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Abstract: For multivariate functional data, it is quite challenging to model the cross-

covariance structure which consists of dual aspects of multivariate and functional fea-

tures. To simplify the cross-covariance analysis, the assumption of partial separability

is widely used to decompose the data into an additive form of multivariate random

variables and functional components. In this article, we propose hypothesis testing

procedures to examine the validity of partial separability. We study the asymptotic

properties of the l2 and l∞ norm of the test statistic, resulting in a chi-square type

mixture test and a high-dimensional test that are suitable to finite- or high-dimensional

multivariate functional data with diverse multivariate dependence. We assess the empir-

ical performance of the proposed tests through two simulation studies for multivariate

functional data and graphical functional data, followed by two corresponding real ex-

amples: multichannel tonnage data and electroencephalography data.

Key words and phrases: Partial Separability, Multivariate Functional Data, Functional

Graphical Model, High-dimensional Test.
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1. Introduction

The knowledge of the covariance structure plays an important role in functional

data analysis (FDA). To characterize the variation of random curves, nonpara-

metric methods are widely used, often coupled with dimension reduction tools

such as functional principal component analysis (FPCA), which provides a flex-

ible approach to depict the temporal dependence. Due to rapid developments

in data collection techniques, multivariate functional data (MFD) that com-

prise simultaneous recordings across multiple processes are becoming increas-

ingly available. Typical examples include daily traffic measurements (Chiou

et al., 2014), temperature recordings (Berrendero et al., 2011), multichannel

profile data (Paynabar et al., 2016) and neuroimaging data (Happ and Greven,

2018; Qiao et al., 2019). Advanced modeling techniques on the cross-covariance

function/kernel/operator, which jointly depict the functional features across time

and multivariate dependence across processes, are consequently attracting grow-

ing attention.

The analysis of cross-covariance structure has been extensively studied in

various fields. For example, the modeling of spatio-temporal covariance plays a

prominent part in traditional spatio-temporal statistics, and is highly relevant to

a set of spatio-temporal problems such as assessment of stationarity or isotropy,

prediction or kriging, resampling methods, and Bayesian inference, see mono-

graphs such as (Sherman, 2011; Wikle et al., 2019). To ease the complexity of

the covariance structure, a heavily used assumption is separability, which as-
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sumes the full covariance is a product of a purely spatial covariance and a purely

temporal covariance. Hypothesis tests of the spatio-temporal separability have

been studied in a number of articles (e.g. Fuentes, 2006; Li et al., 2007; Simpson

et al., 2014), where restrictions on covariance structure are typically imposed

by some parametric forms or stationarity. In these years, some nonparametric

tests have been proposed under the functional data setup (Aston et al., 2017;

Bagchi et al., 2020; Constantinou et al., 2017), shedding new light on the cross-

covariance analysis from the perspective of FDA.

Recently some new notions which relax the separability assumption have

been developed, including variants of weak separability for two-way functional

data (Lynch and Chen, 2018) and spatio-temporal fields (Liang et al., 2022),

and partial separability for multivariate functional data (Zapata et al., 2022).

Although introduced for distinct data formats, these definitions are closely in-

terconnected, as discussed in Liang et al. (2022) and Zapata et al. (2022). As

the concern of this paper is multivariate functional data, we focus on partial

separability. We highlight that, as shown in Section 2.1, the partial separability

assumption simplifies the full cross-covariance by an eigen-decomposition con-

sisting of a series of functional bases {ϕl(t) : t ∈ T }l=1,2,..., i.e. the functional

principal components (FPC) which represent the functional variation, and a

series of p× p covariance matrices {Σl}l=1,2,... which reflect the multivariate de-

pendence. Here T is the functional domain, and p is the multivariate dimension

which may be possibly infinite. By a projection onto {ϕl(t)}, the multivariate
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functional processX(t) ∈ Rp can be further expressed using a sequence of uncor-

related FPC scores {θl}, each of which is a p-variate random vector and can thus

be modeled using techniques in conventional multivariate or high-dimensional

statistical analysis.

Due to its flexibility and parsimonious reduction, partial separability has

been exploited or implicitly assumed in a large number of literatures. Payn-

abar et al. (2016) utilized the partial separability representation to simplify the

change-point model for multichannel functional profiles. Zapata et al. (2022)

proposed the partial separability structure to incorporate the partial correla-

tion for functional graphical models, which overcomes the noninvertibility of

the covariance operator for infinite-dimensional functional data. For spatially

correlated functional data, partial separability, or the equivalent concept called

weak separability in Liang et al. (2022), is widely employed to simplify the

modeling of space-time interaction, and is frequently coupled with concepts like

stationarity or isotropy (Liu et al., 2017; Zhang and Li, 2021). Note that partial

separability is also mixed with the concept of multi-dimensional FPCA (Payn-

abar et al., 2016), or FPCA in literature on multilevel functional data (Di et al.,

2009) and functional point processes (Li and Guan, 2014; Xu et al., 2020), which

facilitates substantial model/computational reduction for functional data with

complex structures. Despite its versatility to diverse covariance structures, we

stress that the partial separability, distinct from univariate or multivariate FPCA

based on Karhunen-Loève (KL) or multivariate KL Theorem (e.g. Hsing and Eu-
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bank, 2015), may not hold simultaneously in multivariate and functional aspects,

thus its validity should be rigorously examined. Take the example of electroen-

cephalography (EEG) signals in Section 5.2, where one particular interest is

to identify the graphical network within the multivariate functional process.

However, the separable structure is demonstrably violated in this dataset (e.g.

Masak et al., 2023), indicating the need for more flexible dimension reduction

approaches like partial separability to simplify the cross-covariance structure ef-

fectively. Conducting the proposed statistical tests can offer insights into the

appropriateness of adopting partial separability, and the test result can signifi-

cantly impact subsequent model specifications, including the functional graphical

model (Zapata et al., 2022) discussed in Section 2.3.

In this article, we develop statistical tests to formally justify the rational-

ity of assuming partial separability for finite- and high-dimensional multivariate

functional data. The test statistics are formulated based on the estimated FPC

scores resulting from the marginal covariance kernel. To address the challenge

that the test statistic using estimated scores has a different distribution from

the counterpart using true scores, we carefully derive the null distribution and

demonstrate the theoretical gaps in theorems. In particular, we highlight the

importance of constructing different tests for typical multivariate functional data

or high-dimensional functional data with diverse dependence structures (e.g. the

graphical model). Correspondingly, a χ2 type mixture test is developed for mul-

tivariate functional data with fixed p, in terms of the asymptotic distribution and
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properly estimated asymptotic covariance. To adapt to potential high dimen-

sional p and sparse covariance structures, we also propose a high-dimensional

test based on the infinite norm of statistics and its Gaussian approximation.

