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Abstract: Tests for uniformity of distribution for data vectors on the d-dimensional hypersphere

are proposed. The tests are U-statistic and V-statistic estimates of the quadratic distance

between the hypothesized, under the null, uniform distribution on the sphere and the empirical

cumulative distribution function. We introduce a class of diffusion kernels and study in detail

a special member of this class, the Poisson kernel, on which our proposed tests of uniformity

are based. We obtain the Karhunen-Loève decomposition of the kernel, connect it with its

degrees of freedom, and hence with the power of the test via a tuning parameter, the diffusion

parameter. We propose an algorithm that allows one to select the tuning parameter, and study

the connection between the Poisson kernel-based tests and the Sobolev tests. We then study

the performance of the proposed tests in terms of level and power, for a number of alternative

distributions. Our simulations show that the proposed methods are powerful and outperform

the Rayleigh, Giné, Ajne and Bingham test procedures in the case of multimodal alternatives.

We apply the new methods to test uniformity of data on the orbits of comets obtained from the

NASA website.
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1. Introduction

In many applications of interest, data are represented as unit vectors in a high-dimensional

space or as points on a hyper-sphere. The area of directional statistics deals with data

that belong to the unit hypersphere Sd−1 = {x ∈ Rd : ∥x∥2 = 1} of Rd. Many non-

directional datasets can be usefully re-expressed in the form of directions and analyzed

as such data (Golzy and Markatou (2020)). For example, in gene expression analysis,

standardized gene expressions that have mean zero and variance 1 can be interpreted

as directional data. This standardization is applicable when one is interested in gene

expression variation under different conditions (Dortet-Bernadet and Wicker (2008)).

Assessing the presence of uniformity is one of the important initial modeling ques-

tions related to the analysis of data on the sphere. This question is formalized as a test

of uniformity on Sd−1. There is a considerable amount of work on testing for uniformity

and tests for dimensions d ≥ 2 can be found in the literature. Garćıa-Portugués and

Verdebout (2018) provide a reasonably exhaustive overview of uniformity tests on the

hypersphere.

One aspect that is not well studied in the literature is the performance of tests of

uniformity in the presence of multiple modes in the data. In this paper, we propose tests

of uniformity that exhibit high power in the presence of multiple-modal spherical data,
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and compare their performance with that of other well-known tests for uniformity. The

proposed tests are based on an important class of distance kernels, the class of diffusion

kernels, the most prominent example of which is the normal kernel. Diffusion kernels

generalize key features of the normal kernel to other sample spaces, enabling one to

create useful distances for spherical or binary sequence data. Our tests are U- and

V-statistic estimates of quadratic distances and are based on a special diffusion kernel,

the Poisson kernel. We will discuss briefly the quadratic distance framework that is

used to assess model fit in section 2.

Our contributions are as follows.

1. We introduce a class of special kernels, the class of diffusion kernels, which are

tunable and allow easy computation.

2. We discuss a special diffusion kernel, the Poisson kernel and its associated den-

sities. Just as Brownian motion generates the normal distribution as the natural

homogeneous diffusion model for the Euclidean space, the Poisson kernel appears

to be its natural generalization to the sample space Sd−1. We derive the eigen-

decomposition of the d-dimensional Poisson kernel, compute its centered version

and its degrees of freedom. We show that the degrees of freedom of the kernel

are a function of the dimension d.

3. We then use the centered kernel to construct tests of uniformity that are U-

and V-statistic estimates of quadratic distances. We investigate the connection
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between the Poisson kernel-based tests and the class of Sobolev tests, showing the

equivalence between the two classes. We provide an algorithm that allows fast

computation of the test statistic and study its level and power and compare the

proposed tests with the Rayleigh, Bingham, Giné and Ajne tests via simulation,

illustrating the superior performance of the new proposals in the presence of

multiple modes.

The paper is organized as follows. Section 2 offers a short literature review of two

fundamental strands of literature on which this paper is based. The first corresponds

to quadratic distances (Lindsay and Qu (2003); Lindsay et al. (2008)). The second

refers to tests of uniformity that are proposed in the literature. We focus on tests

that are easily computable and classic in their use, i.e. well-accepted in the statistical

literature. Section 3 introduces the class of diffusion kernels and studies a special case

of these kernels, the Poisson kernel. Sections 4 and 5 present the proposed tests and

their performance in terms of level and power for a variety of alternatives, as a function

of the number of modes, the concentration parameter and the sample size. Alterna-

tives that we consider include von Mises-Fisher distributions with various values of

the concentration parameter, mixtures of Poisson kernel-based densities with different

number of modes and mixtures of von Mises-Fisher distributions. Discussion and rec-

ommendations are presented in section 6. The online supplement includes proofs of our

theoretical results, and further details on our experiments.
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2. Literature review

We begin with a brief review of a framework within which we base our proposed tests

of uniformity, and then we continue with relevant literature on tests for uniformity.

2.1 Quadratic distances

Let χ be a sample space and let du(s) be the canonical uniform measure on this space.

For example, this could be the Lebesgue measure, the counting measure or the spherical

volume measure depending on the application. The fundamental building block of a

statistical distance is the function K(s, t), a bounded, symmetric, non-negative definite

kernel defined on χ× χ. The quadratic distance between two probability distributions

F and G is then defined as

dK(F,G) =

∫ ∫
KG(x, y)d(F −G)(x)d(F −G)(y),

where G is a distribution whose goodness of fit we wish to assess. An important

example of a quadratic distance is Pearson’s Chi-squared statistic (Lindsay et al. (2008);

Markatou et al. (2017)).

If x1, x2, ..., xn is a random sample with empirical distribution function F̂ , then

one can construct the quadratic distance between the data and the model as d(F̂ , G)

and write dK(F̂ , G) =
∫ ∫

Kcen(x, y)dF̂ (x)dF̂ (y), whereKcen(x, y) is the centered kernel

with respect to the distribution G defined asKcen(x, y) = K(x, y)−K(G, y)−K(x,G)+

K(G,G), K(x,G) =
∫
K(x, y)dG(y), K(G,G) =

∫ ∫
K(x, y)dG(x)dG(y) (see Lindsay
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2.2 Tests of uniformity: a brief review

et al. (2008), p.989-990, for further discussion on kernel centering).

