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PERFECT SPECTRAL CLUSTERING

WITH DISCRETE COVARIATES

Jonathan Hehir, Xiaoyue Niu, and Aleksandra Slavković

Penn State University

Abstract: Among community detection methods, spectral clustering enjoys two desirable prop-

erties: computational efficiency and theoretical guarantees of consistency. Where most studies

of spectral clustering consider only the edges of a network as input to the algorithm, we con-

sider the problem of performing community detection in the presence of discrete node covari-

ates, with network structure determined by a combination of a latent block model structure

and homophily on the observed covariates. We propose a spectral algorithm that we prove

achieves perfect clustering with high probability on a class of large, sparse networks with dis-

crete covariates, effectively separating latent network structure from homophily on observed

covariates. We apply this method to a network of online friendships among university students

to uncover community structure not explained by covariates. To our knowledge, our method

is the first to offer a guarantee of consistent latent structure recovery using spectral clustering

in the setting where edge formation is dependent on both latent and observed factors.

Key words and phrases: community detection, homophily, spectral clustering, stochastic block

model
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1. Introduction

A structural pattern commonly observed in social networks is homophily, the tendency

for two nodes sharing a certain trait to be more (or sometimes less) likely to form a

connection (McPherson et al., 2001). Homophily may occur on any number of traits,

observed or latent, and is known to confound problems of causal inference in the social

sciences (Smith and Christakis, 2008; Shalizi and Thomas, 2011; Goldsmith-Pinkham

and Imbens, 2013; Lee and Ogburn, 2021). Homophily, meanwhile, lies at the heart of

such issues as segregation (Shrum et al., 1988; Henry et al., 2011), job access (Ibarra,

1992), and political partisanship (Huber and Malhotra, 2017), where homophily on

observed traits may be the subject of estimation in its own right. In order to fully

understand the effects of network patterns like observed homophily, we first need to

separate them from further latent network structure.

In the literature on community detection, latent structure is frequently recovered

through a clustering process involving only the network edges, reserving node covari-

ates to validate the clustering results in an approach that conflates latent structure

with observed structure (Peel et al., 2017). What we wish to do instead is to sep-

arate the latent from the observed structural patterns. To this end, we consider an

extension of the stochastic block model (SBM) (Holland et al., 1983) that incorpo-

rates homophily on observed, discrete node covariates into a generalized linear model

(GLM). We define this model, which we call the additive-covariate SBM (ACSBM),
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in Section 2. The model was previously studied by Mele et al. (2019) and allows for

flexible modeling choices in which latent communities take a block model structure,

covariates may or may not depend on community membership, and the effects of

homophily may be modeled through a range of link functions. We give an explicit

representation of this model as an SBM (Proposition 1), which motivates the use of

spectral clustering to estimate the latent structure.

In the context of SBMs, spectral clustering is known as a fast method that achieves

consistency in community detection down to established recovery thresholds (McSh-

erry, 2001; Von Luxburg, 2007; Rohe et al., 2011; Lei and Rinaldo, 2015; Su et al.,

2019; Abbe et al., 2020). In Section 3 of this work, we propose a computationally ef-

ficient spectral algorithm for recovering the latent structure of the ACSBM. Building

on techniques from the field of random dot product graphs (Young and Scheinerman,

2007; Rubin-Delanchy et al., 2017), we develop new algebraic tools to synthesize la-

tent structure over an ACSBM network partitioned by its covariate data. We are

able to prove that our method recovers the latent communities of the ACSBM per-

fectly for sufficiently large networks with node degree at least polylogarithmic in n.

Our theoretical analysis is outlined in Section 4, with proofs and derivations deferred

to Supplementary Materials, Sections S1 and S2. We provide simulation-based evi-

dence in Section 5 and apply our method to network of Facebook friendships among

Harvard students in Section 6. In the Harvard example, we see both strong and

subtle homophily over observed covariates (class year and gender, respectively), and
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we uncover additional latent structure not explained by these covariates using our

method. We conclude with a discussion of the results, their implications, and future

generalizations in Section 7.

Related Work. Community detection with covariates is a very active area of re-

search, with a wide variety of methods for modeling community structure, estimating

effects of covariates in edge formation, and recovering community memberships. Stud-

ies that demonstrate consistency in community recovery assume a generating process

with ground-truth communities. Quite commonly, these generating processes feature

conditional independence between covariates and edges, given community member-

ships (e.g., Binkiewicz et al., 2017; Deshpande et al., 2018; Yang et al., 2013; Tallberg,

2004; Newman and Clauset, 2016; Weng and Feng, 2021). In these models, any two

nodes belonging to the same latent community have the same connectivity patterns,

regardless of their observed covariates.

Explicit separation of latent from observed effects in edge formation is possible in

models lacking this conditional independence structure. Such models include (e.g.,

Hoff, 2007; Handcock et al., 2007; Choi et al., 2012; Vu et al., 2013; Sweet, 2015;

Huang and Feng, 2018; Mele et al., 2019; Zhang et al., 2019; Roy et al., 2019; Ma

et al., 2020), many of which could be considered broader cases of the model we

consider. For example, Hoff (2007); Handcock et al. (2007); Ma et al. (2020) model

latent network structure via more general latent position models, which include SBM

as a special case. The remainder focus more explicitly on extending SBM but usually
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allow greater flexibility in the role of covariates, up to and including allowing arbitrary

edge covariates. Since working with SBM likelihood is computationally expensive

(Snijders and Nowicki, 1997), many of these studies rely on approximate methods;

only a small handful offer methods that scale to large networks and carry a theoretical

guarantee of consistent classification. In particular, Huang and Feng (2018) provides

a consistency guarantee for spectral clustering only when covariates are independent

of community membership, and Ma et al. (2020) provides guarantees only under the

assumption of a positive semi-definite latent structure. Our results do not require

these assumptions.

