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Abstract: This paper aims to derive the asymptotic distributions of the spiked

eigenvalues of large-dimensional spiked Fisher matrices, without imposing Gaus-

sian assumptions or restrictive assumptions on covariance matrices. We first

establish an invariance principle for the spiked eigenvalues of the Fisher matrix.

That is, we show that the limiting distributions of the spiked eigenvalues are

invariant over a broad range of population distributions satisfying certain con-

ditions. Utilizing this invariance principle, we establish a central limit theorem

(CLT) for the spiked eigenvalues, and further explore some interesting applica-

tions by using the CLT to derive the power functions of the Roy Maximum root

test for linear hypotheses in linear models, as well as the test in signal detection.

To evaluate the effectiveness of the newly proposed test, we conduct Monte Carlo

simulation studies and compare its performance with existing tests.

Key words and phrases: Roy maximum root test, Random matrix theory, Spiked

model, Two-sample covariance problem.
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1. Introduction

Motivated by several applications of hypothesis on two-sample covariance

matrices and linear hypothesis on regression coefficient matrix in linear

models, we consider the following two-sample spiked model. Let Σ1 and Σ2

be the covariance matrices from two p-dimensional populations, and let S1

and S2 be the corresponding sample covariance matrices with sample sizes

n1 and n2. The two-sample spiked model assumes that Σ2 = Σ1+∆, where

∆ is a p×pmatrix of finite rankM . It is of great interest to study statistical

inference on the spikes, including, but not limited to, testing the presence

of the spikes, testing the number of the spikes, and calculating the power

under the alternative hypothesis in two-sample testing problems. Thus, it

is critical to establish the asymptotic properties of the spiked eigenvalues

of a Fisher matrix F = S1S
−1
2 . It is of particular interest to derive the

asymptotic distribution of λmax(F), the largest eigenvalue of F. However,

the existing related works are limited due to imposed strict conditions such

as the blockwise diagonal assumption on Σ1Σ
−1
2 , rank-one perturbation

and etc. These limitations narrow the scope of applications, which will be

elaborated later on. Therefore it is necessary to investigate the limiting

behavior of the eigenvalues of the large-dimensional Fisher matrix under

less strict assumptions.
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To extend the existing work to a broader spectrum, we establish an

invariance principle for the spiked eigenvalues of the Fisher matrix, and the

invariance principle can be used as a universal probability tool for deriv-

ing the asymptotic distribution of local spectral statistics of F under mild

assumptions on Σ1Σ
−1
2 . Before we proceed further, let us briefly review

some inspiring studies on the one-sample spiked model. The one-sample

spiked model Σ = Ip+∆ has received a lot of attentions in the literatures,

where Ip is the identity matrix, and ∆ is a low-rank p × p matrix. John-

stone (2001) was the first work proposing one-sample spiked model to study

principal component analysis (PCA). Since the work by Johnstone (2001),

many works have been published and focus on studying the asymptotic law

for spiked eigenvalues of large-dimensional covariance matrix (Baik et al.,

2005; Baik and Silverstein, 2006; Paul, 2007; Bai and Yao, 2008). Also see

(Bai and Yao, 2012; Fan and Wang, 2017; Cai et al., 2020; Jiang and Bai,

2021) for a more general one-sample spiked model. These works establish

the limiting distribution for the spiked eigenvalues of the sample covariance

matrices under different settings.

Compared with the one-sample spiked model, there are relatively few

studies on two-sample spiked model. Zheng et al. (2017) derived the limit-

ing distribution of the eigenvalues of a Fisher matrix and established a CLT
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for a wide class of functions of all the eigenvalues as a whole. According

to Han et al. (2016), the largest eigenvalue of the Fisher matrix follows the

Tracy-Widom law under some conditions. Therefore, the results in Zheng

et al. (2017) are not applicable for the local spectral statistics, especially

for those made of spiked eigenvalues. For a simplified two-sample spiked

models assuming that Σ1Σ
−1
2 is a rank M perturbation of identity ma-

trix with diagonal independence and bounded population fourth moment,

Wang and Yao (2017) established CLT for the extreme eigenvalues of large-

dimensional spiked Fisher matrices. Based on Wang and Yao (2017), Xie

et al (2021) investigated the limiting laws for extreme eigenvalues of the

Fisher matrix when the number of spikes is divergent and these spikes are

unbounded under the diagonal Σ1Σ
−1
2 assumption. Johnstone and Onatski

(2020) proposed the rank-one two-sample spiked models that represent the

James’ classes in James (1964), and further derived the asymptotic behav-

ior of the likelihood ratios in large-dimensional setting. The aforementioned

works impose some restrictive or unrealistic conditions such as only one

threshold, diagonal assumption, rank-one perturbation, etc. The first two

conditions (i.e., only one threshold and diagonal assumption) imply that

the spiked eigenvalues and non-spiked eigenvalues are generated by inde-

pendent variables. The assumption of rank-one perturbation means that
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there is only one spike, which is just an extremely special case.

In this paper, we study the asymptotic properties of Fisher matrix of

a two-sample spiked model under a new setting, which allows that (a) two

populations may have different general covariance matrices, (b) the spiked

eigenvalues of the Fisher matrix may be scattered into the spaces of a few

groups, and (c) the largest eigenvalue may tend to infinity. Under this new

setting, the fourth moments of population are not required to be bounded.

For ease of presentation, we refer to a Fisher matrix with this new setting

as a generalized spiked Fisher matrix. Under a general setting, we establish

an invariance principle for the generalized spiked Fisher matrix by using a

similar but more complicated technique of Jiang and Bai (2021). It is worth

noting that Jiang and Bai (2021) focused on the one-sample spiked model

with only one random covariance matrix, which cannot cover the spectral

statistics of a Fisher matrix with the product of two random covariance

matrices without an explicit expression. Compared with the existing works

on spiked Fisher matrices, this work relaxes the bounded fourth-moment

condition on population to a tail probability condition, which is a regular

and necessary condition for the weak convergence of the largest eigenvalue.

With the aid of the invariance principle theorem, we further establish the

CLT for the local spiked eigenvalues of large-dimensional generalized spiked
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Fisher matrices under mild assumptions on the population distribution.

As applications, we use the CLT to derive the power functions of Roy

maximum root test on linear hypothesis in large-dimensional linear models

and the signal detection test. As a by-product, our results naturally extend

the result of Wang and Yao (2017) to a general case under which we can

successfully remove the diagonal or block-wise diagonal assumption on the

matrix Σ1Σ
−1
2 . Our setting allows the spiked eigenvalues to be generated

from variables that are partially dependent on the ones corresponding to

the non-spiked eigenvalues. Additionally, our setting allows for the use of

multiple pairs of thresholds for groups of spiked eigenvalues. In summary,

our setting is more realistic than those in the existing works.