Thanks to available replicated observations, the proposed tests do not require

other structural assumptions, such as stationarity for spatial functional data

(Liang et al., 2022). Also, no Gaussian assumption is required. Our numeri-

cal studies suggest that the proposed χ2 type mixture test or high-dimensional

test shows better performance respectively for multivariate functional data or

(high-dimensional) graphical functional data.

The remainder of this article is organized as follows. We introduce the no-

tion of partial separability in Section 2 and present its application in several

research problems. In Section 3, we propose the testing approaches, involving a

χ2 type mixture test in Section 3.1 and a high-dimensional mean test in Section

3.2. We illustrate the empirical performance of the proposed tests by two simu-

lation studies for multivariate functional data and graphical functional data in

Section 4, followed by two application examples on multichannel tonnage data

and electroencephalography (EEG) data in Section 5. More technical details

and numerical results are provided in the Supplementary Material.

2. Multivariate Functional Data and Partial Separability

Let L2(T ) be the space of square-integrable functions on T = [0, 1], equipped

with inner product 〈f, g〉 =
∫
T f(t)g(t)dt and the corresponding norm ‖ · ‖ =

6
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2.1 The concept of partial separability

〈·, ·〉1/2. Let {L2(T )}p be the space of p-dimensional functions with inner prod-

uct 〈f , g〉p =
∑p

j=1

∫
T fj(t)gj(t)dt and norm ‖ · ‖p = 〈·, ·〉1/2p . Suppose the mul-

tivariate functional data (MFD) are X(t) = {X1(t), . . . , Xp(t)}T ∈ {L2(T )}p,

where each Xj(t) ∈ L2(T ). We assume that X(t) has a continuous mean func-

tion µ(t) = {µ1(t), . . . , µp(t)}T and a continuous covariance function G(s, t) =

{Gjk(s, t)} ∈ Rp×p, 1 ≤ j, k ≤ p, following the common approach in FDA (e.g.

Hsing and Eubank, 2015; Lynch and Chen, 2018), where µj(t) = E{Xj(t)},

Gjk(s, t) = cov{Xj(s), Xk(t)} = E{Xj(s) − µj(s)}{Xk(t) − µk(t)}. Note that

G(s, t) and Gjk(s, t) can also be regarded as the kernel of the covariance oper-

ator G of X and the cross-covariance operator Gjk of Xj and Xk (Hsing and

Eubank, 2015); see more details in the Supplementary Material.

2.1 The concept of partial separability

According to the above definition of (cross) covariance function, G(s, t) consists

of a collection of p×p matrices across s, t ∈ T , say {Gjk(s, t)}, which is generally

complicated due to the dual aspects of multivariate dependence and infinite-

dimensional nature of functional data. Following Zapata et al. (2022), we state

the definition of partial separability as follows in terms of the cross-covariance

kernel.

Definition 1. A cross-covariance G(s, t) = {Gjk(s, t)}j,k=1,...p is partially sep-

arable if there exist some orthonormal basis {ϕl(·)}∞l=1 of L2(T ) and a sequence

of p × p positive-definite matrices {Σl = (σl(j, k))j,k=1,...p} such that for any
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2.1 The concept of partial separability

j, k = 1, . . . , p,

Gjk(s, t) =
∞∑
l=1

σl(j, k)ϕl(s)ϕl(t). (2.1)

Based on Definition 1 and similarly to the Karhunen-Loéve (KL) Theorem,

we have the following equivalent definition of partial separability for the random

process X(t).

Definition 1†. A multivariate functional process X(t) is partially separable if

there exist an orthonormal basis {ϕl(·)}∞l=1 of L2(T ), such that

X(t) = µ(t) +
∞∑
l=1

θl ϕl(t) (2.2)

holds almost surely in {L2(T )}p, where θl = (〈X1 − µ1, ϕl〉 , . . . , 〈Xp − µp, ϕl〉)T

is a p-variate random vector, and cov(θl,θl′) = 0 for l 6= l′, i.e., the scores {θl}

are mutually uncorrelated.

The equivalence of Definition 1 and 1† is apparent by noticing that the

expansion (2.1) has no cross-terms across different l due to the uncorrelatedness

of FPC scores θl. And it can be easily observed that the matrix Σl in Definition

1 corresponds to the covariance matrix of θl. See Theorem 1 of Zapata et al.

(2022) for more equivalent definitions. In what follows we mix up the partial

separability of X or G without confusion, and the expansions in (2.1) and (2.2)

are ordered in terms of the decreasing value of tr(Σl) for clarity. We also assume

that EX(t) = 0 without loss of generality.

According to equation (2.2), the orthonormal basis {ϕl(t)} in (2.1) consists of

the eigenfunction of Gjk(s, t) for any j, k. Besides, as stated by Lynch and Chen
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2.2 Properties of partial separability

(2018); Zapata et al. (2022), {ϕl(t)} is unique up to a sign, and ϕl(t) ≡ φl(t),

where {φl(t)} are the eigenfunctions of the marginal kernel

H(s, t) =

p∑
j=1

Gjj(s, t). (2.3)

Zapata et al. (2022) show that the eigenbasis of H(s, t) is optimal in the sense

that it retains the largest amount of total variability among vectors of the form

(〈X1, ϕ̃l〉 , . . . , 〈Xp, ϕ̃l〉)T for any orthonormal {ϕ̃l}. If X is partially separable,

the unique basis {ϕl} corresponds to this optimal basis, and

H(s, t) =
∞∑
l=1

λl ϕl(s)ϕl(t), (2.4)

where λl = tr (Σl). Equation (2.4) is useful to construct the estimator of ϕl in

Section 3.

2.2 Properties of partial separability

For a more comprehensive understanding, we elucidate the relationship between

partial separability and some other concepts, including separability, univariate

and multivariate FPCA.

Partial separability and separability. According to Zapata et al. (2022),

a multivariate functional processX(t) with the cross-covarianceG(s, t) = {Gjk(s, t)}j,k=1,...p

is separable if there exist a p × p covariance matrix Σ = (σ(j, k))j,k=1,...,p and a

covariance function C(s, t) with s, t ∈ T such that for any j, k = 1, . . . , p,

Gjk(s, t) = σ(j, k)C(s, t). (2.5)
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2.2 Properties of partial separability

As shown by (2.5), the separability assumption allows the full cross-covariance

function G to be factorized as a product of a (multivariate) covariance Σ and a

(functional) covariance C(s, t). By contrast, a partial separable cross-covariance

(2.1) is characterized by a sequence of covariance matrices Σl, yielding a more

flexible yet parsimonious representation. A more comprehensive result for the

relationship between separability and partial separability is given in the following

Proposition 1, which is a similar result to Proposition 1 and 2 in Liang et al.