By far the most similar paper to ours is Mele et al. (2019), which considers the

same model, ACSBM, but under a different spectral estimation method. The main

results concern estimation of covariate effects, while we focus on consistency of latent

community recovery. Moreover, the results of Mele et al. (2019) implicitly rely on

strong assumptions about the community structure that we wish to avoid (see Sec-

tion 3) and require node degrees of larger order than
√
n. A follow-up paper (Mu

et al., 2020) proposes a modification to the algorithm to improve robustness, but

results are limited to the specific case of a single covariate under the identity link,

with linear node degree.

Contribution. We propose a novel spectral algorithm that is computationally ef-

ficient and yields perfect clustering for sufficiently large ACSBM networks with high

probability. We prove this result for networks with node degree at least polyloga-
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rithmic in n in which homophily effects are multiplicative on the probabilty of edge

formation; empirical results suggest greater generality. To our knowledge, our method

is the first to offer a guarantee of consistent latent structure recovery using spectral

clustering in the important setting where edge formation is dependent on both latent

and observed factors.

Notation. Let [n] = {1, . . . , n}, with S[n] denoting the set of all permutations

[n] → [n]. The function I(·) is the indicator function. We represent networks as

adjacency matrices, e.g., Y ∈ {0, 1}n×n. The i-th row of the matrix Y is denoted

Yi∗, and the i-th column Y∗i. 1n denotes a column vector of n ones. We use ∥x∥2 to

denote the ℓ2 norm of a vector x, ∥A∥F to denote the Frobenius norm of a matrix,

and ∥A∥2 to denote the spectral norm of the matrix A, i.e., ∥A∥2 = sup∥x∥2=1 ∥Ax∥2.

We write A ⪰ 0 for positive semi-definite matrices and A ≻ 0 for positive-definite

matrices. All functions of matrices are taken element-wise, with the exception of

the matrix absolute value, |A| =
√
ATA. When n → ∞, we write an = o(bn) if

|an/bn| → 0; an = ω(bn) if |an/bn| → ∞; an = O(bn) if |an/bn| ≤ C for some C > 0

and all n; and an = Θ(bn) if |an/bn| ∈ (C1, C2) for some C2 > C1 > 0 and all n.

Finally, we write Xn = OP (bn) if for any α > 0 there exists a constant C such that

P(|Xn/bn| > C) < α for all large n; and Xn = oP (an) if P(|Xn/an| > ε) → 0 for all

ε > 0. Further notation is defined in text as needed.

Code. A Python implementation of our proposed method, including simulation

code and additional examples, is available at https://github.com/jonhehir/acsbm.
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2. Network Model and Representation

The network model we consider is an extension of the popular stochastic block model

(SBM) (Holland et al., 1983), which we recall in Definition 1.

Definition 1. Conditioned on community membership θ ∈ [K]n, the undirected

network Y ∼ SBM(θ, B) is an SBM with edge probabilities B ∈ [0, 1]K×K if:

Yij
ind∼ Bernoulli(Bθiθj), i < j.

The extension we study is what we call the additive-covariate stochastic block

model (ACSBM), which is also the model studied in Mele et al. (2019). In this setting,

we observe a network with n nodes andK communities, along with a set ofM discrete

covariates. Links are formed independently, depending on community assignments, as

in SBM, as well as on covariate similarity, allowing for explicit modeling of homophily

based on the observed covariates. Homophily is therefore modeled in a manner similar

to exponential random graph models (Goodreau et al., 2009), with latent structure

modeled like SBM. The specific nature of the covariate influence is captured by a

known link function g. We state a formal definition of this model in Definition 2.

Definition 2. For nodes i ∈ [n], let θi ∈ [K] denote latent community member-

ship, and let Zi ∈ [L1] × · · · × [LM ] be a vector of M discrete, observed covari-

ates. Let Z = [Z1 | · · · | Zn]
T . Conditioned on θ and Z, the undirected network

Y ∼ ACSBM(θ, Z,B, β, g) is an additive-covariate SBM with covariate effects β ∈ RM
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and known link function g if:

Yij
ind∼ Bernoulli

[
g−1

{
Bθiθj +

M∑
m=1

βmI(Zim = Zjm)

}]
, i < j.

While the link function g could in principle be any strictly increasing function

whose range includes [0, 1], typical choices inspired by similar models include the

logit link (e.g., Handcock et al., 2007; Choi et al., 2012; Vu et al., 2013; Roy et al.,

2019; Ma et al., 2020), log link (e.g., Huang and Feng, 2018), probit link (e.g., Hoff,

2007), or identity link (Mu et al., 2020). Choice of link function should be informed by

the nature in which covariates are believed to affect edge formation. Our theoretical

analysis in Section 4 focuses primarily on the log link, in which the effects of observed

homophily are multiplicative on the probability of edge formation. Such effects are

particularly reasonable to assume in sparse networks, easily interpreted (if estimated),

and mimic the form of other popular models like the degree-corrected block model

(Karrer and Newman, 2011). We offer generalizations to other link functions as well

as more flexible models of homophily under additional theoretical assumptions.

The ACSBM’s combination of independent edges and discrete attributes leads to

an important representation result: the ACSBM, viewed one way as an extension of

the SBM, may also be represented by a special case of the SBM. Specifically, Propo-

sition 1 represents the ACSBM as an SBM by subdividing each latent community

in ACSBM by the observed covariates, yielding an SBM over the resulting set of

“subcommunities.” This generalizes a similar result stated by Mele et al. (2019).
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Proposition 1. If Y ∼ ACSBM(θ, Z,B, β, g), then Y is equal in distribution to a

(KL̃)-block SBM, namely Y
D
= SBM(θ̃, B̃) for:

L̃ =
M∏

m=1

Lm

θ̃ = L̃(θ − 1n) +
M−1∑
m=1

(
M∏

m′=m+1

Lm′

)
(Z∗m − 1n) + Z∗M ,

B̃ = g−1(B ⊞ β1IL1 ⊞ · · ·⊞ βP ILM
),

where g−1 is taken element-wise, and A1 ⊞ A2 = (A1 ⊗ 1d21
T
d2
) + (1d11

T
d1

⊗ A2) for

matrices A1 ∈ Rd1×d1 , A2 ∈ Rd2×d2.