A fundamental concept associated with the kernel K is the concept of degrees of

freedom. The degrees of freedom (DOF) under measure G, of a kernel K are defined

as DOF (K) = [trG(K)]2

trG(K2)
=

(
∑

λj)
2∑

λ2
j
, where λj are the eigenvalues of the kernel K under

measure G. A very important feature of the methodology we discuss here is that we can

determine these quantities without the need to find the full spectral decomposition.

Our tests are based on a special kernel, called the Poisson kernel. It is defined

on vectors of length one, so it can be applied to directional data as well as to data

expressed by standardized vectors. We will discuss the Poisson kernel in section 3. We

next present a brief review of tests of uniformity that we use to compare our proposed

tests in terms of power and level.

2.2 Tests of uniformity: a brief review

Testing for uniformity is a classical problem that dates back to Bernoulli (1735). The

literature contains various tests of uniformity (see Cuesta-Albertos et al. (2009) and

Garćıa-Portugués et al. (2020)). Classical tests for uniformity include, among others,

Rayleigh’s test (Rayleigh (1919)), Ajne’s (Ajne (1968)), Bingham’s (Bingham (1974))

and Giné’s (Giné (1975)) tests. Section S1 of the online supplement offers a description

of these tests as we use those to carry out comparisons with the newly proposed tests

of uniformity in the presence of multiple data modes. The reason we use Rayleigh,

Ajne, Bingham and Giné tests is because of ease of computation, particularly when the
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2.2 Tests of uniformity: a brief review

samples are very large, and the data are of higher dimensions.

The aformentioned tests belong to the large class of Sobolev tests introduced in

Giné (1975). Considering the importance of this class of tests for uniformity, we briefly

introduce the Sobolev tests following the construction in Jupp (2008). The relationship

of these tests with the proposed Poisson kernel-based distance tests is investigated in

Section 4.1.

According to Giné (1975), Sobolev tests are defined by constructing a mapping t : X →

L2(X , u), square-integrable real-valued functions on X with respect to the uniform

measure u, based on the eigenfunctions of the Laplacian operator. For k ≥ 1, let Ek

be the space of eigenfunctions corresponding to the non-zero eigenvalue λk, {fi} be a

orthonormal basis of Ek and dk = dimEk. Let {ak} be a sequence of real numbers such

that
∞∑
k=1

a2kdk < ∞, (2.1)

then the mapping is defined as

t(x) =
∞∑
k=1

aktk(x) with tk(x) =

dk∑
i=1

fi(x)fi.

Given a sample X1, . . . , Xn, the resulting Sobolev test statistic is given by

Tn =
1

n

n∑
i=1

n∑
j=1

⟨t(Xi), t(Xj)⟩,

or equivalently

Tn({ak}) =
1

n

∞∑
k=1

a2k

n∑
i=1

n∑
j=1

⟨tk(Xi), tk(Xj)⟩, (2.2)
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where ⟨f, g⟩ denotes the inner product on L2(X , u).

3. Definition of general diffusion kernels

An important class of distance kernels is the class of diffusion kernels. A prominent

example of this class is the normal kernel, the key features of which can be generalized

to other sample spaces, enabling one to create useful distances. We concentrate on

a special diffusion class of kernels, the Poisson kernel class. Section S2 of the online

supplement discusses the Poinsson kernel’s normalized version as a density function on

the d-dimensional sphere.

An approach to defining diffusion kernels on continuous spaces is based on concepts

from mathematical physics and in particular on the use of the heat equation. Lafferty

and Lebanon (2005) used the heat equation on statistical manifolds to define diffusion

kernels. This approach can be useful for constructing kernels with desirable physical

properties. Here we take a more pragmatic approach and define kernels through the

properties we seek. We offer as an example of a diffusion kernel, the normal kernel

but other examples generalize the key features of the Gaussian kernel to other sample

spaces. Recall that the normal kernel satisfies the equation

Kt1+t2(x, y) =

∫
Kt1(x, s)Kt2(s, y)ds, (3.1)

where we use t1, t2 to denote the associated variance parameters. We call the above
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equation the diffusion equation, and we define a diffusion kernel class through the

mathematical properties we would like this class to have as follows.

Definition 1. A family of symmetric kernels Kt(r, s) defined on χ × χ, where χ is a

sample space, with parameter t ∈ (0,∞) will be called a diffusion kernel family with

respect to a measure γ if the following properties hold.

1. The kernel is nonnegative valued, that is, Kt(r, s) ≥ 0

2. The kernel satisfies the diffusion equation (3.1) in the time parameter.

3. The kernel satisfies the following equations∫
Kt(r, s)dγ(s) = 1, and

∫
Kt(r, s)dγ(r) = 1,

that is, it is a probability density under measure dγ in either argument.

Note that the diffusion equation implies that there exists a square root kernel Kt/2

in the same family of kernels. The implication of this statement is that the kernels are

always conditionally non-negative definite, and hence they generate quadratic distances.

See Lindsay et al. (2014) for a definition of square root kernels.

Our interest in diffusion kernels as defined here is motivated by the fact that these

kernels are tunable and thus allow easy computation.

Definition 2. We say a kernel K(x, y) is a canonical diffusion kernel if it has a repre-

sentation of the form

K(x, y) = 1 + e−tξ1(x)ξ1(y) + e−2tξ2(x)ξ2(y) + · · ·
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3.1 Poisson kernel in dimension d=2

This kernel representation provides an eigenanalysis of the kernel with eigenvalues

given by e−kt, k ∈ {0, 1, 2, · · · } and eigenfunctions ξi, i = 1, 2, 3, · · · . We call this

representation a geometric spectral decomposition. As we will see below, the Poisson

kernel in dimensions d = 2 exhibits this structure.

A specific diffusion kernel that we introduce and discuss in detail below is the

Poisson kernel. In what follows, we study this kernel in the d-dimensional case and use

it to construct tests for uniformity. Here, we show how the two-dimensional case can

be written in the form presented in definition 2.