(2022)

Proposition 1. (a) A separable process X(t) is partially separable.

(b) A partially separable X(t) satisfying (2.1) is separable if and only if (i.f.f)

there exist a nonnegative decreasing series of ωl satisfying
∑∞

l=1 ωl < ∞ and a

function σ̃(j, k) such that σl(j, k) = ωl σ̃(j, k) for any j, k = 1, . . . , p.

Partial Separability and FPCA. We clarify the difference between par-

tial separability and univariate or multivariate FPCA. The univariate FPCA

represents each component of X(t), say Xj(t), in terms of a KL expansion, by

Xj(t) =
∞∑
l=1

〈Xj, φlj〉φlj(t), (2.6)

where the FPC scores ξjl = 〈Xj, φlj〉 are uncorrelated across different l, {φlj}

are the eigenfunctions of covariance kernel Gjj(s, t) and vary across different

j. In contrast, partial separability (2.2) assumes a common eigenbasis {ϕl} for

different elements of X(t), which is valid when multiple curves exhibit similar

patterns and is useful to integrate the information across multiple components.
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2.2 Properties of partial separability

On the other hand, Chiou et al. (2014) proposed the following multivariate

FPCA representation

X(t) =
∞∑
l=1

〈X,ψl〉pψl(t) (2.7)

based on a multivariate KL expansion. Here ψl(t) = (ψl1(t), . . . , ψlp(t))
T ∈

(L2(T ))p is the eigenfunction of covariance G(s, t), and 〈ψl(t),ψl′(t)〉p = δll′ ,

where δll′ = 1 if l = l′ and 0 otherwise. Despite the parsimony of decomposition

(2.7), the FPC scores 〈X,ψl〉p are scalar and cannot be directly modeled using

approaches in multivariate statistical analysis. By contrast, the partial separa-

bility model combines the strengths of (2.6) and (2.7) through a sequence of

FPCs that depict the common functional variation among all components, and

a series of scores that account for the diversity of multivariate dependence.

For a more thorough overview, we list some other concepts of FPCA or sep-

arability in existing literatures. Jiang and Wang (2010) developed a covariate-

adjusted FPCA by adjusting the mean and/or covariance function through

some covariates that are not available for the considered multivariate functional

data. The common functional principal component model in Benko et al. (2009)

aimed at identifying common FPCs from two populations, whereas the pro-

posed partial separability accounts for the cross-covariance among p different

elements/populations where p may tend to infinity. Recently Masak et al. (2023)

defined a novel “R-separable” structure based on the partial inner product that

generalizes the notion of separability. Unlike partial separability that yields a

straightforward representation (2.2) for the multivariate functional process, “R-
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2.3 Application of partial separability

separability” only focuses on simplifying the covariance kernel and is therefore

less efficient in producing powerful modeling schemes, such as the functional

graphical model discussed in Section 2.3. There is also a notable connection

between partial separability and the weak separability for two-way functional

data proposed by Lynch and Chen (2018). Recall the expansion (2.2) and sup-

pose that the multivariate functional process X(t) be regarded as a two-way

functional process X ∈ L2(S × T ), where S = 1, . . . , p. For each vector θl,

one may further consider a projection θl =
∑p

k=1 rlkψlk onto the p-variate basis

{ψlk}k=1,...,p based on the conventional multivariate PCA. If {ψlk} is independent

of l, i.e. each of {θl} has the same eigen basis {ψk}, then the partial separablity

model (2.2) would become X(t) = µ(t) +
∑∞

l=1

∑p
k=1 rlkψkϕl(t), which corre-

sponds to the weak separability in Lynch and Chen (2018) that is a special case

of our definition.

2.3 Application of partial separability

To illustrate the advantage of partial separability, we give a brief review of its

application in two typical research topics.

Change-point detection for multichannel profiles. In statistical pro-

cess control, change-point detection remains a challenging problem for multi-

stream profile monitoring. Paynabar et al. (2016) represents these multichannel

profiles through a set of vector-valued functional data {Xi(t), i = 1, . . . , n},

where Xi(t) = (Xi1(t), . . . , Xip(t))
T is the vector of observed profiles measured

12

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0370



2.3 Application of partial separability

at t ∈ T . As the multiple profile curves demonstrate similar patterns, the partial

separability model (2.2) is assumed, yielding common FPCs for different profiles.

Following a multidimensional FPCA procedure, a sequence of projected vectors

η̂τ,l ∈ Rp are estimated based on the estimated FPC scores θ̂l ∈ Rp as well as

the classical binary segmentation approach, where l is the component index and

τ is the potential change-point. Utilizing the estimator Σ̂l for Σl ∈ Rp×p, that

is the asymptotic covariance of η̂τ,l, and the mutual uncorrelatedness among η̂τ,l

due to partial separability, an additive form of Wald statistic is proposed by

Qτ =
∑
l

η̂T
τ,l Σ̂

−1
l η̂τ,l, (2.8)

of which the maximum value across 1 ≤ τ ≤ n can be used to detect the change

point.

Functional graphical models. The traditional Gaussian graphical models

have been extended to multivariate functional objects in some recent research

(e.g. Qiao et al., 2019; Zapata et al., 2022). Consider a multivariate process

X(t) ∈ (L2(T ))p with an undirected graph (V,E), where V = {1, . . . , p} is the

node set and E ⊂ V 2 is the edge set. Let XV \{j,k} denote the sub-vector of X(·)

obtained by removing Xj(·) and Xk(·). A functional Gaussian graphical model

represents the conditional dependency of X(t) by the conditional covariance

kernels

Cjk(s, t) = cov
{
Xj(s), Xk(t)|XV \{j,k}

}
, j, k ∈ V, j 6= k,

which is related to the graph of V by that (j, k) ∈ E i.f.f. Cjk(s, t) = 0 for all
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2.3 Application of partial separability

s, t ∈ T . Zapata et al. (2022) state that, under a partially separable structure

