1), Kc0+3
n k−rn is the approximation error of the spline, which reduces

to the usual order k−rn (Xie and Huang, 2009) for a finite number of functions, that is,

Kn = O(1). The term Kc0+3
n (

√
Kn

√
n/N + kn√

Kn

√
n/N + 1/

√
n) is the estimation error.

Particularly, the estimation of ui uses only the information from the i-th sample, where

the number of time points N/n actually plays the role of the sample size in the estimation

of ui. This is reflected by the term K
c0+7/2
n

√
n/N , which reduces to K

c0+7/2
n /

√
m if

ni ≡ m. The term Kc0+3
n ( kn√

Kn

√
n/N+1/

√
n) is the estimation error from the estimation

of eigenfunctions. This error deceases with an increase in the number of time points N/n

and the sample size n. Both the approximation and estimation errors increase as the

number of principal components Kn increases due to the increasing number of unknown

functions. While, a large number of splines, kn, reduces the approximation error, but

increases the estimation error. We numerically demonstrate the rationale of (4.1) in

Section 5.

Remark 4. (4.2) gives the rates of convergence for (g,ψ,H) without the penalty on H

when g(·) and ψ(·) are approximated by the B-spline basis. Unlike the usual B-spline

approximation, the convergence rate depends on not only the approximation error k̃−rn

for the nonparametric functions and the estimation error

√
k̃n/n for the expansion coef-
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ficients of spline, but also the convergence rate of ŭi, K
c0+3
n ρn, for the price of unknown

ui.

To gain further insight into the formula for the asymptotic results, we consider here

three special cases that are of particular interest.

Case 1. When Kn = O(1), the rate given in (4.1) reduces to ‖ŭi − ui‖ = Op(knn/N +

1/
√
n+ k−rn ), which further reduces to ‖ŭi−ui‖ = Op(1/

√
n) if ni = m = O(n1+2ν) and

ν ≥ 1/2r. The rate ‖ŭi − ui‖ = Op(1/
√
n) has been established under the framework of

kernel smoothing with various assumptions. For instance, in Lemma 2 of Li et al. (2010)

and Hall and Hosseini-Nasab (2006), it was assumed that mn−5/4 →∞, while in Lemma

1 of Zhu et al. (2014), it was assumed m = O(n3/2) for dense and balanced observations.

Case 2. When Kn →∞, Happ and Greven (2018) established ‖ŭi−ui‖ = Op(K
c0+3
n rGn )

under Condition ‖G(j)−Ĝ(j)‖op = Op(r
G
n ) for all j ≤ p, where G(j) is the covariance oper-

ator of Zj(t) and ‖·‖op is the operator norm. They also pointed out that rGn = O(1/
√
nh2)

in the case of sparse irregular observations with Gaussian assumption and bandwidth h;

rGn = O(1/
√
n) when the observations are sufficiently dense and the bandwidth is small

enough, thus ‖ŭi − ui‖ = Op(K
c0+3
n /

√
n), which agrees with our result if m and kn are

large enough.

Case 3. When m = O(nK2c0+5
n k2n +nK2c0+7

n ), ν ≥ 2%(c0 + 3) + 1/(2r) and k̃n ≥ K2c0+6
n ,

the effect brought by the estimation of ui is negligible, and (4.2) simplifies to the

well-known result in nonparametric estimation: d(Θ̆n,Θ0) = Op(

√
k̃n/n + k̃−rn ), which

provides the ground for Θn to achieve the optimal convergence rates (Stone, 1980).
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Main results

Before presenting the main theorems, we give some notations. Without loss of gen-

erality, we assume that the first s0 (s0 ≤ Kn) columns of H0 are nonzero. Hence,

we can write H0 = (H1,0,H2,0 = 0). Let (Û, Ĥ, δ̂, ϑ̂) be the maximizer of (2.4) and

ĝ(·) = δ̂
′
Sn(·), ψ̂j(·) = ϑ̂

′
jSn(·), ψ̂ = (ψ̂1, · · · , ψ̂d). Denote Ĥ = (Ĥ1, Ĥ2) with Ĥ1 and

Ĥ2 being the corresponding matrices of s0 and Kn− s0 columns, respectively. To obtain

our main theorem, we need three additional Conditions (A7)–(A9).

(A7)

√
k̃n+Kn

n
+ k̃−rn +Kc0+3

n ρn � λ� inf1≤k≤s0 ‖H0,·k‖.

(A8) m = O(nK2c0+5
n k2n + nK2c0+7

n ), ν ≥ 2%(c0 + 3) + 1/(2r) and k̃n ≥ K2c0+6
n .