3.1 Poisson kernel in dimension d=2

Lindsay et al. (2008) defined the Poisson kernel in dimension d = 2 as follows:

Pρ(θ, ϕ) =
1− ρ2

1− 2ρcos(θ − ϕ) + ρ2
, (3.2)

where 0 < ρ < 1 and 0 ≤ θ, ϕ < 2π; ϕ is a fixed angle or direction and can be thought

of as a location parameter and ρ is a concentration parameter. The sample space is the

interval [0, 2π) and the baseline measure is the uniform distribution on [0, 2π).

The functions
{
1,
√
2cosθ,

√
2sinθ,

√
2cos(2θ),

√
2sin(2θ), · · ·

}
form a basis under

the L2 distances. This is easy to see if we can show that 1
2π

∫ 2π

0
γiγjdθ = 0 if i ̸= j and

1
2π

∫ 2π

0
γiγjdθ = 1 if i = j, where γi is the ith function from the above set. But this is

indeed the case, since the corresponding integrals all equal 0 when i ̸= j, and equal 1

when i = j. Furthermore, we can write the kernel Pρ(θ, ϕ) =
∑

λiγ
T
i (θ)γi(ϕ), where
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3.2 Poisson kernel in dimension d

γi(θ) = (
√
2cos(iθ),

√
2sin(iθ))T , with γT

i (θ)γi(θ) = 2cos(iθ)cos(iϕ) + 2sin(iθ)sin(iϕ),

hence the kernel is given by the expression

Pρ(θ, ϕ) = 2
∞∑
i=0

λi {cos(iθ)cos(iϕ) + sin(iθ)sin(iϕ)} , (3.3)

and with λi = e−iη = ρi, ρ = e−η, η is the smoothing parameter, the aforementioned

formulas return the Poisson kernel in the two-dimensional case.

3.2 Poisson kernel in dimension d

We define now the general form of the d-dimensional kernel.

Let Bd = {x ∈ Rd : ∥x∥ < 1} and let Sd−1 represent the unit sphere, the boundary

of B. Then, the d-dimensional Poisson kernel is defined as

P (x,y) =
1− ∥x∥2

∥x− y∥d
, y ∈ Sd−1,x ∈ Bd.

First, we observe that this is not a symmetric kernel with the right integration

properties. However, if we define a kernel on Sd−1 × Sd−1 by the expression

Pρ(u,v) = P (ρu,v) =
1− ρ2

(1 + ρ2 − 2ρ(u · v))d/2
, (3.4)

where u,v ∈ Sd−1, we obtain a symmetric nonnegative kernel that integrates to one

with respect to the uniform measure on the d-dimensional unit sphere.

Next, define the Poisson integral of a differentiable function f as

P [f ](x) =
∫
Sd−1 f(ζ)P (x, ζ)dσ(ζ), where σ is the unique Borel probability measure on

Sd−1, the unit sphere, that is rotation invariant for every set E ⊂ Sd−1. This integral

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0347



3.2 Poisson kernel in dimension d

will be used in some of the proofs when discussing the Poisson kernel as a density

function.

We need the following lemma.

Lemma 1. Let P (x,y), P (z,y) be Poisson kernels defined on Sd−1, the d-dimensional

unit sphere. Then

∫
P (x,y)P (z,y)dσ(y) =

1− ∥x∥2 · ∥z∥2

(1− 2x · z+ ∥x∥2 · ∥z∥2)d/2
.

Proposition 1. Let Pρ1(x,µ), Pρ2(z,µ) be two Poisson kernel densities. Then

∫
Pρ1(x,µ)Pρ2(µ, z)dσ(µ) = Pρ1ρ2(x, z),

where σ(·) denotes the uniform measure on the sphere, x, z ∈ Sd−1, 0 < ρ1 < ρ2 < 1.

Proof. When ∥x∥ = 1, ∥µ∥ = 1, ∥x − ρµ∥ = 1 − 2ρx · µ + 1 = ∥ρx − µ∥. Write

Pρ1(x,µ) = P (ρ1x,µ) and Pρ2(µ, z) = P (ρ2µ, z). Then apply the aforementioned

lemma to obtain:∫
S
P (ρ1x,µ)P (ρ2µ, z)dσ(µ) =

1− (ρ1ρ2)
2∥x∥2 · ∥µ∥2

(1− 2ρ1x · z+ ∥ρ1x∥2 · ∥z∥2)d/2

= Pρ1ρ2(x, z).

This property is called the convolution property of the Poisson kernel. If the time

parameter t = − log ρ, this property gives the same additive convolution closure prop-

erty with the one provided for example, by the normal distribution.
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3.3 Eigendecomposition of the d-dimensional Poisson kernel: fundamental ideas

3.3 Eigendecomposition of the d-dimensional Poisson kernel: fundamental

ideas

In this section, we show that this decomposition can be carried out for dimension

d > 2 by using polynomials known as zonal harmonics and elements from harmonic

analysis. Just as Brownian motion generates the normal distribution as the natural

homogeneous diffusion model for the Euclidean space, the Poisson kernel appears to be

its natural generalization on the sample space Sd−1. Section S2 of the supplementary

material briefly reviews the connection between the Poisson kernel based densities and

Brownian motion. Some of the notation used below is presented in Section S3.1 of the

supplementary material.

We now present the main results of this section. To establish their proof we present

some lemmas below, the proof of which is included in the online supplement, section

S3.

Lemma 2. Let Zm(u, ζ), u ∈ Bd, ζ ∈ Sd−1 be a zonal harmonic of degree m. Then

∫
Sd−1

Zm(u, ζ)dσ(ζ) = 0,

where σ is the normalized surface measure on the sphere Sd−1.

Lemma 3. Let Zm(u, ζ), be a zonal harmonic. Then

∫
Z2

m(u, ζ)dσ(ζ)dσ(u) = dd,m,∀u ∈ Bd, ζ ∈ Sd−1.
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3.3 Eigendecomposition of the d-dimensional Poisson kernel: fundamental ideas

Lemma 4. Let Zp(u, ζ), Zq(u, ζ) be two zonal harmonics with p ̸= q. Then

∫
Sd−1

Zp(u, ζ)Zq(u, ζ)dσ(u)dσ(ζ) = 0,∀u ∈ Bd, ζ ∈ Sd−1 and ∀p ̸= q.

