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Abstract: In the classic measurement error framework, covariates are contaminated

by independent additive noise. This paper considers parameter estimation in such a

linear errors-in-variables model where the unknown measurement error distribution is

heteroscedastic across observations. We propose a new generalized method of moment

(GMM) estimator that combines a moment correction approach and a phase function-

based approach. The former requires distributions to have four finite moments, while

the latter relies on covariates having asymmetric distributions. The new estimator is

shown to be consistent and asymptotically normal under appropriate regularity con-

ditions. The asymptotic covariance of the estimator is derived, and the estimated

standard error is computed using a fast bootstrap procedure. The GMM estimator is

demonstrated to have strong finite sample performance in numerical studies, especially

when the measurement errors follow non-Gaussian distributions.

Key words and phrases: Asymmetric Distributions; Bootstrap; Generalized Method of

Moments; Nutrition; Phase Function; Variance Heterogeneity.
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1. Introduction

The errors-in-variables linear model arises when certain covariates suffer from

measurement error contamination. This can stem from sources like instrumen-

tation and self-reporting errors, as well as the inadequate use of short-term mea-

surements as proxies for long-term variables. Ignoring measurement error can

result in biased estimators, see Carroll et al. (2006) regarding the importance of

measurement error correction in understanding the effects of the covariates on

the outcome. This paper considers a heteroscedastic measurement error setting,

allowing the measurement error covariance to vary across observations. This

observation-specific measurement error variance structure, treated as unknown,

requires estimation from replicate data. We adopt the classic additive measure-

ment error model wherein the contaminated covariates, i.e the surrogates, are

treated as the sum of the true covariates and independent measurement errors,

so surrogate variances exceed true covariate variances.

One of the first papers to address the problem of a predictor variable con-

taminated by measurement error is Wald (1940). Since then, many parametric

methods have been proposed, such as the maximum likelihood approach of Hig-

don and Schafer (2001). The conditional scores approach (Stefanski and Carroll,

1987) and the conditional quasi-likelihood approach (Hanfelt and Liang, 1997)

require the conditional distributions of the outcomes and the contaminated co-
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variates to be specified, both in terms of the true covariates. Regression calibra-

tion (Carroll and Stefanski, 1990) estimates the true covariates from the con-

taminated covariates in a validation sample. Simulation-extrapolation (SIMEX)

(Stefanski and Cook, 1995) is a computationally-intensive method that adds

additional measurement error to estimate model parameters and then extrap-

olates to the error-free case. All the methods listed in this paragraph require

parametric specifications for some distributional components of the model.

Our paper proposes an efficient distribution-free estimator for a linear errors-

in-variables model with heteroscedastic measurement errors. Our estimator com-

bines two existing methods: a moment correction approach and a phase-function

based estimator. The moment correction approach dates back to Reiersøl (1941)

and has also been considered by Gillard (2014) and Erickson et al. (2014). This

method requires the existence of model moments up to order 2M , where M ≥ 2

is the number of moments that are used to derive moment equations. In contrast,

the phase function-based estimator, proposed by Nghiem et al. (2020), does not

impose moment conditions on the underlying random variables, but requires the

true covariates to have asymmetric distributions. These authors define minimum

distance estimators based on the difference of two empirical phase functions. Our

paper proposes a new method combining the moment-based and phase function-

based approaches within a generalized method of moments (GMM) framework.
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We assume that the measurement errors have a joint symmetric distribution,

but both the distribution type and the observation-specific covariance matrix

are unknown. Our estimator relaxes the asymmetry condition of Nghiem et al.

(2020) for a common scenario in practice where all observations have at least

two replicates (Carroll et al., 2006). We propose two different weighting schemes

to construct weighted empirical phase functions that account for measurement

error heteroscedasticity. Furthermore, we present a computationally efficient

bootstrap technique to estimate the covariance matrix, serving both GMM es-

timator computation and standard error estimation. Simulation studies and a

data application demonstrate that our combined GMM estimator have strong

finite sample performance.

The remaining sections of the paper are organized as follows. Section 2 re-

views moment-corrected and phase function estimators. Section 3 introduces

the GMM estimator along with a bootstrap approach for covariance matrix es-

timation. Section 4 conducts simulation studies to compare estimation methods

and assess standard error recovery. Section 5 presents an illustrative NHANES

dataset analysis, and Section 6 concludes the study.
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2. Moment-corrected and phase function estimators

2.1 Heteroscedastic errors-in-variables model formulation

Let X = {D1, . . . ,Dn} denote an observed sample following a linear errors-in-

variables (EIV) model. Here, Dj = {W(nj)
j , Z̃j, yj} is a random sample following

EIV model structure that

yj = X>j β0 + Z>j γ0 +εj and Wjk = Xj + Ujk, (2.1)

for k = 1, . . . , nj and j = 1, . . . , n. In this model, we let yj ∈ R denote the

outcome of interest, Xj = (Xj1, . . . , Xjp)
> ∈ Rp denote the true values of the

error-prone covariates, Zj =
(
1, Z̃

>
j

)>
with Z̃j = (Zj1, . . . , Zjq)

> ∈ Rq denote the

error-free covariates, and Wjk = (Wjk,1, . . . ,Wjk,p)
> denote a contaminated ver-

sion of Xj subject to independent measurement error Ujk = (Ujk,1, . . . , Ujk,p)
>.