Remark 1. θ̃ is formed from a bijection from [K]× [L1]× · · · × [LM ] to [KL̃]. In an

abuse of notation, we will refer to this mapping later in the paper as θ̃(·, ·) where for

k ∈ [K], z ∈ [L1]×· · ·×[LM ], θ̃(k, z) = L̃(k−1)+
∑M−1

m=1

(∏M
m′=m+1 Lm′

)
(zm−1)+zM .

The proof of Proposition 1 is constructive and is given in Supplementary Materials,

Section S2. This representation result leads to a natural idea: since any ACSBM

network is equivalently represented as an SBM, perhaps familiar SBM-fitting methods

can be adapted to fit the ACSBM.

2.1 Random Dot Product Graphs

Spectral clustering of SBMs has been studied extensively in the context of (gener-

alized) random dot product graphs (RDPGs) (Athreya et al., 2017; Rubin-Delanchy

et al., 2017). The class of (g)RDPGs lends itself well to spectral estimation methods,
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and any binary, undirected, independent-edge network can be formulated as a gener-

alized random dot product graph. In particular, it is well established that SBMs may

be represented as gRDPGs (Rubin-Delanchy et al., 2017). Below we state the defini-

tion of a gRDPG and follow it with a representation result for ACSBM analogous to

Proposition 1.

Definition 3. The matrix Ipq = diag(Ip,−Iq) is the diagonal matrix whose first p

diagonal entries are equal to +1 and whose remaining q diagonal entries are equal

to −1. For x, y ∈ Rd and some nonnegative integers p + q = d, the indefinite inner

product of x and y with signature (p, q) is given by ⟨x, y⟩pq = ⟨x, Ipqy⟩ = xT Ipqy.

The indefinite orthogonal group with signature (p, q) is given by the set of matrices

O(p, q) = {Q ∈ Rd×d : QT IpqQ = Ipq}.

Definition 4. Let FX be a distribution on Rd. We say the undirected network

Y ∼ gRDPG(n, FX) is a generalized random dot product graph with signature (p, q)

if X1, . . . , Xn
iid∼ FX , and Yij | X1, . . . , Xn

ind∼ Bernoulli(⟨Xi, Xj⟩pq) for i < j. The

variable Xi is referred to as the latent position of the i-th node.

Remark 2. When q = 0, we say Y is a random dot product graph (without the

“generalized” qualification) (Young and Scheinerman, 2007). In this case, Ipq = I, the

indefinite inner product coincides with the usual dot product (i.e., ⟨x, y⟩pq = ⟨x, y⟩),

and O(p, q) coincides with the familiar group of p× p orthogonal matrices.

Both RDPGs and gRDPGs suffer from inherent identifiability issues. In the

Statistica Sinica: Preprint 
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case of RDPGs, for example, if any set of latent positions is altered by a com-

mon orthogonal transformation, the resulting RDPG has the same distribution, since

⟨x, y⟩ = ⟨Qx,Qy⟩ for any orthogonal Q. In gRDPGs, latent positions can only be

identified up a common indefinite orthogonal transformation (Rubin-Delanchy et al.,

2017). (For a comprehensive approach to the non-identifiability of gRDPGs, see

Agterberg et al. (2020).) Unlike orthogonal transformations, indefinite orthogonal

transformations do not preserve distances or angles, rendering them more burden-

some to work with. In the following proposition, we choose our canonical latent

positions based on a spectral decomposition, but we clarify that this choice of latent

positions is not unique. The proof of Proposition 2, given in the Supplementary Ma-

terials, follows as a corollary to Proposition 1, based on well known results in the

gRDPG literature (e.g., Rubin-Delanchy et al., 2017, Section 2.1).

Proposition 2. If (θi, Zi) ∈ [K]×[L1]×· · ·×[LM ] are drawn i.i.d. from a distribution

with p.m.f. Pθ,Z, and Y | θ, Z ∼ ACSBM(θ, Z,B, β, g) for Z = [Z1 | · · · | Zn]
T

and some β ∈ RM , then Y is equal in distribution to a gRDPG, Ygrdpg, with latent

positions sampled i.i.d. from a mixture of point masses. A canonical distribution for

these latent positions is as follows. Let B̃ as in Proposition 1, and let UB̃ΛB̃U
T
B̃
be an

eigendecomposition of B̃. Let XB̃ = UB̃|ΛB̃|1/2, and let XB̃(k, z) denote the θ̃(k, z)-th

row of XB̃. Let FXB̃
as follows:

FXB̃
=

∑
k∈[K],

z∈[L1]×···×[LM ]

Pθ,Z(θ = k, Z = z)δXB̃(k,z).

Statistica Sinica: Preprint 
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Letting q denote the number of negative entries in ΛB̃, we have Ygrdpg ∼ gRDPG(n, FXB̃
)

with signature (p, q) = (KL̃− q, q).

3. Proposed Spectral Clustering Procedure

We propose a three-part algorithm (Algorithm 1) to estimate the latent community

membership θ for an ACSBM network. Since an ACSBM with K latent communities

is equivalently a (KL̃)-block SBM per Proposition 1, we begin by trying to find the

KL̃ “subcommunities” (i.e., θ̃) of the SBM representation. Assuming we can recover

the KL̃ subcommunities suitably, the primary remaining challenge is to merge these

subcommunities into the original K desired communities (i.e., θ).

This fundamental idea is similar to that underlying Mele et al. (2019); Mu et al.

(2020), but we propose a new method for delineating the subcommunities and match-

ing each subcommunity back to its original latent community, allowing for provably

consistent results under mild assumptions. In both Mele et al. (2019) and Mu et al.