Theorem 1. For every d ≥ 2 the Poisson kernel P (x, ζ), x ∈ Bd, ζ ∈ Sd−1, x = ru,

u ∈ Sd−1 has the following spectral decomposition.

The eigenspace corresponding to the eigenvalue rm is Hm(Sd−1). This space has

dimension dd,m that is given as follows:

dd,m =



d+m− 1

d− 1

−

d+m− 3

d− 1

 , m ≥ 2

d+m− 2

d− 2

+

d+m− 3

d− 2

 , m ≥ 1.

The projection operator onto Hm(Sd−1) is Zm(x, ζ), the zonal harmonic of degree m

with pole ζ. Therefore, the spectral decomposition of the Poisson kernel is

P (ru, ζ) =
∑

rmZm(u, ζ). (3.5)

Moreover, Zm(u, ζ) has the form

Zm(u, ζ) = (d+ 2m− 2) ·
[m/2]∑
k=0

(−1)k
d(d+ 2) · · · (d+ 2m− 2k − 4)

2kk!(m− 2k)!
· (u · ζ)m−2k,

where · indicates the inner product.
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3.4 Centering the Poisson kernel

Proof of Theorem.

The eigenequation is

∫
Sd−1

P (x, ζ)qm(ζ)dσ(ζ) =

∫
Sd−1

rmqm(ζ)Zm(u, ζ)dσ(ζ),

for any x ∈ Rd, x = ru and qm(ζ) ∈ Hm(ζ), K(x, ζ) denotes the Poisson kernel.

The above equation gives

∫
Sd−1

P (ru, ζ)qm(ζ)dσ(ζ) = rmqm(ζ).

Therefore, lemmas 1,2 and 3 and this last relation indicate that the eigenvalues are

rm, with multiplicity m, and the eigenfunctions are the harmonic polynomials qm ∈

Hm(Sd−1). Notice that qm(ζ) = Zm(u, ζ) given in the statement of the theorem. This

concludes the proof.

3.4 Centering the Poisson kernel

In what follows we present the centered Poisson kernel, where the centering is with

respect to the normalized uniform measure on the sphere, denoted by σ.

Proposition 2. Let Pρ(x,y) be a Poisson kernel defined on the d-dimensional sphere,

Sd−1. Then, if σ(.) denotes the normalized measure on Sd−1, the centered with respect

to σ(.) kernel, is given as

Kcen(x,y) = Pρ(x,y)− 1. (3.6)
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3.4 Centering the Poisson kernel

Proof. Recall that

Kcen(x,y) =Pρ(x,y)−
∫

Pρ(x,y)dσ(y)−
∫

Pρ(x,y)dσ(x)

+

∫∫
Pρ(x,y)dσ(x)dσ(y).

Proposition 1.2 on p.14 of Axler et al. (2001) shows
∫
Sd−1 Pρ(x,y)dσ(y) = 1, hence∫

Sd−1

∫
Sd−1 Pρ(x,y)dσ(x)dσ(y) = 1. Therefore, the centered kernel is given as

Kcen(x,y) = Pρ(x,y)− 1.

Proposition 3. The degrees of freedom of the d-dimensional centered Poisson kernel

Kcen(x,y) with respect to the uniform measure σ is

DOF (Kcen) =

(
1 + ρ

1− ρ

)d−1
{(

1 + ρ− (1− ρ)d−1
)2

1 + ρ2 − (1− ρ2)d−1

}
.

Furthermore, when ρ → 1, DOF (Kcen) → ∞ and when ρ → 0, DOF (Kcen) → d, the

dimension of the data vector.

Proof. See section S3 of the online supplementary material.

As an example, when d = 2, the degrees of freedom are

DOF (Kcen) = 2

(
1 + ρ

1− ρ

)
.

It is easily seen in this case, that when ρ → 0, DOF (Kcen) → 2. Similar results hold

when d = 3. In this case, DOF (Kcen) =
(

1+ρ
1−ρ

)2

· (3−ρ)2

3−ρ2
and as ρ → 0, DOF (Kcen) →

9
3
= 3, the dimension of the data.
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Figure S1 presents the relationship between the DOF, the concentration parameter

(tuning parameter) ρ and the dimension d of the data. Notice that, for fixed dimension

d, the DOF increase as the concentration parameter increases. The same pattern is

noticed when ρ is kept fixed and the dimension of the data increases (see figure S2).

4. Distance based tests for uniformity and their distributions

We develop kernel based tests for uniformity on the sphere using the Poisson kernel.

Our tests are based on U-statistic and V-statistic estimates of the quantity D(F,G) =∫ ∫
Pρ(x,y)d(F − G)(x)d(F − G)(y), where ρ is the tuning parameter in (0, 1), G

corresponds to the uniform measure and F is a distribution defined on Sd−1.

To test the null hypothesis of uniformity on the d-dimensional sphere we propose

the following two test-statistics.

Let

Un =
2

n(n− 1)

n∑
i=2

i−1∑
j=1

Kcen(xi,xj),

be a U-statistic estimate of d(F̂ , G), with F̂ corresponding to the empirical cumulative

distribution function, and Kcen(xi,xj)is given in Proposition 2. Then, the first test

statistic is given as

Tn =
Un√

V ar(Un)
,

V ar(Un) =
2

n(n− 1)

[
1 + ρ2

(1− ρ2)d−1
− 1

]
.

The second test statistic we propose is a V-statistic estimate of d(F̂ , G) and it is
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4.1 Relationship with the class of Sobolev tests

given as

Sn = nVn =
1

n

n∑
i=1

n∑
j=1

Kcen(xi,xj).

Under a prespecified null hypothesis the asymptotic distribution of the Sn statistic

is an infinite combination of independent chi-squared random variables with one degree

of freedom, each weighted by λj, j = 1, 2, 3, ..., the eigenvalues of the Poisson kernel.

Following Lindsay et al. (2008) we approximate the distribution
∑

λjχ
2
1 by the distri-

bution c ·χ2
DOF , where c = trace(K2

cen)/traceG(Kcen), G is uniform, Kcen is the centered

Poisson kernel. Hence, c = (1+ρ2)−(1−ρ2)d−1

(1+ρ)d−(1−ρ2)d−1 is the constant multiplying the χ2
DOF Sat-

terthwaite approximation of the aforementioned linear combination of independent χ2
1

random variables, with DOF defined as above.