Furthermore, we let W
(nj)
j = (Wj1, . . . ,Wjnj

) and U
(nj)
j = (Uj1, . . . ,Ujnj

)

denote, respectively, the collections of contaminated replicates and measure-

ment errors associated with the nj ≥ 2 replicates of the jth observation, and

εj denote the usual regression error. Also, β0 = (β01, . . . , β0p)
> ∈ Rp and

γ0 = (γ00, γ01, . . . , γ0q)
> ∈ Rq+1 denote, respectively, the coefficients vectors

associated with Xj and Zj. We assume the measurement errors Ujk have mean

zero and covariance Σj that is potentially distinct for all observations. Conse-
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2.1 Heteroscedastic errors-in-variables model formulation

quently, we have Var(Wjk) = Σx + Σj where Σx = Var(Xj) for k = 1, . . . , nj

and j = 1, . . . , n. The regression errors εj’s are assumed to be independent and

identically distributed (iid) with mean zero and variance σ2
ε .

In subsequent sections of this paper, several conditions will be important

when considering the estimation methods for the linear EIV model (2.1). These

conditions are now presented and discussed. To this end, let operator ⊥ denote

the independence of random quantities, let ‖A‖max = maxj,k(|ajk|) denote the

element-wise infinity norm of an arbitrary matrix A, and let i =
√
−1 denote

the imaginary unit.

Condition C1. For the jth observation, Ujk⊥Ujk′ for k 6= k′, k, k′ ∈ {1, . . . , nj}.

Furthermore, U
(nj)
j ⊥ (Xj,Zj, εj). Finally, the random quantities (Xj,Zj, εj),

j = 1, . . . , n are iid copies of random variables (X,Z, ε).

In addition to requiring independent observations, Condition C1 requires

that the measurement error components across the replicates associated within

a given observation are mutually independent. Furthermore, the measurement

errors, true covariates, and regression errors are required to be mutually inde-

pendent as well. An example of a well-studied scenario that would violate this

assumption is the Berkson error model wherein the observed predictor Wj has

a smaller variance than the true predictor Xj, see Song (2021) for an overview.

Many time-series error models would also violate Condition C1. Nevertheless,
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2.1 Heteroscedastic errors-in-variables model formulation

these settings are outside the scope of the current paper.

Condition C2. For the jth observation, random quantities X̃j = (X>j , Z̃
>
j )>

and εj satisfy E
(∥∥X̃jX̃

>
j

∥∥4
max

)
< ∞ and E(ε4j) < ∞. Also, for the replicates

associated with observation j, E
(∥∥Ujk U>jk

∥∥4
max

)
<∞, j = 1, . . . , n.

While this paper imposes no parametric distributional assumption on the

underlying variables in the model, we do require that the covariates, regression

errors, and measurement errors have distributions with at least four finite mo-

ments. Examples of situations where Condition C2 would be violated would be

if the covariates and/or measurement error terms followed a multivariate t dis-

tribution with fewer than 4 degrees of freedom, or a multivariate stable law with

index parameter α < 2. Condition C2 is central to the moment-corrected ap-

proach of Section 2.2 having an asymptotic normal distribution. While the phase

function-based approach of Section 2.3 is less concerned with the higher-order

moments, the following two conditions are central to it.

Condition C3. The replicate measurement error vectors Ujk have a distribu-

tion symmetric about zero with strictly positive characteristic function, φUj
(t) =

E{exp(it>Ujk)} > 0, k = 1, . . . , nj, for all t = (t1, . . . , tp)
> ∈ Rp and possibly

distinct for each j = 1, . . . , n. Similarly, the regression errors εj have a distribu-

tion that is symmetric around zero with strictly positive characteristic function

φε(t) = E{exp(itεj)} > 0 for all t ∈ R and common to all j = 1, . . . , n.
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2.1 Heteroscedastic errors-in-variables model formulation

Many distributions commonly encountered in the measurement error liter-

ature satisfy Condition C3, including the Gaussian, the Laplace, and Student’s

t distributions. Excluded by this condition are distributions only taking val-

ues on a bounded interval, for example, the (multivariate) uniform distribution,

because the corresponding characteristic functions are negative for some t.