(2020), the process of finding the KL̃ subcommunities relies only on the expected

separation of their spectral embeddings in Euclidean space—a condition not met if

any βm is sufficiently small (or zero). Moreover, subsequent estimation of β in Mele

et al. (2019); Mu et al. (2020) relies implicitly on an assumption that the diagonal

entries in B are unique, so that an estimate of diag(B̃) can be clustered into K sets of

similar values corresponding to the K latent communities. In contrast, our method

is robust to non-significant homophily effects and allows for any choice of B that
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satisfies a full-rank assumption.

Remark 3. Algorithm 1 takes as input an embedding dimension d. This corresponds

to the dimension of the latent positions in Proposition 2, which cannot exceed KL̃. In

the absence of oracle knowledge, this maximum value appears to be a suitable choice

for d.

Part 1 of the algorithm essentially seeks to recover θ̃ of Proposition 1. To do so,

we first find adjacency spectral embeddings for the full network. Then we consider

each possible covariate configuration z ∈ [L1] × · · · × [LM ] (of which there are L̃

total), and cluster the embeddings corresponding to nodes bearing this covariate

configuration into K clusters. This yields a set of subcommunities that are each pure

in their covariate distribution, since we know that Zi ̸= Zj =⇒ θ̃i ̸= θ̃j. A range

of clustering methods (e.g., K-means) may be used here; existing theory suggests

Gaussian mixture models may provide the best finite-sample performance (Athreya

et al., 2016; Rubin-Delanchy et al., 2017). The computational complexity of Part 1

will depend on the specific clustering method employed.

Part 2 of the algorithm estimates B̃ so that we may estimate a latent position

for each subcommunity. While the embeddings of Part 1 also serve as estimates of

latent positions, these estimates are only consistent up to an indefinite orthogonal

transformation, which would pose problems for the geometry of Part 3. In practical

implementations, Part 2 can be performed in linear time, relative to the number of

Statistica Sinica: Preprint 
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Algorithm 1 Spectral Clustering of ACSBM

Input: adjacency matrix Y ∈ {0, 1}n×n, discrete covariates Z = [z1 | · · · | zn]T ,
number of latent communities K, embedding dimension d

Output: estimated block membership θ̂ ∈ [K]n

# Part 1: Recover the subcommunities θ̃

Let X̂Y := U |Λ|1/2, where UΛUT is the truncated eigendecomposition of Y with

dimension d

Let L1, . . . , LM := max(Z∗1), . . . , max(Z∗M)

for z in [L1]× · · · × [LM ] do

Let Iz := {i : zi = z}
Let θ̂z : Iz → [K] be a function returning cluster assignments over the rows of

X̂Y corresponding to the indices Iz

end for

# Part 2: Estimate B̃

for 1 ≤ k1 ≤ k2 ≤ KL̃ do

Let Dk1,k2 :=
{
(i, j) ∈ [n]× [n] : i ̸= j, θ̃{θ̂zi(i), zi} = k1, θ̃{θ̂zj(j), zj} = k2

}
Set ˆ̃Bk1,k2 =

ˆ̃Bk2,k1 :=
∑

(i,j)∈Dk1,k2
Aij/max{1, |Dk1,k2|}

end for

# Part 3: Reconcile θ using z = 1M as reference level

Let X̂B̃(k, z) be the θ̃(k, z)-th row of V |Ψ|1/2, where VΨV T is an eigendecomposi-

tion of ˆ̃B

for z in [L1]× · · · × [LM ] do

Let σ̂z := argminσ∈S[K]

∑K
k=1 ∥X̂B̃{σ(k), z} − X̂B̃(k,1M)∥22

end for

return θ̂ = [σ̂zi{θ̂zi(i)}]ni=1

Statistica Sinica: Preprint 
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edges in the network.

Successful clustering in Part 1 of the algorithm implies that we are able to recover

θ up to a separate permutation for any set of nodes with the same covariates. Part 3

of the algorithm seeks a common permutation for all nodes by attempting to reconcile

each covariate configuration with a given reference level (canonically z = 1M). This

is achieved by finding the matching that minimizes the sum of squared distances be-

tween estimates of latent positions for each cluster. This optimization is a case of the

assignment problem, which can be completed efficiently using the Hungarian algo-

rithm (Edmonds and Karp, 1972). The computational complexity of Part 3 depends

only on K and L̃. The analysis in Section 4 assumes these quantities are constant in

n. If allowed to grow, however, we would only expect consistency of subcommunity

recovery (i.e., Part 1) if KL̃ = O(
√
n), based on existing results in SBM recovery

(e.g., Choi et al., 2012). Under this assumption, the overall complexity of Part 3 of

the algorithm is O(n1.5) in time and O(n) in space.

4. Consistency Results

Breaking Algorithm 1 into its three main parts, we first show that Part 1 consistently

recovers θ̃ from Proposition 1. Next, Part 2 yields a consistent estimate of B̃, given θ̃

from Part 1. Finally, Part 3 yields a consistent estimate of θ, given θ̃ from Part 1 and

a suitable approximation of B̃ from Part 2. While detailed proofs of these results are

left to the Supplementary Materials, we state the major theorems and give an outline

Statistica Sinica: Preprint 
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of the proof ideas here. To make things concrete, we consider the following setting.

Setting. Let M be a positive integer, and let K,L1, . . . , LM be integers greater

than 1. Let PθZ be a probability mass function on [K]× [L1]×· · ·× [LM ]. Let β ∈ RM

be a vector of covariate coefficients and B0 ∈ RK×K be a symmetric matrix of latent

block coefficients. To allow for sparsity, let αn ∈ (0, 1] be a sequence controlling the

expected degree of our networks. For each n ≥ 1, we draw {(θi, Zi)}ni=1 ∈ ([K] ×

[L1] × · · · × [LM ])n from (PθZ)
n. Letting B = B0 + log(αn)1K1

T
K , we then draw

Y | θ, Z ∼ ACSBM(θ, Z,B, β, log).

As discussed in Section 2, under the log link, the effects of observed homophily

are multiplicative on the probability of edge formation. When αn → 0, this is es-

sentially equivalent to the canonical logit link in the limit, since limn→∞ log−1{b +

log(αn)}/logit−1{b + log(αn)} = 1 for any constant b. We note that in this setting,

all edge probabilities scale by αn, so the expected degree of each node is Θ(nαn).