(2.1) or (2.2) with the covariance Σl, the conditional covariance Cjk(s, t) yields

the following decomposition

Cjk(s, t) =
∞∑
l=1

cl(j, k)ϕl(s)ϕl(t) (2.9)

where cl(j, k) = σl(j, k)−[Σl]j,V \{j,k}{[Σl]V \{j,k},V \{j,k}}−1[Σl]V \{j,k},k. Here [·]V1,V2

denotes the operation to extract subsets V1 and V2 of rows and columns of a ma-

trix. Let Ωl = Σ−1l be the precision matrix of θl, with each element being

ωl(j, k), j, k = 1, . . . , p. It can be shown that cl(j, k) = 0 i.f.f. ωl(j, k) = 0,

thus (j, k) /∈ E i.f.f. cl(j, k) = ωl(j, k) = 0 for all l. We highlight that notic-

ing the similarity between (2.1) and (2.9), the conditional dependency can also

be characterized by a sequence of precision matrices {Ωl} owing to the partial

separability, which is useful to overcome the problem of noninvertibility of the

covariance operator when X is infinite-dimensional. It should also be noted that

this functional graphical model is applicable when p is infinite, and the estima-

tion procedure can be embedded with some high-dimensional statistical tools

such as the graphical lasso (Danaher et al., 2014).

It is common knowledge that the graph structure in functional graphical

models may be sparse, and it is of great interest when the dimension p is large.

This motivates us to develop a substantially different test procedure (a high-

dimensional test in Section 3.2) from the traditional multivariate analysis (a

χ2 type mixture test in Section 3.1). One may also consider other types of

multivariate functional data with specific covariance structures, e.g. the spatial
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correlation that is usually smaller for stations at a closer distance. Correspond-

ingly, the partially separable covariance structure, also called weak separability

(Liang et al., 2022) or coregionalization model (Zhang and Li, 2021), is widely

employed in semiparametric modeling of spatial functional data. We also apply

the proposed tests for spatially correlated functional data, and collect relevant

results in Supplementary Material for space economy.

3. Tests of Partial Separability

According to Section 2.1, a p-variate processX(t) can be projected onto a unique

orthonormal basis ϕl(·) consisting of the eigen-system of the marginal covariance

H(s, t), which results in a series of vectors θl ∈ Rp. Let θl = (θl1, . . . , θlp)
T and

Σll′ = cov(θl,θl′). By Definition 1†, testing the partial separability of X(t) is

the same as testing the covariance Σll′ = 0 for l 6= l′, or equivalently,

H0 : cov(θlj, θl′k) = 0 for all l 6= l′ and j, k = 1, . . . , p. (3.1)

If one truncates X(t) in (2.2) with L components, the partial separability test is

also to examine if the covariance matrix of (θT1 , . . . ,θ
T
L)T is block diagonal; see

Figure 1 of Zapata et al. (2022) for a graphical illustration.

Suppose we observe Xi(t) = (Xi1(t), . . . , Xip(t))
T, i = 1, . . . , n, which are

i.i.d. copies ofX(t). Since the sample values of {θl} cannot be directly observed,

we first estimate the scores by

θ̂i,l = (θ̂i,l1, . . . , θ̂i,lp)
T = (〈Xi1 − µ̂1, ϕ̂l〉 , . . . , 〈Xip − µ̂p, ϕ̂l〉)T , (3.2)
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based on the conventional projection approach. Here µ̂j(t) = n−1
∑n

i=1Xij(t) is

the sample mean function, {ϕ̂l(t)} are eigenfunctions of the estimated marginal

covariance

Ĥ(s, t) =

p∑
j=1

Ĝjj(s, t), (3.3)

where the cross-covariance Gjk(s, t) is obtained by

Ĝjk(s, t) =
1

n

n∑
i=1

{Xij(s)− µ̂j(s)} {Xik(t)− µ̂k(t)} (3.4)

for each j, k = 1, . . . , p. It can be easily observed that Ĝjk(s, t), Ĥ(s, t), ϕ̂l(t) and

θ̂i,l are consistent to their population counterparts. In practice, if the functional

data are sparsely observed with measurement errors, we can also estimate Gjk

through the smoothing procedure on pooled data (e.g. Yao et al., 2005; Chiou

et al., 2014).

As a common practice in FDA, we consider a truncated process X(t) =

µ(t) +
∑Ln

l=1 θl ϕl(t) with a suitable chosen Ln, of which the practical selection is

usually tricky and depends on the subsequent analysis. Provided with the eigen-

values {λ̂l} of the marginal covariance Ĥ, one may determine Ln according to the

fraction of variance explained (FVE), define as FVE(Ln) = (
∑Ln

l=1 λ̂l)/(
∑∞

l=1 λ̂l),

which can be practically chosen as 80%, 90% or 95% etc. Then, to test the

covariance structure of θl and θl′ for each 1 ≤ l < l′ ≤ Ln, a reasonable statistic

is

Tn(l, j, l′, k) =
1√
n

n∑
i=1

θ̂i,lj θ̂i,l′k, (3.5)

across all j, k = 1, . . . , p. Let T
(l,l′)
n = (Tn(l, j, l′, k) : 1 ≤ j ≤ k ≤ q)T be a
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3.1 Test based on χ2 type mixture

p(p + 1)/2-vector by omitting the duplicate terms for j > k, and Tn be a long

vector by stacking {T (l,l′)
n : 1 ≤ l < l′ ≤ Ln} with length q = p(p+1)Ln(Ln−1)/4.

Based on the l2- and l∞- norm of Tn, we then develop a χ2 type mixture test

in Section 3.1, as well as a high-dimensional test in Section 3.2 to cope with the

situation when p or Ln is large.

3.1 Test based on χ2 type mixture

As stated by Lynch and Chen (2018); Liang et al. (2022), although the estimate

scores {θ̂i,l} can be shown to be
√
n-consistent, the test statistic (3.5) has a

different distribution from the counterpart using true scores. To provide the

asymptotic result of Tn, we first state two conditions which are necessary for the

main theorem.

Condition 1. E‖X‖4p <∞.

Condition 2. The eigenvalues of H(s, t), say {λl}, have multiplicity one.

Condition 1 is a standard moment assumption for the central limit theorem of

(cross) covariance operators in Hilbert-Schmidt spaces (Theorem 8.1.2 in Hsing

and Eubank, 2015). Following Theorem 9.1.3 in Hsing and Eubank (2015),

Conditions 1 and 2 ensure the weak convergence of the estimated eigenfunctions.

Theorem 1. Assume Conditions 1 and 2 hold and X is partially separable.

(a) For each 1 ≤ l < l′ ≤ Ln and 1 ≤ j ≤ k ≤ p, we have

Tn(l, j, l′, k) = Zn(l, j, l′, k) + op(1),

17

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0370



3.1 Test based on χ2 type mixture

where Zn(l, j, l′, k) converges weakly to a mean-zero Gaussian random variable.