In order to state the next condition, the phase function of a random variable

has to be defined. For an arbitrary random variable V , let φV (t) denote the

characteristic function of V . The phase function of V is then defined as ρV (t) =

φV (t)/|φV (t)| with |φV (t)|2 = φV (t)φ̄V (t) being the squared complex norm and

φ̄V (t) the complex conjugate of φV (t). For a more in-depth discussion of the

phase function and its properties, consult Delaigle and Hall (2016) and Nghiem

et al. (2020).

Condition C4. Let V (β,γ) = X> β+ Z> γ and let ρV (t|β,γ) denote the cor-

responding phase function of V . Note that this phase function depends on pa-

rameters (β,γ). Then, ρV (t|β,γ) is continuously differentiable with respect to

all elements of β and γ. Furthermore, ∂ρV (t|β,γ)/∂βk 6= 0 for k = 1, . . . , p

and ∂ρV (t|β,γ)/∂γk 6= 0 for k = 0, . . . , q.

Condition C4 may appear esoteric. In essence, this condition imposes a

joint skewness requirement on the true covariates, as any symmetric variable

independent of the other variables will not contribute to the phase function in
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2.2 Moment correction

any way. A related sufficient condition used by Nghiem et al. (2020) is that

for covariates X̃ = (X>, Z̃
>

)> = (X̃1, . . . , X̃p+q)
> and true parameter values

β̃0 = (β̃01, . . . , β̃0,p+q) = (β01, . . . , β0p, γ01, . . . , γ0q)
>, there exists no subset of

variables P ⊆ {1, . . . , p+q} such that
∑

k∈P β̃0kX̃k has a symmetric distribution.

Condition C5. The true parameter θ0 = (β>0 ,γ
>
0 )> is an interior point of a

compact and convex parameter space Θ ⊆ Rp+q+1.

Condition C5 is a regularity condition imposed on the parameter space; here

it is satisfied when all parameter values are finite.

2.2 Moment correction

Moment correction is a well-established approach to estimate the parameters of

the heteroscedastic EIV model as per equation (2.1). As moment correction is

also central to the new estimation method proposed in Section 3, a brief overview

is provided here. The interested reader can consult Buonaccorsi (2010, Section

5.4) for more details.

Let Wj = n−1j
∑nj

k=1Wjk = Xj + Uj denote the averaged contaminated

replicates of the jth observation. Here, Uj = n−1j
∑nj

k=1Ujk, whose variance

is Var (Uj) = n−1j Σj. Moment correction relies on the corrected L2 norm

L(β,γ) = n−1
∑n

j=1

(
yj −W>

j β−Z>j γ
)2−n−1∑n

j=1 n
−1
j β>Σj β, which satis-

fies E{L(β0,γ0)} = σ2
ε when Condition C1 holds. The gradients corresponding
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2.2 Moment correction

to this function are

SL,β =
∂L

∂ β
= − 2

n

n∑
j=1

Wj

(
yj −W>

j β−Z>j γ
)
− 2

n

n∑
j=1

1

nj
Σj β,

SL,γ =
∂L

∂ γ
= − 2

n

n∑
j=1

Zj

(
yj −W>

j β−Z>j γ
)
.

The moment corrected estimator is subsequently defined to be the solution of

the p + q + 1 estimating equations SL = (S>L,β,S
>
L,γ)

> = 0. These estimating

equations are well-defined in a statistical sense whenever the underlying variables

have at least two finite moments. However, to establish that the estimators

are asymptotically normally distributed, Conditions C2 and C5 are required to

ensure the variances of the gradients SL,β and SL,γ are finite.

To implement the above moment correction, knowledge of the variance-

covariance matrices Σj is required. When these are unknown, they can be

consistently estimated using

Σ̂j =
1

nj(nj − 1)

nj−1∑
k=1

nj∑
k′>k

(Wjk−Wjk′)(Wjk−Wjk′)
>. (2.2)

The covariance estimator in (2.2) follows upon noting that

E
{

(Wjk−Wjk′)(Wjk−Wjk′)
>} = E

{
(Ujk−Ujk′)(Ujk−Ujk′)

>} = 2 Σj,
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2.3 Phase function-based estimation

for any pair of replicates (Wjk,Wjk′) with k 6= k′. The second equality follows

from the independence of measurement error terms (Ujk,Ujk′), and the assumed

mean and covariance structure of the Ujk. Subsequently, the estimator Σ̂j is

defined by averaging over the squared differences of the nj(nj − 1)/2 such pairs

associated with the jth observation. Therefore, in practice, the gradient SL,β is

replaced by an approximation ŜL,β which substitutes unknown Σj by Σ̂j for j =

1, . . . , n. The moment-corrected estimators are then calculated as the solution

of the estimating equation

ŜL = (Ŝ
>
L,β,S

>
L,γ)

> = 0. (2.3)

These estimators Σ̂j and the gradient ŜL will be further used in Section 3.