The rest of this paper is organized as follows. We establish the invari-

ance principle and the CLT of generalized spiked Fisher matrix in Sections

2 and 3, respectively. We use the CLT to derive the local power functions

of Roy maximum root test for linear hypothesis in large-dimensional linear

models and the test in signal detection in Section 4. We present some nu-

merical study in Section 5. Additional technical proofs are presented in the

Supplementary Material.
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2. Invariance principle for generalized spiked Fisher matrix

2.1 Phase transition for the spiked eigenvalues

Assume that

X = (x1,x2, . . . ,xn1) = (xij), 1 ≤ i ≤ p, 1 ≤ j ≤ p,

Y = (y1,y2, . . . ,yn2) = (ykl), 1 ≤ k ≤ p, 1 ≤ l ≤ p,

are two p-dimensional arrays with components having zero mean and iden-

tity variance. Denote Σ
1/2
1 X and Σ

1/2
2 Y to be two independent sample

matrices, where Σ1 and Σ2 are two nonnegative definite matrices. We de-

note the corresponding sample covariance matrices of the two observations:

S1 =
1

n1

Σ
1/2
1 XX∗Σ

1/2
1 , S2 =

1

n2

Σ
1/2
2 YY∗Σ

1/2
2 . (2.1)

The matrix F = S1S
−1
2 is so-called generalized Fisher matrix in Jiang

et al. (2021), where the condition p < n2 ensures that S2 is invertible. The

eigenvalues of F are denoted by

lp,1 ≥ · · · ≥ lp,j ≥ · · · ≥ lp,p. (2.2)

It is well known that the eigenvalues of F are the same as those of the

matrix with the form below (Still use F for brevity, if no confusion):

F = T∗
pS̃1TpS̃

−1
2 , (2.3)
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where Tp = Σ
1/2
1 Σ

−1/2
2 , S̃1 = (1/n1)XX∗ and S̃2 = (1/n2)YY∗. Assume

that the spectrum of T∗
pTp is formed as

βp,1, · · · , βp,j, · · · , βp,p (2.4)

in descending order. Moreover, the singular value decomposition of Tp is

defined as

Tp = U

 D
1
2
1 0

0 D
1
2
2

V∗, (2.5)

whereD1 is a diagonal matrix of theM spiked eigenvalues of the generalized

spiked Fisher matrix F, and D2 is the diagonal matrix of the non-spiked

ones with bounded components. Moreover, U and V are unitary matrices

(orthogonal matrices for real case). Let U = (U1,U2), and U1 and U2 are

two matrices with size p×M and p× (p−M). Same consideration applies

to V = (V1,V2).

To derive the limiting law for the spiked eigenvalues of F, we need to

introduce some notation and preliminary assumptions. For any n×nmatrix

An with real eigenvalues, let Fn be the empirical spectral distribution (ESD)

function of An, which is defined as:

Fn(x) =
1

n
Card{i;λAn

i ≤ x},

where λAn
i denotes the i-th largest eigenvalue of An. If Fn has a limiting

distribution F , then we call it the limiting spectral distribution (LSD) of
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sequence {An}. For any function of bounded variation G on the real line,

its Stieltjes transform is defined by

m(z) =

∫
1

λ− z
dG(λ), z ∈ C+.

Assumption 1. The two double arrays {xij, i, j = 1, 2, ...} and {yij, i, j =

1, 2, ...} consist of independent and identically distributed (i.i.d.) ran-

dom variables with a mean of zero and a variance of one. Furthermore,

it holds that Ex2ij = 0 and Ey2ij = 0 in the complex case if the variables

and Tp are complex.

Assumption 2. Assuming that cn1 =p/n1 ∈ (0,∞), cn2 =p/n2 ∈ (0, 1) is

considered throughout the paper when min(p, n1, n2) → ∞.

Assumption 3. Assuming that Tp = Σ
1/2
1 Σ

−1/2
2 is nonrandom, and the

ESD Hn(t) of {T∗
pTp} satisfies Hn

w→ H, (
w→ denotes weak conver-

gence), where H is a nonrandom probability measure.

Assumption 4. Assume that

lim
τ→∞

τ 4P (|x11| > τ) = 0 and lim
τ→∞

τ 4P (|y11| > τ) = 0 (2.6)

hold for the i.i.d. samples, where both of the fourth moments are not

necessarily required to exist.
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Assumption 5. Suppose that

max
t,s

|uts|2
[
E{|x11|4δ(|x11| < ηn1

√
n1)} − 2− q

]
→ 0,

max
t,s

|vts|2
[
E{|y11|4δ(|y11| < ηn2

√
n2)} − 2− q

]
→ 0,

where q = 1 for real case and q = 0 for complex, δ(·) is the indicator

function, (uts) = U1, and (vts) = V1. Here ηn1 and ηn2 are two

constants sequences concerning n1 and n2 converging to 0.

These assumptions are interpreted as follows: Assumptions 1–2 are the

commonly-used condition imposed in large-dimensional settings, whereas

the dependent relationship are reflected by the matrix Tp. Following the

Assumption 3, the spiked eigenvalues of {T∗
pTp} are subject to the condition

βp,jk+1 = βp,jk+2 = · · · = βp,jk+mk

def
= αk, k ∈ {1, . . . , K}. (2.7)

Here αk’s are outside the support of H and satisfy the separation condition,

which means

min
k ̸=j

∣∣∣∣αkαj − 1

∣∣∣∣ > d, (2.8)

where d is a positive constant that is independent of n. In addition, Jk =

{jk+1, . . . , jk+mk} denotes the set of ranks of αk, where mk represents the

multiplicities of αk that satisfy m1+ · · ·+mK =M , a fixed integer. We call

αk, k ∈ {1, ..., K} defined in (2.7) spiked eigenvalues. Note that αk can be
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located in any gap between disconnected sections of the support ofH, which

means that αk is not just the extreme eigenvalues of {T∗
pTp}. Under all of

Assumptions 1–3, the limits of the eigenvalues lp,i, i ∈ {1, . . . , p} associated

to spiked eigenvalues αk, k ∈ {1, . . . , K}, are derived in Jiang et al. (2021)

when xij and yij have bounded fourth moments. Details are presented in

the following proposition due to Jiang et al. (2021). Define the function ψk

as follows.

ψk := ψ(αk) =
αk

{
1− c1

∫
t/(t− αk)dH(t)

}
1 + c2

∫
αk/(t− αk)dH(t)

. (2.9)

Proposition 1. For any spiked eigenvalue αk with multiplicity mk, for

k = 1, · · · , K, of F defined in (2.3), let

ρk =



ψ(αk), if ψ′(αk) > 0;

ψ(αk), if there exists αk such that ψ′(αk) = 0,

and ψ′(t) < 0, for all αk ≤ t < αk;

ψ(αk), if there exists αk such that ψ′(αk) = 0,

and ψ′(s) < 0, for all αk < s ≤ αk.