(b) Tn is asymptotically jointly Gaussian with mean zero and covariance struc-

ture Θ.

The explicit expressions of Zn(l, j, l′, k) and Θ are given in the Supplementary

Material.

To perform the test in terms of the asymptotic joint normality in Theo-

rem 1, a χ2 test statistic T T
n Θ−1Tn may be considered. However, one could

easily observe a linear relationship among the diagonal elements in Tn, i.e.,

{Tn(l, j, l′, j) : j = 1, . . . , p}, by noting

√
n

p∑
j=1

Tn(l, j, l′, j) =

p∑
j=1

n∑
i=1

θ̂i,lj θ̂i,l′,j

=

p∑
j=1

n∑
i=1

∫
{Xij(t)− µ̂j(t)}ϕ̂l(t)dt

∫
{Xij(s)− µ̂j(s)}ϕ̂l′(s)ds

=

p∑
j=1

∫ ∫
Ĝjj(s, t)ϕ̂l(s)ϕ̂l′(t)dsdt

=

∫ ∫
Ĥ(s, t)ϕ̂l(s)ϕ̂l′(t)dsdt = 0, (3.6)

which implies that Θ is singular. Instead, we consider the non-normalized statis-

tic constructed by summation of the square of Tn(l, j, l′, k), say

Sn =
∑

1≤l<l′≤Ln

∑
1≤j≤k≤p

Tn(l, j, l′, k)2, (3.7)

following a similar procedure in Lynch and Chen (2018). In light of Theorem 1,

one could easily obtain the distribution of Sn under null/alternative hypothesis,

as presented in the following corollary.
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Corollary 1. Assume the conditions in Theorem 1 hold.

(a) If X is partially separable, then Sn follows a χ2 type mixture distribution;

more explicitly, Sn =
∑q

i=1 γiZ
2
i , where {γi} are the eigenvalues of the q × q

matrix Θ, and {Zi} are i.i.d standard normal random variables.

(b) If X is non-partially separable, then Sn →∞ in probability.

Based on Corollary 1 we could then perform a χ2 type mixture test. As sug-

gested by Zhang (2013), the exact distribution of a χ2 type mixture is generally

not tractable, especially when q is large. Consequently, the Welch-Satterthwaite

approximation is commonly-used and approximates Sn ∼ βχ2
d, where β and

d are determined by matching the first two moments of Sn. This results in

β = tr(Θ2)/tr(Θ) and d = {tr(Θ)}2/tr(Θ2). Similar to Lynch and Chen

(2018); Liang et al. (2022), the explicit form of Θ depends on the cross fourth-

order moments of the FPC scores, say E(θlj1θl′k1θlj2θl′k2), which in practice can

be estimated via moment estimation based on the estimated scores θ̂i,l. Thus a

plug-in estimator of Θ can be used to approximate the p-values for the proposed

χ2 type mixture test as an upper tail probability of βχ2
d.

3.2 High-dimensional Test

For many problems in multivariate functional data analysis, it would be more

interesting to consider partial separability when the dimension p is high, such

as the functional graphical model in Qiao et al. (2019); Zapata et al. (2022). In

these cases, executing the χ2 type mixture test in Section 3.1 on Tn may lead
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to bad performance due to the curse of dimensionality. For this consideration,

we propose a high-dimensional test for partial separability motivated by the

distribution and correlation-free test of high-dimensional means proposed in Xue

and Yao (2020).

Recall the definition of Tn and consider the counterpart of T
(l,l′)
n based on

the true scores, say

Y (l,l′) = (θl1θl′1, . . . , θl1θl′p, . . . , θlpθl′p)
T ,

similarly let Y be a long vector by stacking {Y (l,l′) : l < l′}. Denote µY = EY ,

we can reformulate the test (3.1) as

H0 : µY = 0 v.s. H1 : µY 6= 0.

For a large p, this is actually a high-dimensional one-sample mean test with the

dimension of Y being q = p(p + 1)Ln(Ln − 1)/4, identical to that of Tn. For

an infinite-dimensional functional process X(t), the truncation Ln may also be

allowed to diverge, which possibly makes the dimension q even larger. Let SY
n =

n−1/2
∑n

i=1 Yi, and denote the q-dimensional vector SY
n as {SY

n,d : d = 1, . . . , q}.

As the usual approach in high-dimensional statistics, we consider the l∞-norm

statistic ∥∥SY
n

∥∥
∞ = max

1≤d≤q
|SY
n,d|. (3.8)

Then the test rejects the null hypothesis at a certain significant level α if∥∥SY
n

∥∥
∞ > c(α) for some critical value c(α).

20

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0370
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To obtain a proper critical value, Xue and Yao (2020) applied a multiplier

bootstrap method for a high-dimensional two-sample test problem, based on the

high-dimensional central limit theorem (Chernozhukov et al., 2017). Following

their procedure, we define SeYn = n−1/2
∑n

i=1 ei (Yi − µ̂Y ), where {ei}ni=1 is a set

of i.i.d. standard normal random variables independent of the data and µ̂Y =

n−1
∑n

i=1 Yi denotes the sample mean. This multiplier bootstrap procedure is

useful to generate resamples of Gaussian approximations to SY
n . To quantify the

error of approximation between
∥∥SY

n

∥∥
∞ and

∥∥SeYn ∥∥∞, we require the following

condition.

Condition 3. Denote Yi = (Yi,1, . . . , Yi,q)
T, SY

n = (SY
n,1, . . . , S

Y
n,q)

T.

(a) There exists a universal constant b1 > 0 s.t. min1≤d≤q E
{(
SY
n,d

)2} ≥ b1.

(b) There exists a sequence of constants Bn ≥ 1 such that

max
1≤d≤q

n∑
i=1

E
(
|Yi,d − EYi,d|3

)
/n ≤ Bn, max

1≤d≤q

n∑
i=1

E
(
|Yi,d − EYi,d|4

)
/n ≤ B2

n.

(c) The sequence of constants Bn in (b) also satisfies

max
1≤i≤n

max
1≤d≤q

E {exp (|Yi,d| /Bn)} ≤ 2.

(d) B2
n {log(qn)}7 /n→ 0 as n→∞.

Condition 3(a) and (b) correspond to the moment properties of the coor-

dinates, while Condition 3(c) is associated with the tail properties. No other

restriction on the distribution or correlation of those random vectors is required.

More explanations about these conditions can be seen in Xue and Yao (2020). In
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particular, Condition 3(d) indicates that the dimension q can grow exponentially

in n, provided that Bn is of some appropriate order.