2.3 Phase function-based estimation

Recently, in the context of a homoscedastic EIV model without replicate data,

Nghiem et al. (2020) proposed a phase function-based estimator. Their approach,

unlike the moment-corrected estimator, does not require estimation of the mea-

surement error covariances, but still leads to a consistent estimator even when

the underlying random variables do not have finite variances. We propose here a

new variation of the phase function method that adjusts for heteroscedasticity of
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2.3 Phase function-based estimation

the measurement error, which is made possible by the availability of replicates.

Furthermore, the asymmetric linear combination assumption of Nghiem et al.

(2020) is replaced by Condition C4.

For the model defined in (2.1), define V0j = X>j β0 + Z>j γ0 so that yj =

V0j+εj, j = 1, . . . , n. Since (Xj,Zj, εj) are independent copies of (X,Z) by Con-

dition C1, the random variable V0j is an independent copy of V0 := V (β0,γ0) =

X> β0 + Z> γ0 and yj is an independent copy of Y = V0 + ε. Recall that φY (t)

and ρY (t) denote, respectively, the characteristic and phase functions of Y , and

the same holds for φV0(t) and ρV0(t) in terms of V0. From Condition C3, the

phase function ρY (t) is given by

ρY (t) =
φY (t)

|φY (t)|
(i)
=

φV0(t)φε(t)

|φV0(t)φε(t)|
(ii)
=

φV0(t)

|φV0(t)|
= ρV0(t),

where (i) follows from the independence of the regression error as per Con-

dition C1, and (ii) follows from Condition C3. Moreover, recalling that Wj

and Uj are the averaged replicates and measurement error terms, respectively.

Since the term U>j β also has a symmetric distribution around zero, a sim-

ilar argument shows that the phase function of arbitrary linear combination

Ṽj(β,γ) = W>
j β+ Z>j γ = X>j β+ Z>j γ + U>j β is the same as the phase func-

tion of V (β,γ), i.e ρṼj(t|β,γ) = ρV (t|β,γ) for all j = 1, . . . , n.
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2.3 Phase function-based estimation

Our method now proceed by equating two different empirical phase func-

tions. Firstly, based on the outcomes yj, define empirical phase function

ρ̂Y (t) =

∑n
j=1 exp(ityj)[∑n

j=1

∑n
k=1 exp {it (yj − yk)}

]1/2 ,

and based on covariates (Wj,Zj), we define the weighted empirical phase func-

tion (WEPF),

ρ̂V (t|β,γ) =

∑n
j=1 qj exp

{
it(W>

j β+ Z>j γ)
}(∑n

j=1

∑n
k=1 qjqk exp [it {(Wj −Wk)> β+(Zj −Zk)> γ}]

)1/2 .
(2.4)

where the weights {qj}nj=1 satisfy qj ≥ 0 and
∑n

j=1 qj = 1. The phase function-

based estimator is motivated by noting that the population level equivalents

ρY (t) and ρV (t|β,γ), under the asymmetry imposed on the covariates by Con-

dition C4, are equal if and only if (β,γ) = (β0,γ0). Thus, the estimator for

(β0,γ0) is defined to be the minimizer of the discrepancy

D(β,γ) =

∫ ∞
−∞
|ρ̂Y (t)− ρ̂V (t|β,γ)|2ω(t)dt, (2.5)

where ω(t) is a weighting function to ensure the integral is finite. Direct mini-

mization of (2.5) is computationally expensive. Following the example of Nghiem
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et al. (2020), we consider the alternative minimization problem

D̃(β,γ) =

∫ t∗

0

[
Cy(t)

n∑
j=1

qj sin
{
t
(
W>

j β+ Z>j γ
)}

−Sy(t)
n∑
j=1

qj cos
{
t
(
W>

j β+ Z>j γ
)} ]2

Kt∗(t)dt (2.6)

where Cy(t) = n−1
∑n

j=1 cos(t yj), Sy(t) = n−1
∑n

j=1 sin(t yj), and Kt∗(t) is a

kernel function that is only non-zero on the interval [0, t∗]. Note that the two

forms (2.5) and (2.6) are equivalent for appropriate choices of ω(t) and Kt∗(t).

Following Delaigle and Hall (2016), we use Kt∗(t) = (1 − t/t∗)2 for numeri-

cal implementation with t∗ being the largest t such that |φ̂y(t)| ≤ n−1/2. For

any fixed (β,γ), by a similar argument to Nghiem and Potgieter (2018), the

WEPF in (2.4) is a consistent estimator of ρV (β,γ) for any set of weights hav-

ing maxj qj = O(n−1). Therefore, our intended goal is to adjust for measurement

error heteroscedasticity through an appropriate choice of weights; we will elab-

orate on this in Section 3.2.