Then, under Assumptions 1–3 with the bounded fourth moments of xij and

yij, the sequence {lp,j/ρk − 1, j ∈ Jk} converges almost surely to 0.

Since the convergence of cn1 → c1, cn2 → c2 and Hn(t) → H(t) can be

very slow, the difference
√
n(lp,j−ψk) may not have a limiting distribution.
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Thus, we use

ψn,k := ψn(αk) =
αk

{
1− cn1

∫
t/(t− αk)dHn(t)

}
1 + cn2

∫
αk/(t− αk)dHn(t)

instead of ψk in ρk, and n denotes (n1, n2), particularly for deriving the

CLT in the following section.

Note that the Proposition 1 holds under the bounded fourth-moment

assumption. To relax this assumption, Assumption 4 on the tail proba-

bility is provided in (2.6). We then conduct truncation and centralization

procedures for the variables as in Silverstein (1995) and prove that the

Proposition 1 still holds in probability without the bounded fourth-moment

assumption if Assumption 4 is satisfied. The details are deferred to the Sup-

plement Material. Assumption 5 is a technical condition used for the proof

of universality. The detailed explanation of Assumption 5 can be found in

the Supplement A in Jiang and Bai (2021).

Based on these assumptions, an invariance principle theorem is estab-

lished in Section 2.2. The theorem guarantees the universality of the lim-

iting distribution of spiked eigenvalues from a generalized spiked Fisher

matrix.
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2.2 Invariance principle theorem

For the generalized spiked Fisher matrix F = T∗
pS̃1TpS̃

−1
2 defined in (2.3),

we consider the arbitrary sample spiked eigenvalue of F, lp,j, j ∈ Jk, k =

1, . . . , K. By the singular value decomposition of Tp in (2.5) and the eigen-

equation for F, we have

0 = |lp,jI− F| =

∣∣∣∣∣∣∣∣lp,jI−V

 D
1
2
1 0

0 D
1
2
2

U∗S̃1U

 D
1
2
1 0

0 D
1
2
2

V∗S̃−1
2

∣∣∣∣∣∣∣∣ .
It is equivalent to

0 = |lp,jV∗S̃2V − diag(D
1
2
1 ,D

1
2
2 )U

∗S̃1Udiag(D
1
2
1 ,D

1
2
2 )|

=

∣∣∣∣∣∣∣∣
lp,jV∗

1S̃2V1, lp,jV
∗
1S̃2V2

lp,jV
∗
2S̃2V1, lp,jV

∗
2S̃2V2

−

D
1
2
1U

∗
1S̃1U1D

1
2
1 , D

1
2
1U

∗
1S̃1U2D

1
2
2

D
1
2
2U

∗
2S̃1U1D

1
2
1 , D

1
2
2U

∗
2S̃1U2D

1
2
2


∣∣∣∣∣∣∣∣ .

By Schur formula, if lp,j is a sample spiked eigenvalue of F, then it is not

of D
1
2
2U

∗
2S̃1U2D

1
2
2

(
V∗

2S̃2V2

)−1
. To derive the fluctuation of lp,j,j ∈ Jk, we

will technically disassemble the determinant into four parts, making each

part manageable. The following equation holds for every sampled spiked

eigenvalue, lp,j, j ∈ Jk, for k = 1, · · · , K,

0=
∣∣∣lp,jV∗

1S̃2V1−D
1
2
1U

∗
1S̃1U1D

1
2
1 −(lp,jV

∗
1S̃2V2−D

1
2
1U

∗
1S̃1U2D

1
2
2 )Q

− 1
2

·(lp,jI−Q− 1
2D

1
2
2U

∗
2S̃1U2D

1
2
2Q

− 1
2 )−1Q− 1

2 (lp,jV
∗
2S̃2V1−D

1
2
2U

∗
2S̃1U1D

1
2
1 )
∣∣∣

=

∣∣∣∣ lp,jn2

V∗
1YY∗V1 −

l2p,j
n2
2

V∗
1YY∗V2Q

− 1
2 (lp,jI− F̃

)−1
Q− 1

2V∗
2YY∗V1
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− lp,j
n1

D
1
2
1U

∗
1X

(
lp,jI− F̃

)−1
X∗U1D

1
2
1

+
lp,j
n2

V∗
1YY∗V2Q

− 1
2

(
lp,jI− F̃

)−1
Q− 1

2
1

n1

D
1
2
2U

∗
2XX∗U1D

1
2
1

+
lp,j
n1

D
1
2
1U

∗
1XX∗U2D

1
2
2Q

− 1
2 (lp,jI− F̃)−1Q− 1

2
1

n2

V∗
2YY∗V1

∣∣∣∣
=

∣∣∣∣{ψn,k + c2ψ
2
n,km(ψn,k)}IM + ψn,km(ψn,k)D1 +

1
√
p
γkjψn,kIM

+B1(lp,j) +B2(lp,j) +
ψn,k√
p
ΩM(ψn,k,X,Y) + o(

ψn,k√
p
)

∣∣∣∣, (2.10)

where Q = V∗
2S̃2V2, F̃ and F̃ are defined as

F̃ =
1

n1

Q− 1
2D

1
2
2U

∗
2XX∗U2D

1
2
2Q

− 1
2 , F̃ =

1

n1

X∗U2D
1
2
2Q

−1D
1
2
2U

∗
2X. (2.11)

Let m(λ) and m(λ) be the Stieltjes transforms of the limiting spectral

distributions of F̃ and F̃, respectively. Furthermore, instead of ψk, ψn,k

is used to avoid the slow convergence as mentioned in Section 2.1, γkj =

√
p
(
lp,j/ψn,k − 1

)
, j ∈ Jk, and

B1(lp,j) =
ψ2
n,k

n2
2

V∗
1YY∗V2Q

− 1
2 (ψn,kI− F̃)−1Q− 1

2V∗
2YY∗V1

−
l2p,j
n2
2

V∗
1YY∗V2Q

− 1
2 (lp,jI− F̃)−1Q− 1

2V∗
2YY∗V1;

B2(lp,j) =
ψn,k
n1

D
1
2
1U

∗
1X

(
ψn,kI−F̃

)−1
X∗U1D

1
2
1 −

lp,j
n1

D
1
2
1U

∗
1X

(
lp,jI−F̃

)−1
X∗U1D

1
2
1 .