The corresponding result for the statistic Tn is that it follows a standard normal

distribution.

4.1 Relationship with the class of Sobolev tests

We now discuss the relationship between our tests based on the Poisson kernel and the

class of Sobolev tests proposed by Giné (1975) and Jupp (2008).

Proposition 4. The V-statistic version of the Poisson kernel-based tests and the

Sobolev tests for uniformity are equivalent on Sd−1. In particular, if the sequence {a2k}

is chosen to be equal to the sequence of eigenvalues of the spectral decomposition of

the Poisson kernel, then the Sobolev tests coincide with the V-statistic version of the
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4.1 Relationship with the class of Sobolev tests

Poisson kernel-based tests based on the uncentered kernel.

Proof. Consider the case d = 2. Given the Poisson kernel and its spectral decomposition

in equations (3.2) and (3.3), and the centered kernel in equation (3.6), the Poisson

kernel-based V-statistic can be written as

Sn =
2

n

∞∑
k=0

ρk
n∑

i=1

n∑
j=1

cos k(xi − xj)− n.

On S1, the functions {
√
2 cos(kθ),

√
2 sin(kθ)} also constitute an orthonormal basis for

Ek. Then, by equation (2.2), the Sovolev tests are given as

Tn({ak}) =
2

n

∞∑
k=1

a2k

n∑
i=1

n∑
j=1

cos k(xi − xj).

Considering that condition (2.1) is satisfied by the sequence {ak}, the obtained tests

statistics are equivalent. Notice that, if a2k = ρk, then the Sobolev test Tn coincides the

V-statistic version of the kernel-based distance tests based on the uncentered Poisson

kernel.

Consider now the general d-dimensional case, with d > 2. According to Jupp (2008),

for x,y ∈ Sd−1 we have that

⟨tk(x), tk(y)⟩ =
(
1 +

k

α

)
Cα

k (⟨x,y⟩),

with α = d/2 − 1, and Cα
k denotes the Gegenbauer polynomial of degree k. Then, by

equation (2.2), the Sobolev tests are given as

Tn({ak}) =
1

n

∞∑
k=1

a2k

(
1 +

k

α

) n∑
i=1

n∑
j=1

Cα
k (⟨xi,xj⟩).
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4.1 Relationship with the class of Sobolev tests

Given the Poisson kernel in equation (3.4), its spectral decomposition given in equation

(3.5) involves the zonal harmonics. By Theorem 1.2.6 (pag.9) in Dai and Xu (2013), for

d ≥ 3, the Zonal harmonics can be expressed in terms of the Gegenbauer polynomials

as Zm(x, y) =
m+α
α

Cα
m(⟨x,y⟩) with α = (d − 2)/2. The spectral decomposition of the

Poisson kernel can be rewritten as

Pρ(x,y) =
∞∑
k=1

ρk
(
k + α

α

)
Cα

k (⟨x,y⟩).

Hence, the Poisson kernel-based V-statistic can be expressed as

Sn =
1

n

∞∑
k=1

ρk
(
k + α

α

) n∑
i=1

n∑
j=1

Cα
k (⟨xi,xj⟩)− n.

The above proposition shows that the V-statistic version of the Poisson kernel-

based tests for uniformity on Sd−1, with d ≥ 2, are equivalent to the Sobolev tests,

and the sequence {ak} plays a similar role as the sequence of eigenvalues {λk}. This

is ensured by condition (2.1), which holds for the {λk}. When a2k = ρk for d = 2, the

resulting Sobolev tests have the same expression of the Poisson kernel-based V-statistic

tests based on the non-centered kernel. Pycke (2010) has considered this choice and

further details can be found in the associated paper.

Remark 1. We note the following. Jupp (2008) proposes a data-driven method to

select the sequence ak; it essentially selects the first k̂ values of the sequence {ak} to
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be equal 1 and the remaining zero. We use the entire sequence {ak}, since a2k = ρk, for

k = 1, 2, . . ..

5. Empirical results

We designed a simulation study to evaluate the performance of the proposed tests with

the following goals in mind. The first goal refers to understanding the performance of

the proposed tests in terms of level and power. The second goal pertains to comparing

the new suggested procedures with other, existing in the literature tests, and specifically

with the tests proposed by Rayleigh, Bingham, Ajne and Giné. The rationale for these

comparisons is that the aforementioned procedures are used in practice and are easy to

compute in any dimension.

5.1 Data generation and level computations

Data were generated from a d-dimensional uniform distribution that resides on the d-

dimensional unit sphere. The R package “Directional” was used to generate the data

(“rsop” function). We generated data on the 2, 3, 4 and 6-dimensional sphere of sample

size 100, 500 and 1000 and computed the significance level of our tests and the com-

parison tests as the proportion of rejections of the null hypothesis of uniformity among

the number of the 5000 tests statistics computed. Algorithm S1 of the supplementary

material describes in detail how this computation was performed.

The cutoff values of the tests statistics for testing uniformity are computed either
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5.1 Data generation and level computations

using the asymptotic distribution of the statistics, or empirically. Specifically, for tests

such as Rayleigh and Bingham, a simple asymptotic distribution exists and is a chi

squared with d degrees of freedom for the Rayleigh test and a chi squared with (d −

1)(d + 1)/2 degrees of freedom for the Bingham test. Thus, we use the 95th quantile

of these distributions as the cutoff, indicating the value of the test statistic beyond

which the null hypothesis of uniformity is rejected. The test statistics proposed by

Ajne and Giné do not have such simple distributions. For those, the cutoff is computed

empirically using Algorithm S1.

The cutoff of our Sn statistic is obtained by multiplying the χ2
DOF cutoff with

c = (1+ρ2)−(1−ρ2)d−1

(1+ρ)d−(1−ρ2)d−1 . For the Tn statistic the cutoff is determined empirically, as the

95th quantile of the empirical distribution of the test statistic.