Theorem 2. Assume Condition 3 holds and X(t) is partially separable. Then

with probability one, the Kolmogorov distance between the distributions of
∥∥SY

n

∥∥
∞

and
∥∥SeYn ∥∥∞ satisfies

sup
t≥0

∣∣P (∥∥SY
n

∥∥
∞ ≤ t

)
− Pe

(∥∥SeYn ∥∥∞ ≤ t
) ∣∣ . {B2

n log7(qn)/n
}1/6

,

where an . bn means an ≤ Cbn up to a universal constant C > 0 for two sequence

of constants an and bn, Pe(·) denotes the probability with respect to {ei}ni=1 only.

Consequently,

sup
α∈(0,1)

∣∣P{∥∥SY
n

∥∥
∞ ≤ cB(α)

}
− (1− α)

∣∣ . {B2
n log7(qn)/n

}1/6
,

where cB(α) = inf
{
t ∈ R : Pe

(∥∥SeYn ∥∥∞ ≤ t
)
≥ 1− α

}
.

This theorem provides a simpler result on the one-sample mean test than the

two-sample test result in Theorem 3 of Xue and Yao (2020), and could also be

straightforwardly implied by the one-sample CLT in Chernozhukov et al. (2017),

so we omit its proof. To implement the test procedure based on Theorem 2, we

first obtain the estimate Ŷi and SŶ
n through the consistently estimated scores

θ̂i,l defined in (3.2), and then perform the multiplier bootstrap based on the

estimate of SeŶn . The detailed algorithm is displayed in Algorithm 1.
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Algorithm 1 Algorithm for High-dimensional Test

1: For i = 1 . . . , n do

2: Compute Ŷi by stacking {Ŷ (l,l′)
i : 1 ≤ l < l′ ≤ Ln}, where Ŷ

(l,l′)
i =

(θ̂i,l1θ̂i,l′1, . . . , θ̂i,lpθ̂i,l′p)
T, i.e, Ŷi = {(Ŷ (1,2)

i )T, . . . , (Ŷ
(1,Ln)
i )T, . . . ,

(Ŷ
(Ln−1,Ln)
i )T}T.

3: Compute SŶ
n = n−1/2

∑n
i=1 Ŷi. Note from (3.5) that SŶ

n = Tn.

4: For b = 1, . . . , B do

5: Generate n samples e1, . . . , en from standard normal distribution.

6: Compute statistics Sen =
∥∥∥SeŶn ∥∥∥∞ while keeping Ŷ = {Ŷ1, . . . , Ŷn}

fixed, where SeŶn = n−1/2
∑n

i=1 ei

(
Ŷi − µ̂Ŷ

)
and µ̂Ŷ is the sample

mean of Ŷ .

7: Obtain the approximated critical value ĉB(α) by the 100(1− α)-th quantile

of
{
Se1n , . . . ,SeBn

}
with α ∈ (0, 1).

8: Reject H0 if
∥∥∥SŶ

n

∥∥∥
∞
> ĉB(α).

4. Simulation Studies

We conduct numerical experiments to investigate the test performance for typ-

ical multivariate functional data and graphical functional data with potential

high dimension. For both simulation studies, we set the mean function as 0 and

the time domain as [0, 1] with 30 equally spaced grids. The fraction of vari-

ance explained (FVE) is set to be 80% or 90%. The empirical size or power is

evaluated via 1000 or 200 runs respectively, at the 0.05 significant value.
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4.1 Multivariate Functional Data

Following the expansion (2.2), for i = 1, . . . , n we generate a mean-zero random

vector θi = (θTi,1, . . . ,θ
T
i,L)T ∈ RpL with θi,l = (θi,l1, . . . , θi,lp)

T ∈ Rp, and then

the multivariate functional data Xi(t) by

Xi(t) =
L∑
l=1

θi,l ϕl(t), (4.1)

where {ϕl(t)} are the first four non-constant Fourier basis functions. We let

p = 4, L = 4 and n = 200. The covariance matrix Σ ∈ RpL×pL of θi is

determined according to the following cases:

(i) Partially separable case: Σps = diag(Σ1, . . . ,ΣL) with Σl = (σl(j, k)) ∈

Rp×p and σl(j, k) = cov{θi,lj, θi,lk} = l−2 r|j−k| (Paynabar et al., 2016).

(ii) Non-partially separable case: Σnps with the diagonal block being Σl,l = Σl

in (i) and the non-zero off-diagonal blocks Σ1,2 = Σ2,1 = ρ(Σ∗1 +Σ∗2) where

Σ∗l = Σl − diag(Σl) and ρ > 0, which means that the covariance of θi,1

and θi,2 is non-zero.

One can see that the constructed Σnps is positive-definite and would be equal

to Σps when ρ = 0, yielding the null hypothesis. In addition, the parameter r

quantifies the correlation between multivariate objects. The departure from

partial separability would be stronger, i.e. the non-zero elements in Σ1,2 would

be larger as ρ or r increases. Provided with the covariance Σ, the vector θi is

simulated from N(0,Σ) or the multivariate t distribution. For the latter case,
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4.1 Multivariate Functional Data

Table 1: Empirical rejection rates(%) of χ2 type mixture test (χ2) and high-

dimensional test (HD) for typical multivariate functional data.

ρ = 0 (H0) ρ=0.3 ρ=0.5 ρ=0.7

r FVE χ2 HD χ2 HD χ2 HD χ2 HD

Normal

0.2 80% 4.5 3.8 15.0 10.5 51.0 38.5 85.5 78.0

90% 5.2 3.8 14.5 10.5 48.5 37.5 82.5 78.0

0.3 80% 4.4 4.1 42.5 26.0 89.5 83.5 100 100

90% 4.9 4.1 37.5 26.0 90.0 83.5 100 100

0.4 80% 4.8 3.7 70.0 52.5 100 99.0 100 100

90% 4.6 3.7 67.5 52.5 100 99.0 100 100

Multivariate t

0.2 80% 4.5 2.4 10.5 7.0 38.5 22.5 72.0 54.5

90% 4.3 2.4 12.5 6.5 36.0 22.0 72.0 53.5

0.3 80% 4.6 2.5 33.0 20.5 79.0 64.5 98.5 92.5

90% 4.3 2.4 30.0 19.5 76.0 64.0 99.0 92.0

0.4 80% 4.6 2.5 56.5 35.0 98.0 90.5 100 100

90% 4.0 2.2 53.5 34.0 98.0 90.0 100 100

we first generate a vector x from N(0,Σ) and a χ2 random variable u with a

degree of freedom v that is independent of x. Following Lynch and Chen (2018),

we use x/{u/(v − 2)}1/2 as our multivariate t vector such that its covariance

is Σ, and take v = 6 in our simulations. Besides the partial separability test,
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4.1 Multivariate Functional Data

it is noteworthy that the covariance in case (i) is also separable according to

Proposition 1. Therefore, it would be interesting to conduct the separability

test on the simulated data; the corresponding results are included in Section S4

of the Supplementary Material.