Although we drop the subscripts, the quantities B̃ and XB̃ depend on n. When we

desire constant quantities, we will use α−1
n B̃ and α

−1/2
n XB̃.

Assumptions. Our full set of results will require the following assumptions.

Assumption (A1) limits the sparsity of the network, as is standard in the SBM

recovery literature. We note that the polylogarithmic (rather than logarithmic) term

used here matches the assumptions of Rubin-Delanchy et al. (2017), on which our

theory is built. Assumption (A2) is equivalent to saying the latent SBM structure is

full-rank, which is also a common assumption. Assumption (A3) requires that each

Statistica Sinica: Preprint 
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latent community contains a node of each type with nonzero probability.

(A1) αn = ω(log4c n/n) for the universal constant c in Lemma 1.

(A2) exp(B0) is full-rank.

(A3) PθZ(θ = k, Z = z) > 0 for all (k, z) ∈ [K]× [L1]× · · · × [LM ].

Our consistency analysis assumes that M,K,L1, . . . , LM are constant in n. We

expect that these could be allowed to grow in an appropriate asymptotic regime, but

we note that based on prior results in the SBM literature, we expect any growth would

need to be reasonably slow. For example, the subcommunity recovery of Algorithm 1,

Part 1 likely requires KL̃ = KL1 · · ·Lm = O(
√
n) (e.g., Choi et al., 2012).

We begin by recasting the ACSBM as a gRDPG with signature (p, q), as prescribed

by Proposition 2. Let X̂Y = U |Λ|1/2 (where Y ≈ UΛUT ) as in Algorithm 1, and let X̂i

denote the i-th row of X̂Y (i.e., the spectral embedding for node i). Results from the

gRDPG literature tell us that these spectral embeddings will be consistent estimates

of the latent positions of the gRDPG, up to an unknown transformation from the

indefinite orthogonal group O(p, q). This is stated in Lemma 1, which follows from

Rubin-Delanchy et al. (2017, Theorem 3).

Lemma 1 (Rubin-Delanchy et al. (2017)). Under assumptions (A1) and (A3),

there exists a universal constant c > 1 and a sequence of matrices Q ∈ O(p, q) such
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that:

max
i∈[n]

∥QX̂i −XB̃(θi, Zi)∥2 = OP

(
logc n√

n

)
.

The uniform consistency of Lemma 1 is the key to Part 1 of the algorithm. In

particular, when we look at the spectral embeddings for nodes of a given covari-

ate configuration z ∈ [L1] × · · · × [LM ], this result yields perfect separation of the

embeddings with high probability (Theorem 1).

Theorem 1. Fix z ∈ [L1] × · · · × [LM ]. Let Iz = {i : Zi = z}. Assuming (A1)

and (A3), there exist K sequences of balls B1,z, . . . ,BK,z such that X̂i ∈ Bθi,z for all

i ∈ Iz and B1,z, . . . ,BK,z are disjoint with probability approaching 1.

Theorem 1 is proven in Supplementary Materials, Section S2, and is sufficient

to support exact recovery of θ̃ with high probability under a variety of clustering

algorithms, such as K-means (Lyzinski et al., 2014). However, while Lemma 1 states

spherical concentration bounds, the clusters of embeddings generally are not spherical

but are asymptotically normal, per the discussion in Rubin-Delanchy et al. (2017).

For this reason, Gaussian mixture modeling is often preferred over K-means for finite-

sample performance (Athreya et al., 2016; Rubin-Delanchy et al., 2017).

In view of Theorem 1, from here we assume knowledge of θ̃ in order to demonstrate

consistency in Parts 2 and 3 of the algorithm. Recall that Part 2 of the algorithm esti-

mates B̃ from Proposition 1. While this estimate is not our end goal, we will use this

reconstruction of B̃ to estimate the canonical latent positions XB̃ from Proposition 2.
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Theorem 2. Let θ̂z : Iz → [K]. Suppose for each z ∈ [L1]× · · · × [LM ], there exists

τz ∈ S[K] such that θ̂z(i) = τz(θi) for all i ∈ Iz. Assuming (A1)–(A3), if ˆ̃B is

constructed as in Algorithm 1, then there exists a sequence of KL̃×KL̃ permutation

matrices T such that:

α−1
n ∥ ˆ̃B − TB̃T−1∥F = oP

(
1√

n logc n

)
.

Theorem 2 follows from the fact that, conditioned on θ̃, ˆ̃B is the maximum likeli-

hood estimate for a matrix of SBM probabilities corresponding to the subcommunities

of θ̃ (up to relabeling). The bounds thus follow from a bit of algebraic manipulation

of well-known results (Bickel et al., 2013; Tang et al., 2022), as outlined in Supple-

mentary Materials, Section S2. Finally, we move on to the main act: reconciling the

L̃ per-covariate clusterings into a single clustering for all nodes.

Theorem 3. Let θ̂z : Iz → [K] and X̂B̃(k, z) as in Algorithm 1. Suppose for each

z ∈ [L1]×· · ·× [LM ], there exists τz ∈ S[K] such that θ̂z(i) = τz(θi) for all i ∈ Iz. Let:

σ̂z = arg min
σ∈S[K]

K∑
k=1

∥X̂B̃{σ(k), z} − X̂B̃(k,1M)∥22. (4.1)

Then, assuming (A1)–(A3), σ̂z{θ̂z(i)} = τ1M
(θi) for all i ∈ [n] with probability

approaching 1.

Theorem 3 involves an abundance of permutations. We assume that for each

covariate configuration z, we have a function θ̂z(·) that recovers the values of θi up to

a permutation τz. We can find such functions with high probability from Part 1 of our
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algorithm. Then, for each z, we estimate a permutation σ̂z in an attempt to “reverse”

these permutations. Since the true permutations τz are unknowable, we cannot hope

to invert τz exactly. Instead, we seek a permutation that satisfies σ̂z ◦ τz = τ0 for

some common unidentifiable permutation τ0 ∈ S[K]. By using z = 1M as our reference

level, we end up recovering τ0 = τ1M
.