Moreover, the ΩM(λ,X,Y) is defined as

ΩM(λ,X,Y) =
5∑
j=1

ΩM,j(λ,X,Y), (2.12)
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where

ΩM,1(λ,X,Y)=
√
pV∗

1(S̃2 − Ip)V1,

ΩM,2(λ,X,Y)=

√
pλ

n2

{
tr(λI−F̃)−1I− 1

n2

V∗
1YY∗V2Q

− 1
2(λI−F̃)−1Q− 1

2V∗
2YY∗V1

}
,

ΩM,3(λ,X,Y)=

√
p

√
n1λ

D
1
2
1

[ λ
√
n1

{
tr(λI−F̃)−1I−U∗

1X
(
λI−F̃

)−1
X∗U1

}]
D

1
2
1 ,

ΩM,4(λ,X,Y)=

√
p

n1n2

V∗
1YY∗V2Q

− 1
2

(
λI−F̃

)−1
Q− 1

2D
1
2
2U

∗
2XX∗U1D

1
2
1 ,

ΩM,5(λ,X,Y)=

√
p

n1n2

D
1
2
1U

∗
1XX∗U2D

1
2
2Q

− 1
2

(
λI− F̃

)−1
Q− 1

2V∗
2YY∗V1.

Note that the covariance matrix betweenU∗
1X andV∗

1Y is a zero matrix

0M×M , then according to Lemma 2.7 in Bai and Silverstein (1998) and

equation (9) in Jiang et al. (2021)), we also obtain that ψk satisfies the

following equation

ψk + c2ψ
2
km(ψk) + ψkm(ψk)αk = 0. (2.13)

So far, we find the fluctuation of lp,j,j ∈ Jk is reflected by γkj and is

related to the limiting properties of B1, B2 and ΩM(ψn,k,X,Y) in (2.10).

To investigate the limiting properties of these matrices, we first establish the

invariance principle of the generalized spiked Fisher matrix in the following

theorem. The invariance principle implies that the limiting distribution

of spiked eigenvalues from a generalized spiked Fisher matrix remains the

same, provided that the population distributions satisfy Assumptions 1–5.
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Theorem 1. (Invariance Principle Theorem) Assuming that (X,Y)

and (W,Z) are two pairs of double arrays, each of which satisfies Assump-

tions 1–5, then ΩM(λ,X,Y) and ΩM(λ,W,Z) have the same limiting dis-

tribution, provided that one of them has a limiting distribution.

Due to limited space, the proof of Theorem 1 is given in the Supple-

ment Material. According to Theorem 1, we may assume that X and Y

consist of entries with i.i.d. standard normal variables when deriving the

limiting distributions of B1(lp,j), B2(lp,j) and ΩM(ψn,k,X,Y). Firstly, de-

fine m2(λ) =
∫
1/(λ− x)2dF̃ (x), m2(λ) =

∫
1/(λ− x)2dF̃ (x), where F̃ (x)

and F̃ (x) are the limiting spectral distributions of the matrices F̃ and F̃,

respectively. Then, we obtain that

B1(lp,j) =
1
√
p
γkj

{
c2ψ

3
n,km2(ψn,k) + 2c2ψ

2
n,km(ψn,k)

}
IM + o(

ψn,k√
p
);

B2(lp,j) =
1
√
p
γkj

{
ψ2
n,km2(ψn,k) + ψn,km(ψn,k)

}
D1 + o(

ψn,k√
p
).

The details of the derivation are listed in the Supplement Material. Thus,

it follows from equation (2.10) that

0 =

∣∣∣∣{ψn,k + c2ψ
2
n,km(ψn,k)}IM + ψn,km(ψn,k)D1+

ψn,k√
p
ΩM(ψn,k,X,Y)

+
1
√
p
γkj

[{
ψn,k+c2ψ

3
n,km2(ψn,k)+2c2ψ

2
n,km(ψn,k)

}
IM

+
{
ψ2
n,km2(ψn,k)+ψn,km(ψn,k)

}
D1

]
+o(

ψn,k√
p
)

∣∣∣∣. (2.14)
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Furthermore, the limiting distribution of ΩM(ψn,k,X,Y) is derived in

the following corollary by replacing the entries in X and Y with the i.i.d.

standard normal variables. The detailed proof is deferred to the Supplement

Material.

Corollary 1. Suppose that X and Y satisfy Assumptions 1–5, and let

θk=c2+c
2
2ψ

2
km2(ψk)+2c22ψkm(ψk)+c1α

2
km2(ψk)+2c1c2αkm3(ψk), (2.15)

where m3(λ) =
∫
x/(λ− x)2dF̃ (x). Then, it holds that ΩM(ψn,k,X,Y)

converges weakly to anM×M Hermitian matrix Ωψk
, where [Ωψk

]kk stands

for the k-th block of Ωψk
, and θk

−1/2 [Ωψk
]kk is Gaussian Orthogonal En-

semble (GOE) for the real case†. For the complex case, the θk
−1/2 [Ωψk

]kk

is Gaussian Unitary Ensemble (GUE)‡.

Remark 1. Assumption 5 may be replaced by the following assumption.

Assumption 5′. Denote U1 = (uts), and V1 = (vts).

βx,i1j1i2j2 = lim
n1→∞

p∑
t=1

ūti1utj1uti2ūtj2
[
E{|x11|4δ(|x11|≤

√
n1)}−2−q

]
<∞,

†GOE: a symmetric matrix whose upper triangular entries are independent real

Gaussian variables with the diagonal entries being i.i.d. N (0, 2) and the upper off-

diagonal entries being i.i.d. N (0, 1).
‡GUE: the diagonal entries are i.i.d. real N (0, 1), and the off diagonal entries are

i.i.d. complex CN (0, 1).
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βy,i1j1i2j2 = lim
n2→∞

p∑
t=1

v̄ti1vtj1vti2̄vtj2
[
E{|y11|4δ(|y11|≤

√
n2)}−2−q

]
<∞,

where q = 1 for real case and q = 0 for complex and δ(·) is the

indicator function.

Let ui = (u1i, . . . , upi)
′ be the i-th column of the matrix U1, and let vj =

(v1j, . . . , vpj)
′ be the j-th column of the matrixV1. Then, all the conclusions

of Corollary 1 still hold, but the limiting distribution of ΩM(ψn,k,X,Y)

turns to an M × M Hermitian matrix Ωψk
= (ωij), which has Gaussian

entries of mean zero and variance

Cov(ωi1,j1 , ωi2,j2) =


(q + 1)θk + βx,iiiiν1 + βy,iiiiν2, i1 = j1 = i2 = j2 = i;

θk + βx,ijijν1 + βy,ijijν2, i1 = i2 = i ̸= j1 = j2 = j;

βx,i1j1i2j2ν1 + βy,i1j1i2j2ν2, other cases.

Here θk is defined in (2.15), ν1 = c1α
2
km

2(ψk) and ν2 = c2
{
1+c2ψkm(ψk)

}2
.

The proof of this remark is based on Corollary 1 and given in Sup-

plement Material. This remark is used in the simulations of Case I under

nonGaussian assumptions.
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3. CLT for generalized spiked Fisher matrices

As an application of the invariance principle, we apply it for establishing

the CLT for the spiked eigenvalues of a generalized spiked Fisher matrix F.