(A9) Σ = E(S−→
H1,0

S ′−→
H1,0

), defined in the Supplementary Material, is positive definite.

Condition (A7) gives a bound for the penalty parameter λ. Condition (A8) means that

the effects from the estimation of ui are negligible on ĝ(·), ψ̂j(·) and Ĥ. These conditions

are slightly stronger than (A5) and (A6). Condition (A9) ensures the existence of the

asymptotic covariance matrix.

Theorem 1. Under Conditions (C1’) and (A1)-(A7), with s0 = o(n1/8), we have

(i) Sparsity: limn→∞ P (Ĥ2 = 0) = 1.

(ii) Convergence rate:

‖ûi − ui‖ = Op

(
Kc0+3
n ρn

)
, i = 1, . . . , n, (4.3)

‖Ĥ1 −H1,0‖+ ‖ĝ − g0‖2 + ‖ψ̂ −ψ0‖2 = Op

(√
k̃n + s0
n

+ k̃−rn +Kc0+3
n ρn

)
. (4.4)

(iii) Furthermore, if Conditions (A8) and (A9) hold, we have asymptotic normality:
√
na′nΣ

1/2(
−→
Ĥ1 −

−→
H1,0)→ N(0, 1) for any unit s0d-vector an.
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Remark 5. From Theorem 1(i), it is clear that we can achieve model selection consis-

tency by choosing a proper λ. This also shows that s0 can be large to o(n1/8), which is

slower than that in the usual high-dimensional regression with observable covariate ui

(Xie and Huang, 2009). The convergence rate given in (ii) indicates that, under the con-

ditions of Theorem 1, the rate of convergence of ui is the same as that without penalties

on H because the penalties are independent of ui. When (A8) holds; that is, the number

of time points m = N/n, and the numbers of spline basis kn and k̃n are sufficiently large.

The order in (4.4) is dominated by the first two terms, which implies that the uncertainty

from selecting and estimating ui can be ignored. The convergence rate given in (ii) also

implies that a large m is beneficial for the resulting estimator, which is confirmed by our

simulation studies. Furthermore, as usual, if k̃n = O(n1/(2r+1)), which can be guaranteed

when % < {(2r+1)(2c0+6)}−1, then ‖Ĥ1−H1,0‖+‖ĝ−g0‖2+‖ψ̂−ψ0‖2 = Op(n
−r/(2r+1)).

This is the optimal rate of convergence for the univariate nonparametric regression (S-

tone, 1980). Result (iii) shows the asymptotic normality for the nonzero columns of H,

together with (i); then, we obtain the oracle property of the SCAD penalized estimator.

5. Simulation Studies

In this section, we first illustrate (4.1) in Lemma 1 through numerical simulations. Then

we investigate the finite-sample performance of the proposed estimation procedures. We

compare the proposed method (Prop) with the non-supervised FR-FPCA model and

the direct functional regression (DFR) models, including generalized linear functional

regression with unknown link function (UGLFR, Müller and Stadtmüller, 2005) and

generalized additive functional regression (GAFRM, McLean et al., 2014). In addition,
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the model (2.2) can be interpreted as a neural network (NN) comprised of 4 layer-

s of ui (Schmidt-Hieber, 2020). We also compare our method with the NN approach

on scores ui by adopting the architecture presented in Schmidt-Hieber (2020), result-

ing in what we refer to as NN-FPCA. In the FR-FPCA and NN-FPCA, the latent

scores are extracted from the covariates alone. We assess the performance of various

estimators via bias, standard deviation (SD), and root mean square error (RMSE). Par-

ticularly, for the estimates f̂(·) of a function f(·), bias, SD and RMSE are defined

by bias =
[

1
ngrid

∑ngrid
i=1 {Ef̂(ti)− f(ti)}2

]1/2
, SD =

[
1

ngrid

∑ngrid
i=1 E{f̂(ti)− Ef̂(ti)}2

]1/2
and RMSE = (bias2 + SD2)

1/2
, where ti (i = 1, . . . , ngrid) are the grid points in which

the function f(·) is estimated, Ef̂(ti) is approximated by its sample mean based on N

simulated data. In the following experiments, we set ngrid = 300, and use the cubic B-

spline with qn = 4 interior knots, or kn = qn + 4 = 8, the largest integer smaller than nν

with ν = 1/3, so that the theoretical requirements that ν < 1/2 and ν̃ < 1/2 in (A5) are

satisfied. In fact, the estimators of the proposed method are insensitive to the number

of interior knots, as shown in Web Table 2 by comparing the results for qn = 2, 3, 4, 5.