Table 1 displays the empirical rejection rate results with varying ρ and r

under the scenario of normal or multivariate t distribution. We can see that the

χ2 type mixture test is able to control type I error well under different cases, while

the high-dimensional test tends to be undersized especially for the multivariate

t case. Besides, the empirical power rises rapidly as ρ grows from 0.3 to 0.7

or r from 0.2 to 0.4, and the χ2 test performs uniformly more powerful than

the high-dimensional test, indicating the superiority of χ2 type mixture test for

typical multivariate functional data. Table 1 also shows that the tests achieve

stable Type I errors under different FVE, and perform slightly more powerful

when FVE= 80%. Note that the selected Ln has an average of 2 or 3 respectively

for FVE= 80% or 90% in 200 trials. As the non-separable components occur

in the off-diagonal block Σ1,2 for Σnps, the power is reasonably better when

Ln = 2 is mostly chosen, i.e., FVE= 80%. Our additional result indicates that

the proposed FVE criterion is adaptive to different decay rates and effectively

determines the value of Ln; see Section S3.2 of Supplementary Material.
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4.2 Graphical Functional Data

We start with the multivariate functional model (4.1) with L = 11 and then

add the graph structure on θi,l by the following procedure. Given the node set

V = {1, . . . , p} and a sparsity parameter π, we first randomly generate an edge

between any two nodes with probability 2π/(p − 1) so that there are πp edges

on average. Based on such a graph G = (V,E), we then generate a sequence of

edge sets {El}l=1,...,L so that E = ∪Ll=1El, and a sequence of precision matrices

{Ωl}l=1,...,L for each El; for brevity we omit the details of the generating algorithm

which can be found in Zapata et al. (2022). Then we generate a mean-zero pL-

variate Gaussian vector θi with the covariance matrix Σ as follows:

(i†) Σps = diag(Σ1, . . . ,ΣL) with Σl = 3l−2Ω−1l ∈ Rp×p.

(ii†) Σnps with the diagonal block Σl in (i†) and the off-diagonal blocks Σ1,3 =

Σ3,1 = ρ(Σ∗1 + Σ∗3), where Σ∗l = Σl − diag(Σl) and ρ = 0.3.

To study the test power under a different alternative case, in scenario (ii†) we

impose the signal at the 1st and 3rd components, which generalizes the non-

partially separable case (ii) in Section 4.1. Besides the correlation parameter ρ,

the violation of partial separability is also influenced by the sparsity level π, that

is, the number of nonzero elements in Ωl and Ωnps := Σ−1nps would grow when π

becomes larger.

As suggested by Table 2, both tests control the type I error well, whereas

the high-dimensional test performs uniformly more powerful than the χ2 type
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Table 2: Empirical rejection rates(%) of χ2 type mixture test (χ2) and high-

dimensional test (HD) for graphical functional data.

π=0.05 π=0.1 π=0.2 π=0.3

p FVE χ2 HD χ2 HD χ2 HD χ2 HD

Size (ρ = 0)

25 80% 5.0 4.1 5.7 4.4 4.8 4.6 4.6 4.4

90% 5.5 4.1 5.6 4.4 5.0 4.6 4.8 4.4

50 80% 5.9 5.2 4.4 4.3 4.8 4.1 3.8 5.3

90% 6.1 5.2 4.9 4.3 5.3 4.1 4.2 5.3

100 80% 4.1 3.9 4.4 4.0 4.5 3.9 4.5 4.2

90% 4.4 3.9 4.5 4.0 5.4 3.9 4.6 4.2

Power (ρ = 0.3)

25 80% 30.0 58.0 30.0 55.5 18.5 25.0 12.0 16.5

90% 45.5 97.0 52.0 98.0 68.5 98.5 87.0 100

50 80% 16.5 83.0 24.0 71.5 30.0 66.5 42.0 63.0

90% 18.5 95.0 32.0 98.5 44.5 99.5 65.0 99.5

100 80% 12.5 92.0 21.0 94.5 32.5 94.5 43.5 89.5

90% 14.0 95.0 22.5 98.5 34.5 99.5 43.5 100

mixture test, especially when π is small (e.g. π = 0.05) which corresponds to

a rather sparse graph. Moreover, as p increases the high-dimensional test has a

stable power, by contrast with χ2 type mixture which becomes less powerful for

larger p (especially for FVE=90%). These results demonstrate the superiority of
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high-dimensional test for graphical functional data. In addition, we can observe

an obvious improvement of power from FVE= 80% to 90%. Since the non-

separable components in (ii†) occur in Σ1,3, and the selected Ln is 2.6 or 4 on

average respectively for FVE= 80% or 90%. As expected, the tests behave more

powerful when Ln ≥ 3 is mostly chosen, i.e., FVE= 90%. This also indicates that

the claim of partial separability should be a comprehensive conclusion across

different FVE or Ln. In addition, we investigate a more complex simulation

setting that mimics the graph structure in the real application (see Section S3.1

of Supplementary Material), and the obtained results are consistent with the

above findings.

5. Real Data Examples

5.1 Multichannel Tonnage Profiles

The multichannel tonnage profile data were previously studied for Phase-I mon-

itoring change detection (Lei et al., 2010; Paynabar et al., 2016). This dataset

contains a collection of four-channel tonnage profile curves, each of which is

recorded by a strain gauge sensor mounted on one column of the forging ma-

chine. The data sample used in the analysis includes 151 in-control(IC) profiles

under the normal condition, followed by one of five out-of-control (OC) groups

with 69 profiles, resulting in n = 220 subjects. Following Paynabar et al. (2016),

we consider the data of Fault 4 group, which contains the most similar profile

curves to the normal condition and thus is difficult to separate. To reduce the
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5.1 Multichannel Tonnage Profiles

measurement noises, we use B-spline functions with 30 bases to smooth each

curve, reducing each profile function to 200 equally spaced time points.