Table S1 of the online supplement presents the results of the level calculation as

a function of the dimension, sample size, and in the case of proposed tests tuning

parameter ρ. All tests seem to control well the level at the nominal value of 0.05, for

all sample sizes, dimensions and test studied.

In the next section we present the results of our study with respect to the power

of the tests. We first discuss the selection of the tuning parameter that enters the

calculation of Tn, Sn statistics. The tuning parameter is intimately connected with the

degrees of freedom, and hence power, of the test statistics.
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5.1 Data generation and level computations

Selection of the tuning parameter for the distance-based statistics: In our

simulation study, the maximum power for the Sn and Tn statistics is obtained by a

grid search that aims to find the value of ρ that produces the maximum power. The

algorithm we use to find the tuning parameter ρ is presented below.

Algorithm 1: Algorithm to search for the optimal ρ for Tn and Sn statistics

1 For each MC replication, compute the Tn, Sn statistics for different tuning

parameters ρ from 0.01 to 0.99 with step increase of 0.01;

2 For each value of ρ, determine the power of the Tn, Sn statistics;

3 The ρ value that corresponds to the maximum power of the Tn or Sn statistics

is the optimal ρ.

Tenreiro (2019) studies the selection of tuning parameters that appear in certain

goodness-of-fit tests. His methods are similar to the grid method we use; understanding

however the exact connection is a subject for future work. Figure 1 presents the power

of the proposed tests for testing uniformity as a function of the tuning parameter. The

distribution of the data is PKBD(ρ = 0.2) and the dimension is equal to 3. Sample size

is set to 100 and the number of MC replications is 1000. The figure shows that there

is an interval of values of the tuning parameter for which maximum power is obtained.

For example, for the Sn statistic, the value 0.16 returns maximum power of 0.838. The

DOF that correspond to this value is 5. On the other hand, Tn reaches maximum power

of 0.836 when the tuning parameter is 0.03, which corresponds to 3 DOF.
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5.2 Power against von Mises-Fisher distribution

Figure 1: Power of Sn and Tn statistics testing uniformity against the PKBD distribution. The sample

size is 100, and ρ = 0.2. Dimension of the data is 3.

5.2 Power against von Mises-Fisher distribution

The von Mises-Fisher distribution or Langevin distribution is a multivariate distribution

defined on Sd−1 and used in the analysis of directional data (Jupp (2008)).

We use the package “movMF” in R version 3.5.3 to generate data from a single von

Mises-Fisher distribution (Hornik and Grün (2014)) with dimensions 1, 2, 3, 6 or 10 and

sample size from 50 to 1000, depending on the dimension. The direction of the mean

is (0, 0, ...0, 1).

We also study the performance of the tests when data are generated from a mixture

of 4 and 8 components (dimension 2) and 6 and 14 components (dimension 3) of the von

Mises-Fisher distribution. The concentration parameter κ varies in each scenario. For

each case, we compute the test statistics and their power using 2000 MC replications.
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5.2 Power against von Mises-Fisher distribution

The tuning parameter ρ for Sn and Tn takes values from 0.01 to 0.99 with a 0.01 step

increase.

The data distribution is von Mises-Fisher distribution with one mode: The

null hypothesis is that of uniformity, while data follow a unimodal von Mises-Fisher

distribution with a specified concentration parameter κ ∈ {1, 4}. Table 1 presents

the power of each assessed test statistic in the 2-dimensional or 6-dimensional cases

with different concentration parameter κ. The power associated with the Sn and Tn

statistics is the maximum power obtained over a grid of values of the tuning parameter

ρ. All six tests have good performance in terms of power when the sample size and the

value of κ increase. The Sn and Tn tests are competitive with the Ajne and Rayleigh

tests. The Bingham and Giné test statistics have lower powers than the other four tests

when the concentration parameter is lower, that is, when the data is nearly uniformly

distributed.

The data distribution is a mixture of several von Mises-Fisher distribu-

tions: Table 2 presents the power of the tests in different scenarios. We study the

cases of 4-component and 8-component mixture of von Mises-Fisher distributions of

dimension d = 2 with larger concentrations of 10, 20 or 45 and sample size of 100

and 500 respectively. The direction of the mean vectors of the 4 von Mises-Fisher

distributions are set as (1, 0), (0, 1), (−1, 0) and (0,−1), and the directions of the

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0347



5.2 Power against von Mises-Fisher distribution

Table 1: Evaluation of tests for uniformity against the von Mises-Fisher distribution in terms of power

for 2-dimensional and 6-dimensional data. Sn, Tn are computed using the tuning parameter that

produces the maximum power.

Dimension
Number of

the modes

κ
Sample

size

Bingham Rayleigh Ajne Giné Sn Tn

2 1 1 100 0.260 1 1 0.240 1 1

2 1 4 100 1 1 1 1 1 1

6 1 1 100 0.124 0.866 0.866 0.068 0.872 0.868

6 1 4 100 1 1 1 1 1 1

6 1 1 500 0.258 1 1 0.158 1 1

6 1 4 500 1 1 1 1 1 1

mean vectors for the 8 von Mises-Fisher distributions are (1, 0), (0, 1), (−1, 0), (0,−1),

( 1√
2
, 1√

2
), (− 1√

2
, 1√

2
), (− 1√

2
,− 1√

2
), and ( 1√

2
,− 1√

2
). In the 3-dimensional cases, data

follow a mixture of 6 or 14 von Mises-Fisher distributions with sample sizes 100 and

500. The direction of the mean vectors of the 6 von Mises-Fisher distributions are

the orthogonal vectors (1, 0, 0), (0, 1, 0), (0, 0, 1), (−1, 0, 0), (0,−1, 0), (0, 0,−1) and

the direction of the mean vectors of the 14 von Mises-Fisher distributions are set as

(1, 0, 0), (0, 1, 0), (0, 0, 1), (−1, 0, 0), (0,−1, 0), (0, 0,−1), ( 1√
3
, 1√

3
, 1√

3
), ( 1√

3
, 1√

3
,− 1√

3
),

( 1√
3
,− 1√

3
, 1√

3
), ( 1√

3
,− 1√

3
,− 1√

3
), (− 1√

3
, 1√

3
, 1√

3
), (− 1√

3
, 1√

3
,− 1√

3
), (− 1√

3
,− 1√

3
, 1√

3
), and
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5.3 Power against Poisson kernel-based density

(− 1√
3
,− 1√

3
,− 1√

3
). The results presented in table 2 clearly indicate the superior perfor-

mance of the new tests.