The proof of Theorem 3 is broken into a number of intermediate results in the

supplementary materials, of which we give an overview here. We first consider the task

of solving an analog to the matching problem (4.1) using the true latent positions

XB̃ (Section S2, Theorem S15). An intuitive explanation for minimizing the sum

of squared distances is clearest in the case when the latent communities follow an

assortative homophily structure and (correspondingly) exp(B0) is positive-definite.

In this case, nodes in the network are more likely to connect with other nodes within

the same latent community rather than across communities. Correspondingly, the

embeddings of nodes that are most likely to connect with each other tend to be closer

together in latent space. Minimizing the expected sum of squared distances yields

the permutation of rows of exp(B0) that maximizes the matrix trace. Since exp(B0)

is positive-definite, this is the “correct” arrangement of rows (Section S2, Fact S14).

A similar concept applies even when exp(B0) is not positive-definite, as the sum of

embedding distances being minimized reduces to a calculation involving entries in

| exp(B0)|, which is positive-definite.

Having shown that the matching problem yields the desired result in the absence of
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estimation error, it remains to show that the estimation error vanishes asymptotically

(Section S2, Lemma S17). The estimation error is bounded by a multiple of ∥ | ˆ̃B| −

|TB̃T−1| ∥F , a bound for which follows from Theorem 2. This, indeed, shrinks to zero

faster than the gap between the optimal and second-best matching. A formal proof

of Theorem 3 tying these results together is given in Section S2 of the Supplementary

Materials.

In sum, Theorems 1–3 demonstrate that Algorithm 1 perfectly recovers ACSBM’s

latent community assignment variable, θ, in the limit. From this, asymptotically

unbiased estimation of the remaining ACSBM parameters—including the marginal

homophily effects, β—follows in a straightforward manner, using standard GLM-

fitting approaches with θ̂ as a plug-in estimator for θ.

Generalizations. The preceding consistency results assume the use of a log link

function, which yields a simple decomposition of the matrix B̃ (of Proposition 1) and

its matrix absolute value |B̃|. It is natural to ask whether the consistency of the

proposed algorithm indeed depends on the choice of log link. While the simulations

of Section 5 provide empirical evidence that the algorithm is robust to the choice of

link function, we can also point to signs that this may provably be so.

The challenges involved with analyzing |B̃| are largely avoided in the case when

B̃ is positive-definite, in which case |B̃| is simply B̃ itself. Such positive-definite

assumptions are common (e.g., Ma et al., 2020) and capture typical cases of assortative

homophily, i.e., the tendency for similar (rather than dissimilar) nodes to connect. In

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0341



22

the presence of the appropriate positive-definite assumptions, some generalizations

follow as immediate corollaries.

In addition to allowing any link function g, we may also generalize the ACSBM

definition (Definition 2) to allow for differential homophily, i.e., covariate effects that

vary across different levels of a covariate. In other words, keeping M,L, θ, and Z

as defined for the ACSBM, let βmℓ ∈ R for m ∈ [M ], ℓ ∈ [Lm] denote differential

homophily coefficients for the model

Yij
ind∼ Bernoulli

[
αng

−1

{
Bθiθj +

M∑
m=1

Lm∑
ℓ=1

βmℓI(Zim = Zjm = ℓ)

}]
,

where g is any link function. If B̃ ⪰ 0, g−1(B) ≻ 0 and (A1), (A3) hold, then we

will also achieve consistent recovery of θ (Section S2, Corollary S16).

5. Simulations

We evaluate the empirical performance of our method on a variety of sequences of

ACSBM networks. First, we consider two sequences of sparse networks (αn = n−0.8)

with K = 2 latent communities and M = 2 covariates drawn i.i.d. as Bernoulli(0.5).

The link function is chosen to be g = log. In the first setting, we use a “regular”

structure for the latent SBM, B0 = 1.5121
T
2 −I2. In the second, we consider something

more “irregular,” with B0 = 121
T
2 + diag(1,−0.2). In both cases, covariate effects

are β1 = 1, β2 = −0.5. The choice to include negative homophily effects (both

latent and observed) is intentional, yielding matrices B0 and corresponding B̃ that
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are indefinite. For each of ten values of n ranging from n = 125 to n = 128000, we

generate 100 networks, then apply Algorithm 1, using Gaussian mixture modeling

as our clustering method for Part 1. We calculate a misclassification rate (up to

relabeling) as minσ∈S[K]
n−1

∑n
i=1 I(σ(θ̂i) ̸= θi). The median misclassication rate is

plotted in the left panel of Figure 1, with error bands denoting the interquartile

range (IQR). The dashed line represents the worst possible misclassification rate of

one half. As we might hope, as n increases, misclassification falls toward zero.

The second set of simulations evaluates the performance of the algorithm on

dense networks (αn = 1), with four settings corresponding to different choices of

link function: identity, log, logit, and probit. In each case, we model the under-

lying latent structure as an SBM with K = 3 communities and model M = 2

binary covariates, drawn i.i.d. as Bernoulli(0.5). For the identity link, we choose

B = 0.2131
T
3 − 0.1I3, β1 = 0.05, β2 = −0.05. For the remaining links, we use

B = −131
T
3 − 0.5I3, β1 = −0.7, β2 = 0.1. For seven values of n ranging from n = 125

to n = 8000, we simulate 100 networks and apply the same clustering methodology

as in the previous set of simulations. The results are plotted in the right panel of

Figure 1. Here we see consistency for a variety of link functions, even in the absence

of the positive-definiteness assumption employed in the generalization to arbitrary

link functions (Section S2, Corollary S16), suggesting even greater generality for our

proposed method. In our dense simulations, we achieve perfect clustering in the

overwhelming majority of cases when n ≥ 2000.
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Figure 1: Median proportion (and IQR) of misclassified nodes on repeated simulations

of ACSBM models. Left: Sparse settings with K = 2,M = 2, g = log, αn = n−0.8.