To account for the multivariate dependence within multiple profile curves,

Paynabar et al. (2016) propose a change point model which embeds multidimen-

sional FPCA into the binary segmentation procedure. As pointed out in Section

2.3, partial separability is assumed to borrow information from all channels, and

plays a central role in the construction of change detection statistics. It is thus

necessary to examine the validity of the assumed partial separability structure.

Since the multivariate data contains p = 4 channel profiles and exhibit typical

multivariate functional data patterns, we perform the test based on χ2 type mix-

ture as suggested in Section 4.1. As the mean function of IC and OC groups

are different, the IC and OC profile data are firstly centralized separately by

subtracting the corresponding sample mean.

Table 3 displays the test results with different truncation levels and differ-

ent subgroups of channels. As shown by the first row, the hypothesis of partial

separability is rejected for the whole dataset with all 4 channels across all levels

of truncation. This suggests that it may not be appropriate to assume a partial

separability structure directly on the 4-variate profile curves. To give a more

comprehensive analysis, we also conduct the χ2 type mixture test on the sub-

groups of channels (2, 3, 4) and (3, 4). It can be seen that for channels (2, 3, 4),

the p-values are less than 0.001 when Ln > 2, i.e. the FVE is larger than 60%;

while the null hypothesis is not rejected for channels (3, 4) across different trun-
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Table 3: The p-values of partial separability tests based on χ2 type mixture with

different truncation levels for multichannel tonnage data.

Channels Ln 2 5 8 11 14

(1,2,3,4) FVE 52.1% 76.2% 83.9% 89.0% 93.1%

p-value < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

(2,3,4) FVE 58.2% 76.5% 85.1% 90.2% 93.7%

p-value 0.380 < 0.001 < 0.001 < 0.001 < 0.001

(3,4) FVE 57.0% 76.8% 85.8% 91.0% 94.2%

p-value 0.800 0.378 0.366 0.356 0.351

cation levels, which supports the validity of partial separability assumption on

this subset of 2-variate functional data.

To give some illustration of the partial separability structure, we compare the

eigenfunctions resulting from the marginal covariance Ĥ(s, t) =
∑p

j=1 Ĉjj(s, t)

defined by (3.3) with the univariate FPCs of each channel, as shown in Figure 1.

The univariate FPCs are matched in order by minimizing the integrated square

errors with the eigenfunctions of Ĥ. It can be observed that, despite an over-

all common pattern for the first eigenfunctions, the disparity becomes evident

from the second column of eigenfunctions for channels (1,2,3,4). Specifically,

the second eigenfunction of channel 1 (black dashed line) has an obvious drift

compared to other channels, and the difference becomes more significant for the

third eigenfunction. This illustrates the violation of partial separability which
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Figure 1: Estimated eigenfunctions of the marginal covariance Ĥ and univariate

FPCs of each channel for tonnage data.

assumes all profile channels have common eigenfunctions. As for the middle row

of channels (2,3,4), the inconsistent variation emerges at the third eigenfunc-

tions, which supports our findings of the non-partial separability when Ln > 2.

By contrast for channels (3,4), the first three univariate FPCs and eigenfunc-

tions of Ĥ all exhibit a similar pattern, which provides evidence for the partially

separable assumption on this subgroup.
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5.2 EEG Dataset

5.2 EEG Dataset

To investigate the performance of our method for graphical functional data, we

apply the proposed partial separability test to the EEG dataset from an alco-

holism study (Zhang et al., 1995). This study consists of n = 122 subjects with

77 in the alcoholic group and 45 in the control group. For each subject, voltage

values are measured from p = 64 electrodes, which are recorded at T = 256 time

points for one second. Hu and Yao (2022) propose a sparse high-dimensional

FPCA approach to extract the dynamic features of EEG signals. Qiao et al.

(2019) apply a functional graphical model to identify the connectivity between

different brain regions of interest. The functional graphical model is further de-

veloped by Zapata et al. (2022) under the partial separability assumption, as

discussed in Section 2.3, which theoretically overcomes the noninvertibility of

infinite-dimensional covariance operator and is demonstrated to perform better

for functional data with higher variance explained.

We conduct the same data preprocessing as Qiao et al. (2019) using an

α band filtering and consider the average signal of all trials under the single

stimulus condition. Then the eigendecomposition is performed on the marginal

covariance Ĥ, which shows that the FVEs for Ln = 3, 6, 9 are respectively

58.9%, 81.5%, 93.7%. As suggested by the simulation results in Section 4.2, we

apply the high-dimensional test for the partial separability under these Ln’s,

resulting in the corresponding p-values as displayed in the first row (PS-T) of

Table 4. These results indicate that assuming partial separability with an ade-
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Table 4: The p-values of the partial separability test (PS-T) and the separability

test (Sep-T) of Aston et al. (2017) with different Ln for EEG data.

Ln 3 6 9

PS-T 0.135 0.121 0.110

Sep-T < 0.001 < 0.001 < 0.001

quate truncation level could be a justifiable approach for a subsequent functional

graphical model in Zapata et al. (2022). We also notice that the p-value for the

χ2 type mixture test is less than 0.05 when Ln is larger than 6, which may be

due to a relatively small sample size (n = 122), compared with the length of Tn

being q = 31200 when Ln = 6.

One intriguing finding is that the separability assumption is demonstrably

inappropriate by the separability test proposed by Aston et al. (2017). The cor-

responding p-values are shown in the second row of Table 4, while additional

details are provided in Section S4.2 of Supplementary Material. This result

provides additional evidence that partial separability is more flexible than sep-

arability in accommodating the cross-covariance structure of the multivariate

functional data.

6. Discussion

The proposed tests of partial separability can significantly influence the sub-

sequent analysis of specific problems. Our further studies on the multichannel
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tonnage data in Section 5.1 reveal that misuse of the partial separability assump-

tion can potentially lead to incorrect change-point detection; additional results

are included in Supplementary Material. When dealing with sparsely observed

functional data, our test may be extended by utilizing smoothed covariance es-

timators based on pooled data (Yao et al., 2005). However, the distribution of

the test statistic may be affected by inflated estimation errors, which require

further investigation. Another theoretical challenge arises when the truncation

level is allowed to diverge to infinity, which reflects the nonparametric nature of

functional data. This would lead to more complicated convergence results for

the FPC according to the perturbation theory (e.g. Hsing and Eubank, 2015),

necessitating more involved technical developments for the corresponding test.

Supplementary Material

The Supplementary Material contains the proofs of Theorem 1 and Corollary 1,

additional numerical results for spatially correlated functional data, high dimen-

sional functional data, decay rates of eigenvalues and the relationship between

partial separability and separability, as well as subsequent analysis for partial

separability and separability tests on the specific applications.
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