As mentioned in Proposition 1, a set of mk consecutive sample eigenvalues

{lp,j(F), j ∈ Jk} converges to a limit ρk laying outside the support of the

limiting spectral distribution (LSD) of F. To improve upon the work in

Wang and Yao (2017), we consider a more general spiked Fisher matrix, F

in (2.3) and the renormalized random vector

γk = (γkj, j ∈ Jk) :=
{
√
p

[
lp,j(F)

ψn(αk)
− 1

]
, j ∈ Jk

}
. (3.1)

Let

ϕk = 1 + c2ψ
2
km2(ψk) + 2c2ψkm(ψk) + αkψkm2(ψk) + αkm(ψk). (3.2)

Then the CLT for the renormalized random vector γk is provided in the

following theorem.

Theorem 2. Suppose that Assumptions 1–5 hold. For each distinct spiked

eigenvalue αk
†with multiplicity mk, the mk-dimensional real vector γk de-

fined in (3.1) converges weakly to the joint distribution of the mk eigenvalues

of Gaussian random matrix − [Ωψk
]kk /ϕk. Furthermore, Ωψk

is defined in

†ψ′(αk) > 0, Jiang et al. (2021)
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Corollary 1 and [Ωψk
]kk is the k-th diagonal block of Ωψk

corresponding to

the indices {i, j ∈ Jk}.

The proof of Theorem 2 is postponed to the Supplement Material.

Remark 2. Suppose thatX,Y satisfy Assumptions 1–4, but Assumption 5

is weakened to Assumption 5′ in Remark 1. Then all the conclusions of

Theorem 2 still hold, but the limiting distribution of ΩM(ψn,k,X,Y) tends

to an M ×M Hermitian Gaussian matrix Ωϕk = (ωst) whose variances and

covariances are defined in Remark 1.

4. Applications

In this section, we present two applications of Theorem 2 in the linear

regression model and statistical signal processing. The first application is to

analyze the local power of the Roy Maximum Root test in linear regression

model, while the second application is related to signal detection in wireless

communication.

4.1 Linear regression model

Let us consider a p-dimensional linear regression model

wi = Bzi + εi, i = 1, . . . , n, (4.1)
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where {εi, i = 1, · · · , n} is a sequence of independent and identically dis-

tributed normal error vector Np(0,Σ), B is a p× q0 regression matrix, and

(zi), i = 1, · · · , n a sequence of known regression variables of dimension q0.

In this section, we assume that n ≥ p+ q0 and the rank of Z = (z1, · · · , zn)

is q0.

We define a block decomposition B = (B1,B2) with q1 and q2 columns,

respectively (q0 = q1 + q2). We partition the regression variables {zi} ac-

cordingly as in zi = (z′i1, z
′
i2)

′. Our goal is to test the hypothesis that

H0 : B1 = B0
1 vs. H1 : B1 ̸= B0

1 , (4.2)

where B0
1 is a known matrix. Roy (1953) proposed λ1, the maximum eigen-

value of HG−1, to test on linear regression hypothesis (4.2), where

G = nΣ̂ =
n∑
i=1

(wi − B̂zi)(wi − B̂zi)
′; H = (B̂1 −B0

1)A11:2(B̂1 −B0
1)

′,

where B̂ is the maximum likelihood estimators of B, B̂1 denotes as the for-

mer q1 columns of B̂, andA11:2=
∑n

i=1zi1z
′
i1−

∑n
i=1zi1z

′
i2

(∑n
i=1 zi2z

′
i2

)−1
∑n

i=1zi2z
′
i1.

The distribution of λ1 can be obtained from the joint density by integrating

over the supporting set of all eigenvalues. Roy (1945) developed a method

of integration and provided the distribution of λ1/(1 + λ1) when p = 2.

However, this integration becomes more difficult with increasing dimen-

sionality. By Lemmas 8.4.1 and 8.4.2 in Anderson (2003), it is known that
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G ∼ Wp(Σ, n−q0), H ∼ Wp(Σ, q1), and they are independent of each other

under the Gaussian assumption. Therefore, (n−q0)q−1
1 HG−1 can be viewed

as a generalized spiked Fisher matrix. We consider the large-dimensional

setting

c̃n1 = p/q1 → c̃1 ∈ (0,∞), c̃n2 = p/(n− q0) → c̃2 ∈ (0, 1). (4.3)

As shown in Han et al. (2016), the largest root of (n − q0)q
−1
1 HG−1, de-

noted as lp,1 = (n− q0)q
−1
1 λ1, follows the Tracy-Widom law under the null

hypothesis. Its rejection region at the 0.05 significance level is determined

as follows:

{lp,1 > ψ0 + σtwC0.95}, (4.4)

where ψ0 = (1+ h)2(1− c̃2)
−2 is the limit of the largest root under the null

hypothesis with h2 = c̃1 + c̃2 − c̃1c̃2, and C0.95 is the 95% percentile of the

Tracy-Widom distribution.

The value of σtw is determined by solving several trigonometric equa-

tions as described in Han et al. (2016). In order to derive a simpler ex-

pression, Wang and Yao (2017) derived a result based on Han et al. (2016).

However, we found that their result only depends on the dimensionality p

and one of the sample sizes n1. Upon comparing the results of the two

approaches, we observed that they were not the same. Therefore, we recal-

culated the value of σtw following Han et al. (2016) and present the simplified
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expression below, which is identical to the one in Han et al. (2016), i.e.

σ3
tw =

c̃21(c̃1 + h)4(c̃1 + c̃2)
6

(n− q0 + q1)2hc̃22
{
(c̃1 + c̃2)2 − c̃2(c̃1 + h)2

}4 .

Based on the rejection region (4.4), Theorem 2 is applied to derive the

asymptotic distribution of lp,1 and provide the power function under the

alternative hypothesis. The details are as follows:

Theorem 3. For testing hypothesis (4.2), if the large-dimensional limiting

scheme (4.3) holds, then the asymptotic distribution of the largest sample

eigenvalue of (n− q0)q
−1
1 HG−1 is that

Λ1 =
√
p
( lp,1
ψn,1

− 1
)/

σ1 ⇒ N (0, 1), under H1, (4.5)

where σ2
1 = 2θ1/ϕ

2
k for the general real case with Assumption 5 and σ2

1 =

(2θ1 + βx,iiiiν1 + βy,iiiiν2)/ϕ
2
k for the real case with Assumption 5′ instead.

Then, the power of Roy Maximum Root test on linear regression hypothesis

is calculated by

PR(ψn,1) = Φ

{
−

√
p
(
ψ0 + σtwC0.95 − ψn,1

)
ψn,1σ1

}
, (4.6)

where C0.95 is 95% quantile of Tracy-Widom distribution and Φ is the cu-

mulative distribution function (cdf) of the standard Gaussian distribution.
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In practice, the parameters ψn,1 and σ1 in the asymptotic distribution

(4.5) are involved with the unknown population largest spike α1 and the

LSD of (n− q0)q
−1
1 HG−1. Therefore, we provide some estimators to calcu-

late the estimated test statistic Λ̂1 instead of Λ1 in (4.5) as follows.