3. A GMM estimator

3.1 Generalized method of moments

The moment-corrected and phase function-based estimators from Section 2 rely

on different yet complementary sets of assumptions. On the one hand, moment
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3.1 Generalized method of moments

correction is a least squares approach with a variance correction term, thus using

information from the first two underlying model moments. On the other hand, as

discussed in Nghiem et al. (2020), the phase function method essentially uses all

odd moments of the underlying model, provided these moments exist. Hence, a

method combining these two approaches will generally make use of more model

information, allowing for the possibility of a more efficient estimator. In this

paper, we describe how to combine the two methods using a generalized method

of moments (GMM) approach, which is widely used to estimate parameters in

over-identified systems (Hansen, 1982).

To define the GMM estimator, recall that the phase function-based estima-

tor is found by minimizing function D̃(β,γ) in (2.6). The minimizer can be ex-

pressed as the solution of the p+q+1 estimating equations SD̃ = (S>
D̃,β

,S>
D̃,γ

)> =

0 where

SD̃,β =
∂D̃

∂ β
and SD̃,γ =

∂D̃

∂ γ
. (3.1)

Thus, if we simultaneously consider the estimating equations from moment cor-

rection, ŜL = 0 in (2.3), and the phase-function based estimators, SD̃ = 0

defined above in (3.1), we have a system of 2(p+ q + 1) estimating equations in

terms of the p+ q + 1 model parameters. More formally, let

S := S(β,γ) = (Ŝ
>
L ,S

>
D)> = (Ŝ

>
L,β,S

>
L,γ ,S

>
D̃,β

,S>
D̃,γ

)> (3.2)
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3.1 Generalized method of moments

denote the vector of 2(p+ q + 1) gradient equations. The system S(β,γ) = 0 is

generally over-identified and does not have an exact solution. Suppressing the

dependence of S on (β,γ), we define a quadratic form in S,

Q(β,γ) = S>Ω−1S S, (3.3)

where ΩS = {Var(S)}(β,γ)=(β0,γ0)
is the 2(p+q+1)×2(p+q+1) covariance matrix

corresponding of the gradient equations S evaluated at the true parameter values

(β0,γ0). The GMM estimator is then defined to be the minimizer of Q(β,γ).

Minimizing the GMM discrepancy function Q(β,γ) is equivalent to projecting

S onto a (p + q + 1)-dimensional subspace and solving the resulting equations,

so the GMM estimator can be thought of as the solution to an optimal linear

combination of the estimating equations in S.

We next study the asymptotic properties of the proposed GMM estimator.

Both the consistency and asymptotic normality of our proposed estimator follow

from the properties of the GMM approach under suitable regularity conditions.

First, we establish the uniform convergence of Q(β,γ).

Lemma 1. Assume that all random variables in the model (2.1) have at least

two finite moments. Then, for (β,γ) ∈ Θ as per Condition C5, the func-

tion Q(β,γ)
p→ Q0(β,γ) uniformly, where Q0(β,γ) = S>0 Ω−1S S0 and S0 :=
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3.1 Generalized method of moments

S0(β,γ) = limn→∞ E{S(β,γ)} is the limiting expectation of the gradient equa-

tions.

The proof of Lemma 1 is presented in Section S1 of the Supplementary Ma-

terials. The proof relies of verifying sufficient conditions for uniform convergence

as per Lemma 2.9 of Newey and McFadden (1994). The uniform convergence of

Q(β,γ) is an essential step in establishing the consistency of the GMM estimator

in our next theorem.

Theorem 1. Consider the heteroscedastic linear EIV model defined in (2.1).

Assume Conditions C1, C3 and C5 hold. Also assume that all variables in the

model have at least two finite moments. Finally, assume the weights qj used

for constructing the empirical phase function in (2.4) satisfy maxj qj = O(n−1).

Then, the estimator obtained by minimizing Q(β,γ) = S>Ω−1S S is consistent

for true value (β0,γ0).

Theorem 1 follows from Theorem 2.1 of Newey and McFadden (1994) com-

bining the uniform convergence in Lemma 1 along with establishing thatQ0(β,γ)

has a global minimum at the true parameters (β0,γ0). The proof is presented

in Section S2 of the Supplementary Materials. We further note that for the

GMM estimator to be consistent, Condition C4 (covariate asymmetry) is not a

requirement. When it does not hold, some of the components of S converge to

0 for all values of the underlying parameters. However, the limiting quadratic
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3.1 Generalized method of moments

form still has a unique minimum at the true parameter values, because the es-

timating equations originating with the moment-corrected approach do not rely

on asymmetry. With this in mind, we focus the GMM method on a situation

where ∂ρV (t|β,γ)/∂βk 6= 0 for some k = 1, . . . , p and/or ∂ρ(t|β,γ)/∂γk 6= 0

for some k = 1, . . . , q. When some of these partial derivatives are non-zero, then

evaluation of the empirical phase function contributes information to the estima-

tion procedure and it is possible that the efficiency of the estimator is improved.

Finally, we establish the asymptotic normality of the proposed estimator.