5.1 Simulation settings

We simulate N = 200 runs, each with the sample size n = 600. We generate func-

tional predictors by Zi(t) = µ(t) +
∑6

k=1 uikφk(t) + ei(t). For each trajectory Zi(t),

the observation time points were randomly sampled from U(0, 1), and the number of

measurements was chosen from a discrete uniform distribution on {60, 61, · · · , 70}. We

consider p = 1 in Examples 1-3, and p = 2 in Example 4. Let µ(t) = t + sin πt,
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φ2l−1(t) = 4 cos{(2l − 1)πt}/
√

2l − 1 and φ2l(t) = 4 sin{(2l − 1)πt}/
√

2l for l = 1, 2, 3,

uik follows a normal distribution N(0, 1) and ei(t) ∼ N(0.0.52). In the following exam-

ples, we consider Bernoulli, Poisson and normal distributions for the response.

Example 1. Set d = 2, ψ1(x) = exp−0.5(x−1)
2 −0.6, ψ2(x) = 2Φ(3x) − 1, and gen-

erate Yi from Yi = I{ψ1(h
′
1ui) + ψ2(h

′
2ui) > Ui}, where h1 = (0, 0, 0, 0, 0.5, 0.5)′,

h2 = (0, 0, 0, 0, 0.5,−0.5)′, Ui follows a mixed normal 0.5N(1/4+0.05, 0.52)+0.5N(1/4−

0.05, 0.52) and I is the indicator function. Then, given ui, Yi has the Bernoulli distribu-

tionB(1, pi) with pi = E(Yi|ui) = g{ψ1(h
′
1ui)+ψ2(h

′
2ui)} and g(x) = 0.5Φ {(x− 1/4− 0.05)/0.5}+

0.5Φ {(x− 1/4 + 0.05)/0.5}. It is clear that g(·) is not the commonly used logit function.

Example 2. The setting is similar to Example 1 except that g(x) = (2x + 0.5)2/5,

and Yi is independently generated from a Poisson distribution with mean g{ψ1(h
′
1ui) +

ψ2(h
′
2ui)}.

Example 3. The setting is similar to Example 2 except that Yi is independently gener-

ated from a normal distribution Yi = g{ψ1(h
′
1ui) + ψ2(h

′
2ui)}+ Ui given ui, where Ui is

generated from N(0, 0.52) and independent of ui.

Example 4. We set p = 2 and consider a joint analysis of the two curves. The setting is

similar to Example 1 except that Zi(t) are generated from Zi1(t) = µ1(t) + 2ui1{φ1(t) +

φ2(t)}+2ui2φ2(t)+
2
√
6

3
ui3φ3(t)+

√
2ui4φ4(t)+

2
√
10
5
ui5φ5(t)+

2
√
3

3
ui6φ6(t)+ei1(t), Zi2(t) =

µ2(t)+2
√

2ui1φ2(t)+
√

2ui2{φ1(t)−φ2(t)}+ 2
√
6

3
ui3φ4(t)+

√
2ui4φ3(t)+ 2

√
10
5
ui5ui5φ6(t)+

2
√
3

3
ui6φ5(t) + ei2(t), where µ1(t) = t + sin πt, µ2(t) = exp(t), φ2l−1(t) = cos{(2l − 1)πt},

φ2l(t) = sin{(2l − 1)πt} for l = 1, 2, 3, and eiq(t) ∼ N(0.0.52), q = 1, 2.
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5.2 Illustrations of the theoretical results

(4.1) shows that Kn is crucial to the error bound of ŭi. To gain deeper insight into the

theoretical error of ‖ŭi − ui‖ as a function of Kn, we conduct simulations to explore

this error term. We generated data using the setting of Example 1 with ni = 50, 30,

even numbers Kn from 4 to 26, n = 400, and kn fixed. The numerical errors are the

averages of the estimated ‖ŭi − ui‖ based on 200 replications. The theoretical errors

αKM
n + b are obtained by the linear regression of estimated ‖ŭi−ui‖ on KM

n , where the

regression coefficients (α, b) and M are estimated via the R function optim. These results

are summarized in Figure 1. As expected, the numerical results closely align with the

theoretical ones. Specifically, (i) when ni and Kn are small (ni ≤ 30, Kn ≤ 16) so that the

third term of ρn dominates the other three terms, then ‖ŭi−ui‖ = Op(K
c0+5/2
n kn

√
n
N

) =

Op(K
c0+5/2
n ) with c0 ≥ 1 according to Condition (A4). The numerical results closely

align with the theoretical errors O(K4.5
n ), as shown by the orange dashed line in the

lower panel of Figure 1; (ii) when ni is small but Kn is large (ni ≤ 30 and Kn > 16)

so that the second term of ρn dominates the other terms in order, then ‖ŭi − ui‖ =

Op(K
c0+7/2
n

√
n
N

) = Op(K
c0+7/2
n ). The numerical results closely align with the theoretical

errors O(K5.5
n ), as shown by the blue dotted line in the lower panel of Figure 1; (iii)

If increasing the number of time points (ni ≥ 50) so that (
√
Kn + kn/

√
Kn)

√
n
N

are

dominated by k−rn + 1√
n

in order, then ‖ŭi − ui‖ = Op{Kc0+3
n (k−rn + 1√

n
)} = Op(K

c0+3
n ).