First, for the population spike α1, it follows from the first equation in

(2.13) that the equation 1+c̃2lp,1m(lp,1)+m(lp,1)α1 = 0 holds approximately.

Thus we get the estimation of α1,

α̂1 = −1 + c̃2lp,1m(lp,1)

m(lp,1)
,

where m(lp,1) and m(lp,1) can be respectively estimated by

m̂(lp,1) =
1

p− |J1|
∑
i/∈J1

(lp,i − lp,1)
−1 and m̂(lp,1) = −1− c̃1

lp,1
+ c̃1m̂(lp,1).

Here ri and J1 are defined as ri = |lp,i− lp,1|/|lp,1| and J1 = {i ∈ (1, · · · , p) :

ri ≤ 0.2}. The set J1 is selected to avoid the effect of multiple roots and

make the estimator more accurate. The constant 0.2 is a more suitable

threshold value according to our simulated results. Moreover, the following

estimators may be used to calculate ψn,1 and σ1,

m̂(ψn,1) =
1

p

∑
i∈J1

(lp,i − ψ̂n,1)
−1; m̂(ψn,1) = −1− c̃1

ψ̂n,1
+ c̃1m̂(ψ̂n,1);

m̂2(ψn,1) =
1

p

∑
i∈J1

(lp,i − ψ̂n,1)
−2; m̂2(ψn,1) =

1− c̃1

(ψ̂n,1)2
+ c̃1m̂2(ψ̂n,1);

m̂3(ψn,1) =
1

p

∑
i∈J1

lp,i(lp,i − ψ̂n,1)
−2; ψ̂n,1 = ψ(α̂1).
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Thus the Λ1 in (4.5) can be estimated by using these estimators.

4.2 Signal detection

The literature Han et al. (2016) established the Tracy-Widom law for the

largest eigenvalue of a Fisher matrix and applied the results to the signal

detection problem. In signal detection or cognitive, the model generally has

the following form:

yt = Axt +Σ1/2et, t = 1, 2, · · · ,m,

where yt is a p-dimensional observation, A is a p × k mixing matrix, xt

is a k × 1 low-dimensional signal with covariance matrix Ik, while et is an

i.i.d. noise with covariance matrix Ip. The signal xt is independent with

the noise et. For more details, see Zeng and Liang (2009); Nadakuditi and

Silverstein (2010). A fundamental task in signal processing is to test

H0 : A = 0 vs. H1 : A ̸= 0. (4.7)

In engineering, one can have additional independent noise-only observations

zt = Σ1/2et, t = 1, · · · , T . Let

Y = (y1,y2, · · · ,ym), Z = (z1, z2, · · · , zT ).

We define the Fisher matrix as

F =
T

m
(ZZ∗)−1(YY∗),
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and use the symbols l1 and β1 to denote the largest eigenvalue of F and

Σ−1(AA∗ +Σ), respectively. We use the statistic l1 to test the hypothesis

(4.7). According to Han et al. (2016), l1 after scaling tends to follow the

Tracy-Widom law under the null hypothesis A = 0. Based on equation

(4.5), we conclude the theoretical power for correlated noise detection as

PR(β1) = Φ

[
−

√
p
{
ψ0 + σtwC0.95 − ψn,1(β1)

}
ψn,1(β1)σ1

]
, (4.8)

where the notations defined similarly to Theorem 3. It is worth pointing

out that Theorem 7.1 in Wang and Yao (2017) is a special case of (4.8).

5. Simulation Study

5.1 Simulations for Section 3

To verify the generality and performance of our proposed limiting results

compared to Wang and Yao (2017), we conduct simulations under two sce-

narios. The first scenario assumes that Σ1Σ
−1
2 is of diagonal block-wise

form as assumed in Wang and Yao (2017). The second scenario allows a

general spiked matrix for Σ1Σ
−1
2 without diagonal assumption.

Case I: The matrix T∗
pTp is taken to be a finite-rank perturbation of an

identity matrix Ip, where Σ2 = Ip and Σ1 is an identity matrix with

the spikes (20, 0.2, 0.1) of the multiplicity (1, 2, 1) in the descending
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order and thus K = 3 and M = 4.

Case II: The matrix T∗
pTp is a general positive definite matrix, but it does

not necessarily have a diagonal block-wise independence assumption

as proposed in Wang and Yao (2017). Let Σ2 = Ip and Σ1 = U0ΛU∗
0,

where Λ is a diagonal matrix consisting of the spikes (20, 0.2, 0.1) with

multiplicity (1, 2, 1), and the other eigenvalues are 1 in the descending

order. Let U0 be equal to the matrix composed of eigenvectors of the

p× p matrix (ρ|i−j|)i,j=1,...,p with ρ = 0.5.

For each scenario, we consider two populations as following: In the

first population, xij and yij are both i.i.d. samples from N(0, 1). In the

second population, xij and yij are i.i.d. samples from P{xij = ±1} =

P{yij = ±1} = 1/2. Thus, E|xij|4 = E|yij|4 = 1. This aims to illustrate

the invariance principle of large-dimensional spiked Fisher matrices.

To further demonstrate the validity of the CLT derived in Section 3 for a

distribution with infinite fourth moments under Assumption 5, we generate

i.i.d. samples xij and yij from 2−1/2t(4) population distribution under the

setting of Case II. In this setting, Exij = Eyij = 0, Ex2ij = Ey2ij = 1,

while the fourth moments of xij, yij are infinite. Since Assumptions 5′ for

the CLT derived in Section 3 is not valid for the distribution t(4) under

the setting of Case I, then the new CLT does not hold for t(4) with Case
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I. Furthermore, the limiting distribution for the two-sample spiked model

derived in Wang and Yao (2017) is not applicable for t(4) either. Therefore,

we only examine the performance of the newly derived limiting distribution.

In this simulation, we set p = 200, n1 = 1000 and n2 = 400, and we conduct

1000 replications for each case.

For Case I, Remark 2 can be applied. For the largest and least simple

population spikes α1 = 20 and α3 = 0.1, we obtain the following CLTs:

γk =
√
p− 4

{
lp,j(F)

ψn,k
− 1

}
→ N(0, σ2

k),

where j = 1 for k = 1 and j = p for k = 3, ψn,1 = 42.667, σ2
1 = 2.383

and ψn,3 = 0.0737, σ2
3 = 1.343 under the Gaussian assumption; meanwhile,

σ2
1 = 1.116 and σ2

3 = 0.180 for the distribution with binary outcome. To

improve accuracy, we use p−M instead of p in the calculation.