Theorem 2. Consider the heteroscedastic linear EIV model defined in (2.1).

Assume Conditions C1, C2, C3, and C5 hold. Furthermore, assume the weights

qj used for constructing the empirical phase function in (2.4) satisfy maxj qj =

O(n−1). Then, the estimator (β̂gmm, γ̂gmm) obtained by minimizing Q(β,γ) =

S>Ω−1S S satisfies

n1/2
{(
β̂>gmm γ̂

>
gmm

)> − (β>0 γ>0
)>} ∼ N

(
0,
(
P1Ω

−1
S P

>
1

)−1)

where

P1 = E

{(
∂ S

∂ β

>
,
∂ S

∂ γ

>) }

with the expectations in P1 evaluated at the true parameter values (β0,γ0).

Theorem 2 follows from Theorem 3.4 of Newey and McFadden (1994). Com-

18

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0331



3.2 Choice of phase function weights

pared to the required conditions for the consistency established in Theorem 1,

Theorem 2 requires stronger moment conditions that all the variables in the

model having four finite moments as per Condition C2. We furthermore note

that versions of Theorems 1 and 2 still hold if we replace the covariance matrix

ΩS by any positive definite matrix Ω∗. Nevertheless, the choice of ΩS leads to

the most asymptotically efficient estimator, as discussed in Section 5.2 of Newey

and McFadden (1994).

In practice, the covariance matrix ΩS is unknown and needs to be replaced

by a suitable estimator Ω̂S. As per Section 4 of Newey and McFadden (1994),

using a consistent estimator of ΩS leaves the asymptotic distribution of the

estimators unchanged. We therefore propose a bootstrap resampling algorithm

in Section 3.3 to obtain a suitable estimator Ω̂S. First, however, we explore the

calculation of weights qj, j = 1, . . . , n in the WEPF to adjust for measurement

error heteroscedasticity.

3.2 Choice of phase function weights

The weighted phase function in (2.4) requires the specification of weights {qj}nj=1

with qj ≥ 0 and
∑n

j=1 qj = 1. If the underlying distributions were known, it

would be possible to directly minimize an asymptotic variance metric directly

related to this estimated phase function – see Nghiem and Potgieter (2018) for

19

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0331



3.2 Choice of phase function weights

a derivation of the pointwise asymptotic variance of such a WEPF. However,

since the underlying distributions are assumed unknown, the direct approach is

unavailable to us. We therefore present here two weighting schemes that are

easily implemented in practice.

For the first approach, note that the variable
∑n

j=1 qj W>
j β0 is an unbiased

estimator of E(X>β0). Therefore, one can consider finding a set of weights

that minimize the variance of the above mean estimator. Specifically, we have

Var
(∑

j qj W>
j β0

)
=
∑

j q
2
j β
>
0 (Σx +n−1j Σj)β0, which is minimized by weights

qj = a−1j /
∑n

k=1 a
−1
k , where aj = β>0 (Σx +n−1j Σj)β0. Unfortunately, these

weights depend on the unknown true β0 and are therefore impossible to calcu-

late. We propose the following proxy estimator based on a “minimax” argument.

Let λj denote the largest eigenvalue of Σx +n−1j Σj. We then have aj ≤ λj‖β0 ‖2

with ‖β0 ‖2 =
∑p

k=1 β
2
0k denoting the squared L2 norm. Therefore, we calculate

weights based on replacing the aj by the corresponding upper bounds. Note

that using the upper bounds has the potential to underweight observations with

the large measurement error i.e. their influence is even further mitigated. The

proposed minimax weights are given by

q̂mm
j =

λ̂−1j∑n
k=1 λ̂

−1
k

, j = 1, . . . , n, (3.4)
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3.2 Choice of phase function weights

where λ̂j is the largest eigenvalue of Σ̂x + n−1j Σ̂j with Σ̂j given in (2.2) and

with Σ̂x = (n− 1)−1
∑n

i=1(Wj −W)(Wj −W)> − n−1
∑n

j=1 n
−1
j Σ̂j, with W =

n−1
∑n

j=1 Wj.

For the second approach, note that for all j = 1, . . . , n, we have E(Wj) =

E(X). Therefore, the quantity µ̂q =
∑n

j=1 qjWj is an unbiased estimator of

E(X). Recalling that Var(Wj) = Σx + n−1j Σj, we define the L2 discrepancy

L(q) =
n∑
j=1

(Wj − µ̂q)>
(
Σx + n−1j Σj

)−1
(Wj − µ̂q)>, (3.5)

with q = (q1, . . . , qn). Our second weighting scheme proposes minimizing L(q)

in terms of the weights q subject to qj ≥ 0 and
∑n

j=1 qj = 1. We note that

minimizing L(q) is equivalent to maximizing the log-likelihood of the {Wj}nj=1

in terms of q assuming each Wj follows a multivariate normal distribution. We

therefore refer to this approach as the quasi-likelihood weighting scheme. In

Section S3 of the Supplementary Materials, we show that the quasi-likelihood

weights are found by solving a system of linear equations. Replacing Σx and

the Σj in (3.5) with their corresponding estimator Σ̂x and Σ̂j, we denote the

resulting minimizing weights by q̂qlj for j = 1, . . . , n. The performance of the

minimax and quasi-likelihood weights are further considered in the simulation

studies of Section 4.
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3.3 GMM covariance matrix and standard error estimation