The numerical results closely align with the theoretical errors with K5
n, as shown by the

orange dashed line in the top panel of Figure 1. These findings also imply that c0 = 2

seems appropriate.

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0379



5.2 Illustrations of the theoretical results23

5 10 15 20 25

0.0
0.1

0.2
0.4

0.5

Kn(ni=50)

0.3

(a) : i=1

Numerical

5
TheoreticalO(Kn)

5 10 15 20 25
0.0

0.1
0.2

0.4
0.5

Kn(ni=50)

||∪ u i
−u

i|| 0.3

(b) : i=200

5 10 15 20 25

0.0
0.1

0.2
0.4

0.5

Kn(ni=50)

||∪ u i
−u

i|| 0.3

(c) : i=400

5 10 15 20 25 30

0
2

4
6

8
10

12

Kn(ni=30)

∪ || u
i −u

i||

(d) : i=1

Numerical 

TheoreticalO(Kn4.5)

TheoreticalO(Kn5.5)

5 10 15 20 25 30

0
2

4
6

8
10

12

Kn(ni=30)

(  :e) i=200

5 10 15 20 25 30

0
2

4
6

8
10

12
Kn(ni=30)
|| u∪ i −

u i|
|

(f) : i=400

||∪ ui −u
i||

|| u∪ i −
u i|
|

Figure 1: The simulated (solid line) and theoretical (broken line) values of ‖ŭi − ui‖
when i = 1, 200, 400 (from left to right), and ni = 50 (upper panel) and 30 (lower panel).

We also carefully examine the effect of increasing the number of the observation

times, ni, on the estimation accuracy. We set the combinations of n = 100, 300, 600

and ni = 10, 30, 60, 100. The accuracy of the estimator Û1 is measured by the smallest

nonzero canonical correlation between Û1 and U1, denoted by ccor(Û1,U1), where U1

is the score matrix corresponding to H1,0. Web Figures 1 and 2 display the average of

ccor(Û1,U1) and the RMSE of (Ĥ1, ĝ, ψ̂) for Examples 1 and 2. From Web Figures 1

and 2, we can see that the canonical correlation increases and the RMSE decreases as

n or ni increases. When ni is smaller, for example, ni ≤ 30, the estimation accuracy

is more sensitive to ni than n, and ni plays a crucial role in the estimation. When ni

is larger, for example, ni ≥ 60, the estimation accuracy is more sensitive to n than ni.
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These observations confirm the theoretical results in Theorem 1.

5.3 Comparisons with the FR-FPCA method

We compare the proposed method with the FR-FPCA that is implemented by using

the proposed estimation procedure with ui being estimated by the conventional F-

PCA (Ramsay and Silverman, 2005) and without the penalty term on H. We take

(Kn, kn, d, λ, v) = (6, 8, 2, 0.6, 0.7) by the approach described in Section 3. Table 1 and

Web Table 1 present the bias, empirical SD and RMSE of the parametric and non-

parametric estimates for Examples 1-4. It is clear that the FR-FPCA method produces

larger biases and variances. The RMSE of the proposed method is consistently smaller

than that of the FR-FPCA method for all estimators, which indicates that the proposed

method is superior to the FR-FPCA method. This superiority is attributed to the use

of penalties, which select information directions that are important for the relationship

between the response and the covariate curves. In addition, we also observe that the

improvement of the proposed estimators for the component and link functions is more

remarkable than that for the mean functions. This is because correct extraction of infor-

mation on the relationship between the response and the covariates is crucial to estimate

the component and link functions, while the estimates of the mean and eigenfunctions

mainly rely on the information from the covariate curves Zi(t).

To assess the performance in the selection of features, we present the number of

groups selected (]G) and variables selected (]var), true positive rate (TPR) and false

positive rate (FPR) in Table 2 based on 200 replications for Examples 1-4. The numbers
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Table 1: The estimation results for Examples 1-3.