For the spikes α2 = 0.2 with multiplicity 2, we consider the sample

eigenvalues lp,p−1, lp,p−2, and obtain that the two-dimensional random vector

γ2 = (γ21, γ22)
′ =

[√
p− 4

{ lp,p−2(F)

ψn,2
− 1

}
,
√
p− 4

{ lp,p−1(F)

ψn,2
− 1

}]′
converges to the eigenvalues of random matrix − [Ωψ2 ]22 /ϕk, where ψn,2 =

0.133, ϕk = 1.439 for the spike α2 = 0.2. Furthermore, the matrix [Ωψ2 ]22 is

a 2× 2 symmetric matrix with the independent Gaussian entries, of which

the (s, t)-th element has mean zero and the variance given by var(wst) =
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Table 1: KS Statistic and Percentiles of asymptotical distributions of the

standardized γ1, γ
∗
2 = (γ21+γ22)/2, and γ3 derived by our new method and

Wang and Yao (2017).
E.V. Case Method 1% 5% 10% 25% 50% 75% 90% 95% 99% KS

Limiting N(0, 1) -2.326 -1.645 -1.282 -0.674 0 0.674 1.282 1.645 2.326 −

xij ∼ N(0, 1) and yij ∼ N(0, 1)

γ1 I New -2.005 -1.455 -1.175 -0.650 -0.043 0.680 1.400 1.791 2.606 0.025

WY -2.047 -1.487 -1.200 -0.665 -0.045 0.694 1.429 1.828 2.661 0.028

γ1 II New -1.996 -1.540 -1.191 -0.658 -0.009 0.671 1.378 1.775 2.660 0.031

WY -1.975 -1.524 -1.178 -0.652 -0.009 0.663 1.362 1.755 2.630 0.030

γ∗
2 I New -1.493 -1.017 -0.779 -0.257 0.265 0.814 1.330 1.631 2.233 0.150

WY -1.500 -1.005 -0.762 -0.226 0.313 0.880 1.412 1.718 2.351 0.162

γ∗
2 II New -1.574 -1.065 -0.761 -0.301 0.307 0.857 1.301 1.682 2.386 0.137

WY -1.456 -0.925 -0.624 -0.160 0.452 1.007 1.459 1.838 2.555 0.194

γ3 I New -1.930 -1.502 -1.183 -0.609 -0.016 0.686 1.302 1.685 2.769 0.022

WY -1.802 -1.36 -1.038 -0.455 0.147 0.862 1.487 1.878 2.979 0.075

γ3 II New -1.954 -1.554 -1.253 -0.703 -0.052 0.562 1.167 1.609 2.398 0.050

WY -1.963 -1.562 -1.259 -0.708 -0.055 0.561 1.167 1.611 2.405 0.051

P (xij = ±1) = 1/2 and P (yij = ±1) = 1/2

γ1 I New -1.957 -1.518 -1.240 -0.646 -0.026 0.681 1.363 1.753 2.694 0.025

WY -1.968 -1.516 -1.152 -0.640 -0.028 0.694 1.391 1.788 2.749 0.026

γ1 II New -2.019 -1.484 -1.187 -0.648 -0.007 0.637 1.410 1.823 2.503 0.023

WY -2.883 -2.119 -1.694 -0.925 -0.011 0.909 2.011 2.599 3.572 0.093

γ∗
2 I New -1.229 -0.812 -0.554 -0.029 -0.509 1.096 1.619 1.925 2.506 0.250

WY -0.378 -0.021 0.169 0.556 0.952 1.384 1.768 1.995 2.430 0.491

γ∗
2 II New -1.493 -0.956 -0.680 -0.178 0.403 0.918 1.476 1.798 2.438 0.185

WY -1.876 -1.132 -0.757 -0.072 0.721 1.417 2.180 2.629 3.496 0.267

γ3 I New -2.381 -1.646 -1.296 -0.695 -0.013 0.578 1.114 1.520 2.217 0.047

WY -2.048 -1.272 -0.899 -0.268 -0.450 1.073 1.639 2.069 2.802 0.175

γ3 II New -2.108 -1.527 -1.215 -0.666 0.017 0.711 1.357 1.733 2.615 0.026

WY -5.907 -4.283 -3.407 -1.870 0.056 1.982 3.789 4.842 7.308 0.236

xij ∼ 2−1/2t(4) and yij ∼ 2−1/2t(4)

γ1 II New -1.673 -1.312 -0.969 -0.418 0.253 0.939 1.703 2.199 3.324 0.112

γ∗
2 II New -3.936 -1.894 -1.343 -0.703 -0.029 0.517 1.004 1.324 1.811 0.068

γ3 II New -2.873 -1.959 -1.512 -0.981 -0.274 0.444 1.112 1.510 2.249 0.118
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Case I

Case II

Figure 1: Histograms of standardized estimated eigenvalues over 1000 sim-

ulations when xij ∼ N(0, 1) and yij ∼ N(0, 1). The solid lines are the

kernel density estimates, and the dashed lines are the probability density

functions of N(0, 1).
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Case I

Case II

Figure 2: Histograms of standardized estimated eigenvalues over 1000 sim-

ulation when P (xij = ±1) = P (yij = ±1) = 1/2. The solid lines are the

kernel density estimates, and the dashed lines are the probability density

functions of N(0, 1).
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Figure 3: Histograms of standardized estimated eigenvalues over 1000 sim-

ulations under Case II when xij and yij follow the 2−1/2t(4). The solid lines

are the kernel density estimates, and the dashed lines are the probability

density functions of N(0, 1).

1.163 if s ̸= t and var(wst) = 2.326 if s = t under the Gaussian assumption.

All the results are the same except var(wst) = 0.502 if s = t under the

second population (i.e. binary outcomes). Under Case II, it follows by

Theorem 2 that the asymptotical means and covariances for all the three

distributions considered in this simulation are the same as the ones of Case I

under Gaussian assumption, even if the population fourth moments are

infinite, such as t(4).

Let F (u) be the cdf of a random variable U , and Fn(u) be its empir-

ical cdf based on a sample u1, · · · , un. Define Kolmogorov-Smirnov (KS)
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statistic as follows:

KS =
∑
u

|Fn(u)− F (u)|.

In our simulation, we set F (u) to be the cdf of N(0, 1), and U be the

standardized estimated eigenvalues of the generalized spiked Fisher matrix.

We evaluate Fn(u) based on 1000 simulations.

Table 1 depicts the nine typical percentiles of the empirical distribu-

tions of standardized estimated eigenvalues, The values of ψn,k and σ
2
k were

calculated by two methods: one is derived in Theorem 2, and the other one

is derived in Wang and Yao (2017), to compare the finite sample properties

of our method with the one in Wang and Yao (2017). The corresponding

KS statistics of the two methods are also reported in Table 1. To examine

the overall pattern of the empirical distributions of the estimated spiked

eigenvalues, Figures 1-3 show histograms based on 1000 simulations, along

with the kernel density estimate and asymptotic limiting distributions.