3.3 GMM covariance matrix and standard error estimation

Implementation of the proposed GMM estimator requires a suitable estimator for

ΩS in (3.3), where ΩS is the covariance matrix of the 2(p+ q+ 1) gradient equa-

tions S at the true parameter values (β0,γ0). We propose a computationally–

efficient strategy based on the estimating function bootstrap approach of Hu

and Kalbfleisch (1997); this strategy is also used in Nghiem et al. (2020) for

estimating the variances of the phase function-based estimators.

Recall that X = {D1, . . . ,Dn} denotes the random sample from the linear

EIV model with Dj = {W(nj)
j , Z̃j, yj}, j = 1, . . . , n. The bth bootstrap sam-

ple, X ∗b = {D∗b1, . . . ,D∗bn}, b = 1, . . . , B, is obtained by sampling n times with

replacement from X . No re-sampling is done at the replicate level. For the

bth bootstrap sample, we compute Σ̂
∗
b,x, Σ̂

∗
b,j, and q̂∗b,j which correspond to the

observation-level measurement error covariance matrices, and the weights for

the phase function estimator calculated using Xb for j = 1, . . . , n. We subse-

quently use these quantities and our bootstrap sample to evaluate S∗b(β̂in, γ̂ in) =

{Ŝ
∗
b,L(β̂in, γ̂ in)>,S∗

b,D̃
(β̂in, γ̂ in)>}> as defined in equation (3.2). Here, (β̂in, γ̂ in)

denote consistent initial estimators of (β0,γ0); in our implementation, the moment-

corrected estimators (β̂mc, γ̂mc) are used as initial estimators. Finally, using the

B bootstrap samples, we estimate ΩS by Ω̂∗S = B−1
∑B

b=1 S∗b(β̂in, γ̂ in) S∗b(β̂in, γ̂ in)>.

The method is fast and can be implemented without the need to minimize boot-
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3.3 GMM covariance matrix and standard error estimation

strap versions of the discrepancy function Q(β,γ); implementation requires only

evaluation of the gradient vector for each bootstrap sample prior to calculating

Ω̂∗S. We have found that B = 100 bootstrap samples lead to a good performance.

The GMM estimator is finally computed by minimizing Q̂(β,γ) = S>
(
Ω̂∗S
)−1

S.

As pointed out by a referee, our approach is similar to the traditional two–

step feasible GMM approach, in which we first obtain a consistent estimator

(β̂mc, γ̂mc) and then use it to estimate the covariance matrix ΩS in the GMM

discrepancy function. Note that an iterated GMM approach can be pursued,

whereby this estimator and a new round of bootstrap samples are used to update

the GMM covariance matrix and then minimize the resulting statistic. Asymp-

totically, this iterated GMM estimator is equivalent to the two-step estimator,

although in finite samples, the relative performance between two–step and itera-

tive GMM estimators have been reported to be mixed, see Hansen et al. (1996).

This bootstrap quantity Ω̂∗S can also subsequently be used to estimate stan-

dard errors of the GMM estimators. Based on the GMM covariance matrix from

Theorem 2, the asymptotic covariance matrix of (β̂gmm, γ̂gmm) is estimated by

(P̂1Ω̂
∗
SP̂
>
1 )−1. Here, P̂1 an empirical counterpart of the expected gradient P1

and is evaluated at the GMM estimator (β̂gmm, γ̂gmm). Specifically, the matrix
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P̂1 is given by

P̂1 =



2n−1
∑n

j=1 Wj W>
j −2n−1

∑n
j=1 Σ̂j 2n−1

∑n
j=1 Wj Z>j

2n−1
∑n

j=1 Zj W>
j 2n−1

∑n
j=1 Zj Z>j

∂ŜD̃,β
∂β

∣∣∣∣
(β̂gmm,γ̂gmm)

∂ŜD̃,β
∂γ

∣∣∣∣
(β̂gmm,γ̂gmm)

∂ŜD̃,γ
∂β

∣∣∣∣
(β̂gmm,γ̂gmm)

∂ŜD̃,γ
∂γ

∣∣∣∣
(β̂gmm,γ̂gmm)


.

For implementation, the partial derivatives corresponding to the phase function

criterion are calculated numerically. The estimated standard errors are given

by the square root of the diagonal elements of (P̂1Ω̂
∗
SP̂
>
1 )−1. In Section 4.3, we

consider the performance of these estimated standard errors.