Prop FR-FPCA

µ(·) φ5(·) φ6(·) h15 h16 h25 h26 g(·) ψ1(·) ψ2(·) µ(·) g(·) ψ1(·) ψ2(·)
Example 1 bias 0.002 0.008 0.008 0.006 0.004 0.006 0.002 0.031 0.016 0.015 0.004 0.317 0.059 0.066

SD 0.030 0.054 0.042 0.024 0.028 0.020 0.022 0.126 0.082 0.071 0.037 0.225 0.474 0.629
RMSE 0.030 0.055 0.043 0.025 0.028 0.021 0.023 0.129 0.084 0.072 0.037 0.388 0.478 0.632

Example 2 bias 0.002 0.008 0.008 0.008 0.006 0.007 0.007 0.029 0.017 0.010 0.004 0.267 0.131 0.141
SD 0.030 0.069 0.073 0.033 0.030 0.035 0.028 0.101 0.050 0.037 0.054 0.381 1.315 1.397

RMSE 0.030 0.069 0.073 0.034 0.031 0.036 0.029 0.105 0.053 0.038 0.054 0.466 1.322 1.404
Example 3 bias 0.002 0.010 0.010 0.002 0.007 0.003 0.005 0.020 0.015 0.010 0.002 0.409 0.102 0.101

SD 0.028 0.084 0.059 0.031 0.030 0.025 0.022 0.082 0.039 0.052 0.038 0.398 0.782 1.199
RMSE 0.028 0.085 0.060 0.031 0.031 0.025 0.022 0.084 0.042 0.053 0.038 0.570 0.788 1.203

Table 2: The results of selected number of group (]G), number of variables (]var), and
TPR, FPR for Examples 1-4.

]G ]var TPR FPR

bias SD RMSE bias SD RMSE mean mean
Example 1 0.025 0.157 0.159 0.020 0.140 0.142 0.970 0.000
Example 2 0.101 0.427 0.439 0.101 0.483 0.494 0.919 0.001
Example 3 0.071 0.422 0.427 0.066 0.391 0.397 0.943 0.000
Example 4 0.041 0.264 0.267 0.036 0.211 0.214 0.958 0.004

of selected groups and variables are close to the true values. The TPR is close to 1 and

the FPR is close to 0. These results suggest that the proposed method not only selects

important variables but also rules out unimportant variables with high probabilities.

Web Figure 3 displays the average estimates of the link and component functions,

along with the associated 95% pointwise confidence bands for Examples 1-3, which shows

that the proposed estimators for the link and component functions are close to the true

curves.

5.4 Comparisons with the direct functional regression models and NN-

FPCA

We compare the proposed method with the existing direct functional regression models,

including UGLFR and GAFRM, and NN-FPCA. Since the model settings are different,
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we assess the performance of the estimators in terms of the predicted error. To be fair,

we further consider two settings, denoted as Examples 5 and 6 in the Supplementary

Material. From Web Figure 5, we can see that the predicted error of the proposed

method is smaller than UGLFR, GAFRM and NN-FPCA when the models are correctly

specified, and is smaller than UGLFR, GAFRM and NN-FPCA when the models are

misspecified. Further details are illustrated in Section S7 of the Supplementary Material.

6. Applications: Stock Index and Alzheimer’s disease

6.1 Stock Data Study

In a well-established stock market, prices fully reflect available information about the

market and its constituents (Wang et al., 2014; Cao et al., 2020). However, it is well

known that directly predicting stock prices is difficult and less reliable due to high

volatility. Here, we model and predict the direction of price movement for the mar-

ket index of the Shanghai and Shenzhen Stock Exchanges, two of the fastest grow-

ing financial exchanges in developing Asian countries. The dataset collected from a

financial service provider records the Shanghai and Shenzhen Composite Index from

January 2017 to November 2019 in daily minute observations. To ensure indepen-

dence, we analyze the observations on Tuesday out of 145 weeks. In practice, to

test the null hypothesis that the functional time series data in 145 weeks is independen-

t, we define Ĉn,h(t, s) = 1
n

∑n−h
i=1 {Zi(t) −

1
n

∑n
i′=1 Zi′(t)}{Zi+h(s) −

1
n

∑n
i′=1 Zi′(s)} and

V̂n,H =
∑H

h=1

∫ 1

0

∫ 1

0
Ĉ2
n,h(t, s)dtds, where H is the number of lags. Following Horváth

et al. (2013), the testing statistics
nV̂n,H−H∗{

∫ 1
0 Ĉn,0(t,t)dt}

2√
2H{

∫ 1
0

∫ 1
0 Ĉ

2
n,0(t,s)dtds}2

with H∗ = H −H(H + 1)/(2n)
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is distributed as a standard normal distribution under the null hypothesis. As shown in