Right: Dense settings with K = 3,M = 2, various g, αn = 1. Dashed line represents

worst possible misclassification (1− 1/K). Specific parameters given in text.

We caution against direct comparisons of the simulation settings presented here.

For example, in the dense network simulations, one may notice that convergence

appears fastest for the log link and slowest for the logit link, but each setting is

different in ways that complicate comparisons. While these two settings share the

same parameters, the difference in link function subtly affects the relations between

entries in B̃ and leads to a network of lower density for the logit link, since logit−1(x) <

log−1(x) for any x ∈ R.

These simulations were conducted on a high performance cluster, but each indi-

vidual network was simulated and fit using a single CPU core (2.2 GHz Intel Xeon).

The most demanding simulation setting was the sparse, regular setting at n = 128000
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nodes, where each network had about 6.2 million edges on average. The average run-

ning time for this setting using our Python-based algorithm was 4.35 minutes per

network, of which 4.25 minutes were spent in Part 1 of Algorithm 1.

Comparisons with other spectral algorithms. Comparing our algorithm

against other spectral clustering–based competitors reveals a distinct advantage—

robustness to model parameters. We specifically compare against three other al-

gorithms: Mele et al. (2019), which implicitly requires the matrix B appearing in

Definition 2 to have unique diagonal entries; Mu et al. (2020), which post-processes

the results of Mele et al. (2019) by estimating covariate effects and re-clustering an

adjacency matrix from which the estimated covariate effects have been removed; and

a vanilla spectral clustering that simply ignores the known covariate information.

(For the “Vanilla” method, we employ a modified version of the algorithm from Lei

and Rinaldo (2015), replacing the use of K-medians clustering with the more typical

K-means.)

We simulate a model in which each node corresponds to two random variables:

an observed covariate Zi ∈ [3] and a latent community membership θi ∈ [2]. We set

Zi and θi to be correlated, with relative frequencies as given in Table 1.

We draw 100 random undirected networks of size n = 400 nodes with the simple

edge distribution,

Yij
ind∼ Bernoulli {0.05 + 0.3I(θi = θj) + βI(Zi = Zj)} , (5.2)
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Zi = 1 Zi = 2 Zi = 3

θi = 1 0.3 0.1 0.1

θi = 2 0.1 0.1 0.3

Table 1: Relative joint frequencies of Zi, θi used in algorithm comparison

where 0 ≤ β ≤ 0.5 is varied in increments of 0.05. It is clear to see that these networks

follow the ACSBM form of Definition 2, using an identity link. (The identity link is

the link function supported in Mu et al., 2020.) Given the size and density of these

networks, the spectral embeddings are well concentrated. As a result, misclassification

of θ by a given algorithm can largely be attributed to a failure of the algorithm.

The mean misclassification rate for each algorithm and choice of β is plotted in

Figure 2. Algorithm 1 (“ACSBM”) performs well across all choices of β, showing

error only in 1 of 100 simulated networks at β = 0. In sharp contrast, the algorithm

of Mele et al. (2019) performs poorly across all choices of β, owing to the fact that

P (Yij = 1 | θi = θj = k, Zi = Zj = ℓ) is constant in k. The performance of

the remaining algorithms depends on the magnitude of the covariate effect β. The

“Vanilla” algorithm performs well only when β is smaller than the latent homophily

effect, i.e., when β < 0.3. On the other hand, Mu et al. (2020) performs well when

β is sufficiently large. The difficulties for small β appear to be explained by biased

covariate effect estimates, which are fed into the final clustering in Mu et al. (2020).

Figure 3 depicts the bias in estimating β via Algorithm 1 vs. Mu et al. (2020). Mu

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0341



27

Mu et al. Vanilla

ACSBM Mele et al.

0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5

0.0

0.1

0.2

0.3

0.4

0.0

0.1

0.2

0.3

0.4

β

M
is

cl
as

si
fic

at
io

n 
R

at
e

Figure 2: Mean misclassification rate vs. covariate effect β on simulations of the

model from Eq. 5.2 for four different spectral methods. In contrast to the alternatives,

Algorithm 1 (“ACSBM”) performs well across the full range of covariate effects.
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Figure 3: Median (and IQR) bias in estimates of covariate effect β from Algorithm 1

(“ACSBM”) vs. Mu et al. (2020). Mu et al. (2020) exhibits substantial bias when β

is small.
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et al. (2020) exhibits a strong bias on small covariate effects.

6. Application to Harvard Facebook Data

We illustrate the real-world value of our method on a network of Facebook friendships

between Harvard University students. The network we consider is a subgraph of a

network originally published in Traud et al. (2012), consisting of Facebook friendships

between 15,126 individuals from Harvard. Of the 5,970 profiles known to belong to

students that declare their gender and a class year between 2006 and 2009, we restrict

our attention to the largest connected component of n = 5,917 nodes and 629,864

edges. Letting Z∗1 ∈ [2]n denote the genders of the students and Z∗2 ∈ [4]n denote

the four class years (suitably recoded), we consider a model with K = 2 latent

communities. This choice of latent dimension was informed by the goodness of fit

considered for several small values of K. (An array of methods for selecting K in

the setting of stochastic block models can be used in this selection process for the

ACSBM. See Lei, 2016; Hu et al., 2021; Li et al., 2020; Jin et al., 2023.)

We apply Algorithm 1, using as our clustering method a version of K-means

that operates over the rows of X̂Y normalized to have unit length. This is inspired

by a popular method employed in fitting degree-corrected block models (Karrer and

Newman, 2011; Lei and Rinaldo, 2015) and allows for varying node degrees within

subcommunities. We denote the resulting latent communities θ̂covariate. The first of

these groups contains 3,772 nodes, and the second contains 2,145. The estimated B̃
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matrix is depicted in Figure 4, where the latent structure is represented by the four

main quadrants of the matrix, and the homophily patterns between gender and class

year are captured by the repetitive structures within each of these quadrants.