Figure 1 depicts the histograms and kernel density estimates of the

estimated eigenvalues when xij and yij follow N(0, 1). It can be observed

that, under a Gaussian population, both the empirical distributions of our

method and Wang and Yao’s method are close to the asymptotical ones.

This is further confirmed by the top panel of Table 1. The KS statistics

of standardized γ1 for Cases I and II and standardized γ3 for Case II are
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very close for the two methods. Moreover, our newly proposed method has

smaller KS statistics than Wang and Yao’s method for the standardized γ∗2

in Cases I and II, as well as the standardized γ3 in Case I.

Figure 2 depicts the histograms and kernel density estimates of the es-

timated eigenvalues when P (xij = ±1) = P (yij = ±1) = 1/2. Figure 2

clearly indicates that our method works well for both Case I and II, while

Wang and Yao’s method works well for Case I but not for Case II. The mid-

dle panel of Table 1 also delivers the same message. Except for standardized

γ1 in Case I, our method has much smaller KS statistics than Wang and

Yao’s method. For the percentiles, it seems that Wang and Yao’s method

has more spreading-out percentile. This implies it has larger variance.

Figure 3 depicts the histograms and kernel density estimates of the

estimated eigenvalues when xij and yij follow 2−1/2t(4). Figure 3 looks

similar to the histograms for Case II in Figure 1. This implies that our

method performs well when the fourth moment of population distribution

is unbounded. This can be further confirmed by comparing the bottom

panel of Table 1 and the corresponding ones in the top panel of Table 1.
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Table 2: Empirical sizes and powers

q1/q0 = 0.2 q1/q0 = 0.8

Size Power Size Power

p New CLRT New CLRT New CLRT New CLRT

c̃1 = 5, c̃2 = 0.8; 50 0.053 0.058 0.608 0.437 0.054 0.069 0.985 0.794

100 0.043 0.053 0.974 0.933 0.051 0.046 1 0.899

200 0.048 0.053 1 0.987 0.044 0.048 1 0.987

c̃1 = 5, c̃2 = 0.5; 50 0.043 0.057 1 0.998 0.051 0.049 1 1

100 0.047 0.058 1 1 0.040 0.059 1 1

200 0.042 0.048 1 1 0.045 0.051 1 1

c̃1 = 5, c̃2 = 0.2; 50 0.034 0.044 1 1 0.030 0.055 1 1

100 0.038 0.049 1 1 0.043 0.052 1 1

200 0.043 0.057 1 1 0.042 0.058 1 1

c̃1 = 2, c̃2 = 0.8; 50 0.042 0.056 0.547 0.467 0.051 0.058 0.838 0.598

100 0.041 0.043 0.998 0.680 0.052 0.058 0.983 0.752

200 0.038 0.055 1 0.847 0.051 0.049 0.979 0.885

c̃1 = 2, c̃2 = 0.5; 50 0.035 0.053 0.996 0.803 0.042 0.048 1 0.988

100 0.052 0.056 1 0.995 0.041 0.052 1 1

200 0.050 0.056 1 1 0.037 0.054 1 1

c̃1 = 2, c̃2 = 0.2; 50 0.041 0.062 1 1 0.041 0.046 1 1

100 0.038 0.068 1 1 0.043 0.038 1 1

200 0.047 0.046 1 1 0.038 0.049 1 1

c̃1 = 0.5, c̃2 = 0.8; 50 0.046 0.047 0.599 0.410 0.045 0.049 0.640 0.463

100 0.055 0.049 0.734 0.569 0.058 0.054 0.695 0.504

200 0.048 0.060 1 0.680 0.053 0.073 0.846 0.584

c̃1 = 0.5, c̃2 = 0.5; 50 0.047 0.048 1 0.699 0.045 0.043 0.985 0.785

100 0.031 0.036 1 0.940 0.044 0.055 1 0.927

200 0.051 0.061 1 1 0.049 0.057 1 0.978

c̃1 = 0.5, c̃2 = 0.2; 50 0.039 0.049 1 1 0.045 0.044 1 1

100 0.037 0.047 1 1 0.044 0.053 1 1

200 0.041 0.049 1 1 0.040 0.060 1 1
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5.2 Numerical for Section 4

In this section, we conduct numerical study to compare the newly proposed

test procedure for (4.2) in Section 4 with the corrected likelihood ratio test

(CLRT) proposed by Bai et al. (2013). The simulation results for signal

detections in Section 4.2 are similar to those for (4.2), we opt to omit them

here to save space.

For testing hypothesis (4.2), we generate the elements ofB2 fromN (1, 1)

for each simulation. Under the null hypothesis, we set B1 = 0, while under

the alternative hypothesis, half of the entries in the first column of B1 were

generated from N (0.5, 1) and the rest are zeros. We assume that the errors

εi in (4.1) follows Np(0, Ip). All elements of zi in the model are independent

and identically distributed and are sampled from N (1, 0.5).

We consider two cases: q1/q0 = 0.8 and q1/q0 = 0.2. For each case,

set p = 50, 100, 200, c̃1 = 0.5, 2, 5 and c̃2 = 0.2, 0.5, 0.8. The limiting

null distribution of Roy’s test λ1(HG−1) follows the Tracy-Widom law for

c̃1/c̃2λ1 proposed by Han et al. (2016). In order to avoid the calculation of

the complex integral in the Tracy-Widom law, we also derive the explicit

expressions of the Tracy Widom law for c̃1/c̃2λ1 by Theorem 1.12 in Bao

et al. (2018) based on the functional relationship of canonical correlation

matrix and Fisher matrix. Then we report both empirical sizes and powers
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with 1000 replications at a significance level α = 0.05. The simulation

results are summarized in the Tables 2.

The simulation illustrates that the limiting distribution of the Roy’s test

in linear regression model provides the slightly better sizes in our simulation

settings. Table 2 shows that the proposed CLT for the Roy’s test under

the alternative hypothesis seems to be more powerful than the CLRT in

this simulation setting. As seen from Table 2, the powers of the Roy’s test

rapidly increase to 1 as the sample size increases. For instance, for the case

of q1/q0 = 0.2, p = 50, c̃1 = 2, c̃2 = 0.8 (i.e., p = 50, n = 187, q0 = 125, q1 =

25), the power is 0.547 and increases to 0.996 for the case of q1/q0 = 0.2, p =

50, c̃1 = 2, c̃2 = 0.5 (i.e., p = 50, n = 225, q0 = 125, q1 = 25). In general,

both the Roy’s test and the CLRT are expected to have good sizes, but our

proposed approach has higher powers.

Supplementary Material

The supplementary material is available online and includes the additional

proofs.
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