Web Figure 6 of the Supplementary Material, all p-values for lags H = 1, · · · , 90 (week)

exceed 0.08 with p-value being 0.12 for H = 7 (week). This indicates that we do not have

sufficient evidence to reject the null hypothesis of indenpendence at the 0.05 significant

level. Furthermore, we plot the Candlestick chart of stock index curves on 145 days in

Figure 2(a) after removing missing values, distortions and incorrect records.
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Figure 2: (a) The Candlestick chart of Stock Index data. (b)-(h) Estimated mean,
eigenfunctions, component and link functions (dashed lines) and their 95% confidence
bands (dotted lines) by the proposed method for the Stock data. (i) The ROC curves
of the proposed, the non-supervise FR-FPCA method, KGLFR, UGLFR, GAFRM and
MIFR for the stock study.
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Let Zi(t) be the stock index curve in the morning of day i, Yi = 1 if the stock went

up, and 0 otherwise at the end of day i. We try to determine how Zi(t) in the morning

leads to a stock increasing at the end of the day. We first rescale the observed time of

Zi(·) to [0, 1] and fit the data by using the proposed method and the FR-FPCA method.

The tuning parameters (Kn, kn, d, λ, v) = (6, 8, 2, 0.9, 0.7) were obtained by the approach

described in Section 3.

The resulting estimates for the parameters are displayed in Table 3, and indicate that

both methods select three characteristics of the covariate curves. However, the FR-FPCA

method picks the first three FPCs while the proposed method picks the first, fourth and

sixth FPCs. Figures 2(c)-2(e) plot the estimated first, fourth and sixth eigenfunctions,

component functions and link function along with their corresponding 95% point-wise

confidence bands, based on 200 bootstrap replications. These three figures show that all

of the first, fourth and sixth eigenfunctions have a similar U-shape, which is consistent

with the results reported in Wang et al. (2014) and Cao et al. (2020). Figures 2(c)-2(e)

also show that the first eigenfunction has an apparent positive effect on the rise of stock

when t < 0.2 or t > 0.8, and a negative effect when 0.2 ≤ t ≤ 0.8, which may be

attributed to a large volume of transactions and intense trading at the start and end

of the morning market, and the positive effects of the fourth and sixth eigenfunctions

vigorously exhibit the financial market.

Table 3: The estimated coefficients for the Stock data.

Prop FR-FPCA

h1 0.662 0 0 -0.188 0 -0.162 0.368 0.342 0.498 0 0 0
h2 0.203 0 0 0.676 0 0.046 0.495 0.164 -0.478 0 0 0
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Furthermore, to check the reliability and prediction accuracy of the proposed method,

we calculate the prediction errors based on the proposed method, the FR-FPCA method,

the GLFR with the logit link function (KGLFR), UGLFR, GAFRM, the multiple in-

dex functional regression models (MIFR) (Radchenko et al., 2015) and NN-FPCA. We

randomly divide the data into training and testing sets with ratios of 1:2, 1:1 and 2:1.

For each subject in the testing sets, we predict Y by using the model obtained from the

training datasets and compute the mean square prediction errors, which are displayed

in Table 4. We further evaluate the classification performance by presenting the receiver

operating characteristic (ROC) curves for all six methods in Figure 2(i), and the asso-

ciated area under the curve (AUC) values in Table 4. From Table 4 and Figure 2(i),

we can see that the prediction error of the proposed method is smaller and the AUC

value is larger than those of the other six methods. These superiorities indicate that

the proposed method can accurately extract the relevant information about the response

from the covariate curves and improve the prediction accuracy.

Table 4: Prediction error of Y and AUC values for the Stock data.

Training set rate Prop FR-FPCA KGLFR UGLFR GAFRM MIFR NN-FPCA

1/3 0.195 0.258 0.237 0.225 0.198 0.249 0.458
1/2 0.179 0.205 0.192 0.192 0.219 0.250 0.373
2/3 0.143 0.146 0.174 0.167 0.165 0.250 0.850

AUC 0.836 0.622 0.570 0.619 0.618 0.624 0.884

6.2 ADNI Study

We continue with our study on Alzheimer’s disease (AD), which is irreversible and the

most common form of dementia and can result in the loss of thinking, memory and lan-

guage skills. It is of substantial interest to unravel the complex brain changes involved
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in the onset and progression of AD. The brain volume of the hippocampus, which is

the brain region associated with memory loss and disorientation, has been found to be

associated with human cognitive function. We use the density of brain volume of the

hippocampus to determine whether patients have cognitive impairment. The dataset

includes 390 participants enrolled in the first phase of the Alzheimer’s Disease Neu-

roimaging Initiative (ANDI) study, a large cohort study designed to prevent and to treat

Alzheimer’s disease. Each patient’s record consists of the density for each of the observed

501 equispaced sampling volumes in the interval of [-255, 255]. Among the 390 patients,

172 subjects were diagnosed with cognitive impairment (AD) and 218 were cognitively

normal (CN).