5.3 Power against Poisson kernel-based density

To generate data from a Poisson kernel-based density (PKBD) we use the “acceptance-

rejection”algorithm introduced by Golzy and Markatou (2020). We study the cases

when the underlying distribution is one PKBD (see section S4.2 of the online supple-

ment), and a mixture of two or more PKBDs.

The data distribution is a mixture of two Poisson kernel-based densities:

In this simulation experiment, we generate data from the mixture of two PKBDs, with

mixing weights equal to 0.5. The combination of concentration parameters (ρ1, ρ2)

we use is as follows: (0.1, 0.1), (0.2, 0.2), (0.4, 0.4) and (0.8, 0.8) with the sample size

varying from 100 to 1000. This selection indicates that the modes of the mixture are

more pronounced as the value of the concentration parameter increases. The number

of MC replications is 1000 for smaller sample sizes or 200 for larger sample sizes.

We aim to investigate the performance of the tests in terms of power when the

angle between the two mean vectors of the PKBDs varies from 0◦ to 360◦ by a step of

10◦.

Generally, when the concentration parameter becomes larger, that is the underlying

distribution of the data is farther from the uniform distribution, the performance of all
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5.3 Power against Poisson kernel-based density

tests improves. When the dimension and/or the sample size increases, Giné, Bingham,

Sn and Tn tests have apparent increases in power. Figures 2 and 3 plot the power of the

tests versus the degree of the angle between the two mean vectors when the dimension

of the data equals 6 and 10, the sample size varies from 200 to 1000, and the number

of MC replications is 1000 or 200. The smoothed power lines are plotted using the b-

spline smoothing method in the R package “ggplot2”. When the two mean vectors are

in opposite directions, that is the angle between the mean vectors equals 180◦, the Ajne

and Rayleigh tests perform poorly across all sample sizes and dimensions studied. The

Bingham and Giné tests perform best when the angle between the two mean vectors is

relatively large, i.e. between 140◦ and 200◦. Even in this case, the performance of the

Tn and Sn test statistics is equivalent, if not better, than the Bingham and Giné tests for

increased sample size. Bingham’s and Giné’s tests perform poorly when the sample size

is relatively small and the concentration parameter of the underlying distribution that

generated the data is small, i.e. ρ → 0. The power of these tests increases when sample

size and ρ increase and exhibit a periodic property in terms of obtaining low-high power

alternatively when the two mean vectors are orthogonal (the angle has degree of 90◦ or

270◦). Our proposed tests exhibit low power when the sample size is small, ρ → 0, and

the degree of the angle between the two mean vectors is around 180◦. However, even in

this case, the power of the tests increases considerably when the sample size increases.
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Figure 2: Evaluation of tests for uniformity against a mixture of two PKBDs in terms of power, when

the degree of the angle between the two mean vectors of the two PKBD distributions varies. The

sample size is 200, 500, 600 and 1000. Dimension of the data is 6 and ρ1 = ρ2 = 0.2.

The data distribution is a multi-component mixture of Poisson kernel-based

densities: We also study the power of tests for uniformity when the underlying dis-

tribution is a mixture of more than two PKBDs.

For 2-dimensional data, we study the cases where the data are generated from

mixtures of 4 PKBDs and 8 PKBDs. The concentration parameter for data generation is

0.8 for all PKBDs, and the sample sizes are set as 100 and 500, 200 and 500 respectively.
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Figure 3: Evaluation of tests for uniformity against a mixture of two PKBDs in terms of power, when

the degree of the angle between the two mean vectors of the two PKBD distributions varies. The

sample size is 500 and 1000. Dimension of the data is 10 and ρ1 = ρ2 = 0.2.

The directions of mean vectors for the 4 PKBDs are set as (1, 0), (0, 1), (−1, 0) and

(0,−1), and the directions of the mean vectors for the 8 PKBDs are (1, 0), (0, 1),

(−1, 0), (0,−1), ( 1√
2
, 1√

2
), (− 1√

2
, 1√

2
), (− 1√

2
,− 1√

2
), and ( 1√

2
,− 1√

2
). The number of MC

replications is 1000. Table 3 and figure 4 present the evaluation results in terms of

power for all six tests. The performance of Sn and Tn tests is superior than all other

four tests in both smaller and larger sample sizes and gain power rapidly when the

sample size increases.

Figure 5 shows the power of different tests when the alternative distribution is a

mixture of 3 PKBDs. Two mean vectors are in opposite direction while the third one

has an angle of 0◦ to 360◦ with the first mean vector. In this scenario, ρ1 = 0.2, ρ2 =

0.2, ρ3 = 0.3, dimension is 10 and sample size is set as 100 or 200. Sn and Tn tests

outperform all other tests.
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5.4 Example

Figure 4: Evaluation of tests for uniformity against the mixture of 4 or 8 PKBDs in terms of power,

when the sample size increases. Dimension of the data is 2 and the concentration parameter ρ of each

PKBD is 0.8.

5.4 Example

Cuesta-Albertos et al. (2009) introduced a “comet orbits” dataset that is freely available

from the NASA website (http://ssd.jpl.nasa.gov/sbdb_query.cgi#x) and applied

the tests proposed by Giné and Rayleigh. The authors’ results show no statistical

evidence of rejection of the null hypothesis of uniformity.

We obtained the comet orbits dataset from the NASA website following the pro-

cedure described in Cuesta-Albertos et al. (2009). The raw dataset includes the in-

clination of the orbital plane from the ecliptic (denoted by i) and longitude of the

ascending node (denoted by Ω) for 444 comet orbits (accessed on May 15, 2020). The

analysis uses 439 data points. The distribution of the sample data in terms of i and Ω
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5.4 Example

Figure 5: Evaluation of tests of uniformity against a mixture of 3 PKBD distributions in terms of

power with mean vectors µ1, µ2 and µ3. The vectors µ1 and µ2 are in opposite directions and the

degree of the angle between µ1 and µ3 varies. Dimension of the data is 10, ρ1 = ρ2 = 0.2, ρ3 = 0.3.

is visualized in figure 6. The directed unit normal vector to the orbital plane is given

by (sinΩsini,−cosΩsini, cosi)′. Hence in the 3-dimensional space, the directed unit

normals of 439 data points are distributed as in figure 7.