We estimate the coefficients of the ACSBM model by fitting a logistic regression

model using θ̂covariate as a plug-in estimator for θ and the empirical edge counts from

ˆ̃B. The resulting estimated model is:

log

(
π̂ij

1− π̂ij

)
=

−5.077 −5.520

−5.520 −4.290


θiθj

+ 0.102 I(genderi = genderj)

+ 2.113 I(yeari = yearj),

where πij denotes the probability of an edge occurring between nodes i and j. We

interpret this as follows: after accounting for the latent structure we have discovered,

sharing the same gender (or class year) is associated with odds of forming a friendship

that are e0.102 ≈ 1.107 times (or e2.113 ≈ 8.273 times, respectively) higher, when

holding the other variables constant for the pair. The remaining coefficients in the

2×2 matrix represent intercept terms that vary depending on the clusters to which a

pair of nodes belongs. We note that the overall differences between these coefficients

lie somewhere between the effect size of gender and that of class year. All of this

matches our intuition from Figure 4, where differences between same-sex and opposite-

sex friendship patterns are slight, differences by class year are stark, and the latent
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Figure 4: Estimated B̃ matrix applying Algorithm 1 to a network of Harvard students,

accounting for observed covariates of class year and gender

structure contributes modestly.

The question of what the latent structure represents has no easy answer, since it

corresponds to an unobserved feature of the network. We note, however, a curious

correlation between this latent feature and class year. For students with class years

of 2006, 2007, 2008, and 2009, the proportions assigned to latent group 1 are, respec-

tively, 53.5%, 50.5%, 60.8%, and 90.1%. Noting that incoming freshmen at Harvard

are traditionally assigned to designated housing and offered unique social programs,

we conjecture that the latent feature captured by our method corresponds to resi-

dential and social patterns that correlate with the freshman experience, while going
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beyond what is captured by class year alone.

Comparison with vanilla spectral clustering. Comparing θ̂covariate to the

communities discovered through a spectral clustering process that ignores the covari-

ates highlights the value of our proposed method. We compare our method to the

same “Vanilla” method considered in Section 5, i.e., a K-means-based version of Lei

and Rinaldo (2015). The resulting communities we denote θ̂vanilla. As expected from

the results of previous studies (e.g., Chen et al., 2018), the “latent” communities

discovered in θ̂vanilla largely recover information already contained in our observed

covariates: with K = 2, θ̂vanilla almost perfectly predicts whether the student is a

freshman (yeari = 4), with agreement between the latent community and freshman

status on 98.5% of nodes. Expanding the search to K = 4 recovers clusters that agree

with class year on 95.3% of nodes (up to a permutation of labels). At K = 8, we begin

to discover a latent structure: the recovered clusters θ̂vanilla ∈ [8]n agree with a suit-

ably recoded combination of class year and our θ̂covariate on 71.8% of nodes. However,

recovering a hierarchical structure from these labels remains an elusive task. This is

precisely the challenge addressed by our algorithm, which first identifies a flattened

set of “subcommunities” in Algorithm 1, Part 1, before working backward to recover

the full hierarchical structure in Part 3.
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7. Discussion

The task of separating latent from observed structure in networks is critical to a va-

riety of network inference tasks. The method we have proposed is, to our knowledge,

the first to offer a rigorous guarantee of consistency of latent structure recovery using

spectral clustering in the setting where edge formation is dependent on both observed

and latent factors. Our proposed method is computationally efficient and theoreti-

cally appealing, using distance in latent space as a means of reconnecting a network

partitioned by observed covariates.

We would like to note the limitations of our current work and highlight opportuni-

ties for future research. First and foremost, the combinatorial nature of the algorithm

restricts its use to discrete covariates. Moreover, since Part 3 of the algorithm es-

timates permutations over network partitions, any error in permutation selection is

likely to introduce considerable error in the final clustering of nodes. We believe that

a post-processing step akin to spectral clustering with adjustment (SCWA) of Huang

and Feng (2018) (or the correction of Mu et al. 2020 to the results of Mele et al.

2019) holds promise to mitigate finite-sample permutation errors, but we have not

yet given this formal study. Finally, while we consider only a fixed number of latent

communities and covariates, it would be useful to extend our analysis to the case

where the dimension of the ACSBM network grows. Based on existing results for

SBM recovery (e.g., Choi et al., 2012), we anticipate the total number of subcommu-
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nities of Proposition 1 is limited to KL̃ = O(
√
n). It would be interesting, but well

outside the scope of this paper, to extend these ideas to a continuous setting, which

may alleviate these limitations.

We believe that our proposed method offers promise beyond what has been proven

so far. As an example, the simulations of Section 5 suggest consistency for a wide

range of link functions that remains to be rigorously proven. Additionally, the analysis

of Harvard students’ Facebook friendships in Section 6 employed a degree-corrected

post-processing step for the spectral embeddings, in a manner commonly employed

with the degree-corrected block model (DCBM) of Karrer and Newman (2011). While

the consistency of our method has not been rigorously proven in conjunction with

degree correction, the empirical results look promising, as the method successfully

identified a latent structure distinct from the covariates considered. Moreover, there

is theoretical intuition behind this method. The matching problem of Algorithm 1,

Part 3 may be recast as an optimization over the angles between subcommunities in

latent space, while the latent positions in a degree-corrected analog of the ACSBM

would be expected to fall along distinct rays corresponding to subcommunities. Such

a theoretical extension for degree correction would greatly expand the practicality of

the model we consider, allowing for nodes to exhibit greater variation in node degree,

as commonly seen in observed networks, while retaining the simplicity and flexibility

of the underlying latent block model structure.
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Supplementary Materials

Proofs and derivations of all results are provided in the online supplementary mate-

rial. A Python implementation of our proposed method and additional examples are

available at https://github.com/jonhehir/acsbm.
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