Let Zi(t) be the density curve of the log of the Jacobian volume of the hippocampus

(t), Yi = 1 if cognitive impairment, and 0 otherwise for subject i. We are interested

in what general shape or feature of Zi(t) is associated with cognitive impairment. The

density curves for all the subjects are plotted in Web Figure 7(a) and available at http:

//adni.loni.usc.edu.

We scale the log Jacobian volume into [0,1] and fit the data by using the pro-

posed method and the FR-FPCA method. The tuning parameters (Kn, kn, d, λ, v) =

(6, 8, 2, 0.9, 0.7) are obtained by using the procedure described in Section 3. The esti-

mated coefficients of the latent scores when using the proposed and FR-FPCA methods

are presented in Table 5, which indicates that both methods select three latent scores.

However, the FR-FPCA method picks the first three scores while the proposed method

extracts the first two and the last scores. Web Figures 7(b)-7(h) plot the estimated mean
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function, first, second and sixth eigenfunctions, component functions and link function

as well as their corresponding 95% point-wise confidence bands based on 200 bootstrap

replications. Looking closer at the shape of the eigenfunctions, we can see that the shape

of the first eigenfunction is similar to that of Happ and Greven (2018), which is inter-

pretable as a related AD effect, and there is a positive relationship between the density

curve and the first eigenfunction. The shapes of the second and sixth eigenfunctions

are opposite to those of the density curves and there is a bend upward on the large t

since AD patients tend to have low hippocampal volumes which indicate a high level

of cognitive impairment. It appears that CN is more sensitive to the second and sixth

eigenfunctions. Table 6 reports the prediction error of Y and AUC values when using

the proposed method, the FR-FPCA method, KGLFR, UGLFR, GAFRM, MIFR and

NN-FPCA. Web Figure 7(i) displays the ROC curves, which along with the results in

Table 6 indicate that the proposed method has better performance.

Table 5: The results for the ADNI data: parametric part.

Prop FR-FPCA

h1 0.493 -0.499 0 0 0 0.093 0.669 0.056 0.222 0 0 0
h2 0.507 0.486 0 0 0 -0.083 0.111 -0.679 -0.163 0 0 0

Table 6: Prediction error of Y and AUC values for the ADNI data.

Training set rate Prop FR-FPCA KGLFR UGLFR GAFRM MIFR NN-FPCA

1/3 0.162 0.212 0.163 0.173 0.162 0.254 0.629
1/2 0.010 0.138 0.030 0.020 0.032 0.289 0.644
2/3 0.054 0.238 0.592 0.408 0.585 0.254 0.205

AUC 0.974 0.942 0.957 0.958 0.964 0.970 1.000

7. Concluding Remarks

In this paper, we have proposed to evaluate the effect of functional covariate curves

through the regression of the response on features of the curve. Differing from existing
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approaches, we allow the distributions of the response and the scores, as well as the

link between the response and the latent scores to be unknown, making the models very

flexible and the methods applicable to broader situations. Furthermore, to reduce the

difficulty of optimizing the target function, we have developed a convenient iterative

algorithm which benefits from the one-step updating with R function jacobian, and

obtained a closed form for the shape function in each step. Extensive simulation studies

and real data analyses illustrate that the proposed procedure is efficient, stable and

computationally simple.

In the FPCA literature, one generally pays more attention to the first few scores

associated with large eigenvalues. These so-called important latent scores do not nec-

essarily carry the most relevant information for the response. Instead the latent scores

corresponding to the smaller eigenvalues may play a more important role to the response.

This observation may partially explain why FR-FPCA methods work poorly in the real

data analyses. It is also worth pointing out that regressing the response on latent scores

also brings many conveniences technically because latent scores are formed in vectors,

instead of functions like functional curves, and more powerful tools developed for vectors

can be applied for expedient calculations. Furthermore, such a regression strategy may

also make the regression more stable because noise in functional covariates has been

pre-reduced.

Various extensions can be considered in the future. It is possible to extend the model

to consider multiple covariates or high-dimensional covariates which characterize features

of individuals. Given such possible covariates, functional feature regression analysis for
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the high-dimensional covariates is noteworthy of investigation for gaining more efficiency

and for addressing specific scientific questions. An investigation of the current setting

with high-dimensional functional covariates could also be of interest.