Ajne, Giné, Rayleigh, Bingham, Sn and Tn tests are performed on the comet

dataset. Ajne, Giné and Rayleigh’s tests do not reject the null hypothesis of unifor-

mity, while Bingham, Sn and Tn statistics can detect the small violation of uniformity.

Choosing the tuning parameter value corresponds to choosing the DOF. When the

tuning parameter ρ = 0.01, DOF = 3, and Sn, Tn reject the hypothesis of uniformity;

larger values of ρ correspond to larger degrees of freedom, so as the tuning param-

eter increases, the DOF increase. This indicates that the power for detecting slight

deviations from uniformity increases with increased DOF, and the null hypothesis of

uniformity is rejected.
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Figure 6: The scatter plot and histograms of the longitude and inclination of the sample comet orbits

data. The sample size of the data is 439.

Golzy and Markatou (2020) proposed an EM-type algorithm to estimate the pa-

rameters of a PKBD model. We use their method to fit a PKBD model to the comet

orbits data. The estimated mean vector is (−0.70,−0.50, 0.51) and the estimated con-

centrated parameter ρ = 0.083, which indicates a very small violation of uniformity on

the sphere.

6. Discussion and conclusions

In this paper we introduce a class of kernels, called diffusion kernels, and study in

detail one of its members, the Poisson kernel. We then construct tests of uniformity

and study the performance of these tests in terms of level and power. Our results
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Figure 7: The distribution of the directed unit normals of the sample comet orbits in a 3-dimensional

Euclidean space. The size of the data equals 439.

indicate consistency of the tests as the sample size n → ∞. We further propose an

algorithm to obtain the tuning parameter that provides the test with maximum power

and relate the result to the degrees of freedom of the tests.

The proposed tests for uniformity are powerful and easy to compute. Simulation

results show that the proposed tests are competitive with Rayleigh, Ajne, Giné and

Bingham’s tests and outperform these statistics in the case of multi-modal alternatives.

Their performance on a range of alternatives indicates that they can be used in practice

in all cases.
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We note that the newly proposed kernel tests, not only can test uniformity, but

they can also test hypotheses such as H0 : F = PKBD(ρ0), where ρ0 is a specified

parameter. In this case, the test statistics can be obtained from the distance DK(F,G),

where G = PKBD(ρ0), that is a Poisson kernel based distribution with specified

parameter ρ = ρ0 and specified mean direction µ. Therefore, we obtain similar V- and

U-statistics as before, with the difference now that our Poisson kernel is centered, not

with respect to the uniform distribution, but with respect to the PKBD(ρ0).

The aforementioned situation falls under the case of a simple null hypothesis be-

cause all parameters of the PKBD density are specified. To treat the case of a com-

posite null hypothesis, stated as H0 : F = PKBD(ρ,µ) is a more complicated, but

very practical, task. In this case the parameters of the density ρ,µ need to be esti-

mated from the data. This action introduces complications due to the dependence of

the distance DK(F̂ , PKBD(ρ̂, µ̂)) on the estimated parameters ρ̂, µ̂. In other words,

DK(F̂ , PKBD(ρ̂, µ̂)) is no longer a simple quadratic function of F̂ . Lindsay, Markatou

and Ray (2014) discuss a possible way to handle this difficulty, which consists of ap-

proximating the distance D(F̂ , PKBD(ρ̂, µ̂)) with a quadratic distance that is based

on a modified kernel being centered with respect to the estimated density PKBD(ρ̂, µ̂).

The details of this approach, as well as a different approach based on a second order

von-Mises approximation of the distance, constitute topics for future work.
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Supplementary Material

The supplementary material presents a brief review of the tests of uniformity that exist

in the literature. Furthermore, we briefly discuss Poisson kernel-based densities and

provide the technical details and proofs that establish the results presented in the main

paper. Finally, we provide additional empirical results.
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Table 2: Power of various tests of uniformity when the alternative is a mixture of several von Mises-

Fisher distributions of dimension 2 or 3. Sn, Tn are computed using the tuning parameter that

produces the maximum power.

Dimension
Number of

the modes

κ
Sample

size

Bingham Rayleigh Ajne Giné Sn Tn

2 4 10 100 0.001 0 0 0.810 0.980 0.980

2 4 20 100 0 0 0 1 1 1

2 4 10 500 0.001 0 0 1 1 1

2 4 20 500 0 0 0 1 1 1

2 8 20 100 0 0.003 0.002 0 0.140 0.100

2 8 45 100 0 0 0 0 0.990 0.980

2 8 20 500 0 1 1 0.001 1 1

2 8 45 500 0 1 1 1 1 1

3 6 10 100 0.010 0 0 0.750 0.990 0.980

3 6 20 100 0 0 0 1 1 1

3 6 10 500 0.900 0 0 1 1 1

3 6 20 500 1 0 0 1 1 1

3 14 20 100 0 0 0 0 0.970 0.950

3 14 30 100 0 0 0 0.020 1 1

3 14 20 500 0 0 0 0.250 1 1

3 14 30 500 0 0 0 1 1 1
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Table 3: Evaluation of all tests in terms of power when the alternative distribution is a mixture of 4

or 8 PKBDs. The dimension of the data is 2 and the concentration parameter ρi(i = 1, ..., 4 or 1, ..., 8)

of each PKBD is 0.8. Sn, Tn are computed using the tuning parameter that produces the maximum

power.

Dimension
Number of

the modes

ρi
Sample

size

Bingham Rayleigh Ajne Giné Sn Tn

2 4 0.8 100 0.007 0 0 0.739 0.976 0.966

2 4 0.8 500 0.009 0 0 1 1 1

2 8 0.8 200 0.004 0.001 0.002 0.009 0.211 0.155

2 8 0.8 500 0.007 0.937 0.937 0.022 0.982 0.975
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