Supplementary Material

The Supplementary Materials contains abbreviation and notation, detailed proofs of

Lemma 1 and Theorem 1 in Section 4, and relevant Tables and Figures in Sections 5 and

6.2.
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Horváth, L., M. Huvsková, and G. Rice (2013). Test of independence for functional data.

Journal of Multivariate Analysis 117, 100–119.

Huang, J. Z. (2003). Local asymptotics for polynomial spline regression. Ann Stat 31 (5),

1600–1635.

James, G. M. and B. W. Silverman (2005). Functional adaptive model estimation. J Am

Stat Assoc 100 (470), 565–576.

Li, B. and S. Wang (2007). On directional regression for dimension reduction. J Am

Stat Assoc 102 (479), 997–1008.

Li, Y. and Hsing (2010). Deciding the dimension of effective dimension reduction space

for functional and high-dimensional data. Ann Stat 38 (5), 3028–3062.

Li, Y., N. Wang, and R. J. Carroll (2010). Generalized functional linear models with

semiparametric single-index interactions. J Am Stat Assoc 105 (490), 621–633.

Lin, H., L. Pan, S. Lv, and W. Zhang (2018). Efficient estimation and computation for

the generalised additive models with unknown link function. J Econometrics 202 (2),

230–244.

Liu, S., H. Zhang, and J. Zhang (2021). Model averaging estimation for partially linear

functional score models. arXiv:2105.00953, 2021 .

McLean, M. W., G. Hooker, A.-M. Staicu, F. Scheipl, and D. Ruppert (2014). Functional

generalized additive models. J Comput Graph Stat 23 (1), 249–269.

Müller, H.-G. and U. Stadtmüller (2005). Generalized functional linear models. Ann

Stat 33 (2), 774–805.

Müller, H.-G., Y. Wu, and F. Yao (2013). Continuously additive models for nonlinear

functional regression. Biometrika 100 (3), 607–622.

Radchenko, P., X. Qiao, and G. M. James (2015). Index models for sparsely sampled

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0379



REFERENCES35

functional data. J Am Stat Assoc 110 (510), 824–836.

Ramsay, J. O. and C. Dalzell (1991). Some tools for functional data analysis. JR Stat

Soc B 53 (3), 539–561.

Ramsay, J. O. and B. W. Silverman (2005). Functional Data Analysis. Springer.

Schmidt-Hieber, J. (2020). Nonparametric regression using deep neural networks with

relu activation function. Ann Stat 48 (4), 1875–1897.

Stone, C. J. (1980). Optimal rates of convergence for nonparametric estimators. Ann

Stat 8 (6), 1348–1360.

Wang, Z., Y. Sun, and P. Li (2014). Functional principal components analysis of shanghai

stock exchange 50 index. Discrete Dyn Nat Soc 2014 (1), 1–7.

Wong, R. K., Y. Li, and Z. Zhu (2019). Partially linear functional additive models for

multivariate functional data. J Am Stat Assoc 114 (525), 406–418.

Xie, H. and J. Huang (2009). SCAD-penalized regression in high-dimensional partially

linear models. Ann Stat 37 (2), 673–696.

Xue, K. and F. Yao (2021). Hypothesis testing in large-scale functional linear regression.

Statistica Sinica 31, 1101–1123.

Yao, F., H.-G. Müller, and J.-L. Wang (2005). Functional data analysis for sparse

longitudinal data. J Am Stat Assoc 100 (470), 577–590.

Zhou, H., F. Yao, and H. Zhang (2023). Functional linear regression for discretely

observed data: from ideal to reality. Biometrika 110 (2), 381–393.

Zhou, L., J. Z. Huang, and R. J. Carroll (2008). Joint modelling of paired sparse func-

tional data using principal components. Biometrika 95 (3), 601–619.

Zhu, H., F. Yao, and H. H. Zhang (2014). Structured functional additive regression in

reproducing kernel hilbert spaces. JR Stat Soc B 76 (3), 581–603.

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0379


	Introduction
	Model and Estimation
	Model
	Estimation

	Algorithm 
	An Iterative Algorithm for Implementation
	 Selection of tuning parameters

	Theoretical properties
	Simulation Studies
	Simulation settings
	Illustrations of the theoretical results
	Comparisons with the FR-FPCA method
	 Comparisons with the direct functional regression models and NN-FPCA

	Applications: Stock Index and Alzheimer's disease
	Stock Data Study
	 ADNI Study

	Concluding Remarks