4. Simulation studies

4.1 Simulation description

The finite-sample performance of the GMM estimators was evaluated using a

simulation study. We considered three different settings for mutiple linear EIV

models (2.1) where each observation has the same number of replicates, nj = nrep

for j = 1, . . . , n, with nrep ∈ {2, 3}. We chose sample sizes n ∈ {250, 500, 1000}

and generate M = 500 samples for each simulation configuration. A univariate
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4.1 Simulation description

linear EIV model was also considered in Section S4.1 of the Supplementary

Materials. Details of the simulation settings are given as follows:

Setting (I): A model with p = 2 error-prone and q = 0 error-free covariates.

The true covariates were generated from a Gaussian copula (Xue-Kun Song,

2000), where the two covariates have scaled half-normal marginals with vari-

ance 1, i.e. Xjk
iid∼ (1 − 2/π)−1/2

∣∣N(0, 1)
∣∣ for k = 1, . . . , nrep, and correla-

tion 0.5. Three distributions were considered for the measurement error vec-

tors Ujk, namely a bivariate normal, a bivariate t with 2.5 degrees of freedom,

and a contaminated bivariate normal Ujk ∼ 0.9N(0,Σj) + 0.1N(0, 102Σj).

These distributions were all scaled to have covariance matrices Σj for the repli-

cates associated with the jth observation, where Σj = DjRDj with Dj the

marginal standard deviations and R the correlation matrix. We considered

two choices of R, namely the identity matrix and a model with common cor-

relation ρ = 0.5 between all measurement error components. The diagonal

elements of the matrix Dj were independently generated from the uniform

distribution
√
nj × U(

√
0.2,
√

1.5) by which the marginal signal-to-noise ratios

Var(Xjk)/Var(Ujk) range from 2/3 (fairly weak signal) to 5 (fairly strong signal).

The true model coefficients were set to β0 = (1, 0.5)> and intercept γ0 = 2. The

regression error εj was generated to match the distribution of the measurement

error in each scenario and with constant variance σ2
ε = 0.25 for j = 1, . . . , n.
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4.1 Simulation description

Setting (II): A model with p = 2 error-prone and q = 2 error-free covariates,

differing from setting I due to the inclusion of two error-free covariates. The true

covariates (Xj,Zj) were generated to have scaled half-normal marginals with

the joint structure specified by a Gaussian copula with correlation 0.5 between

each pair of predictors. The true model coefficients were β0 = (1, 0.5)> and

γ0 = (2, 1, 0.5)>. All other configurations are equivalent to the specifications in

setting (I).

Setting (III): The model is the same as in setting (II), but the two error-free

covariates were generated to be symmetric having standard normal marginals.

The predictor correlation structure was still specified by a Gaussian copula with

correlation parameter 0.5 between each pair of predictor variables.

Among the three error distributions considering, the t2.5 does not have four

finite moments. Consequently, asymptotic normality as per Theorem 2 does not

hold in this case. However, the consistency requirements are still satisfied. We

also note that setting III departs from Condition C4, allowing us to explore the

effect of symmetric predictors when using the GMM method.

For each generated sample, we computed several different estimators. Firstly,

we compute the true ordinary least squares (OLS) estimator which regresses yj

on the true uncontaminated data (Xj,Zj), as well as a naive OLS estimator

which regresses yj on (Wj,Zj) with Wj denoting the averaged replicates for
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4.1 Simulation description

the jth observations. Next, we computed the moment-corrected estimator with

plug-in covariance matrices Σ̂j as per Section 2.2. Finally, we computed three

versions of the proposed GMM estimator, corresponding to an equal weighting

scheme, the minimax weights, and the quasi-likelihood weights as per Section 3.2.

For the GMM estimators, covariance matrix Ω̂∗S was estimated using B = 100

bootstrap samples.

A robust performance metric was adopted to evaluate estimator perfor-

mance. Let θ0 = (β>0 ,γ
>
0 )> be the true coefficients, and θ̂

(m)
= (β̂

(m)>
, γ̂(m)>)>

denote the estimators obtained using one of the outlined approaches in the

mth generated sample, m = 1, . . . ,M . To remove outliers, we constructed

the M × (p + q + 1) error matrix A with rows Am = (θ̂
(m)
− θ)>. Next,

we formed a vector of medians Amed by taking the median of each column of

A. Then, we computed the Mahalanobis distance between each row of A and

Amed using the robust minimum covariance determinant estimator of Rousseeuw

and Driessen (1999). Finally, we removed the rows with Mahalanobis distances

larger than the 90th percentile and calculated the robust mean square error ma-

trix MSErob = Ã>Ã/M̃ where Ã denotes the matrix A with the outlier rows

removed and M̃ is the number of rows in Ã. The quantity MSErob is a robust

estimator of E{(θ̂−θ)>(θ̂−θ)}, and det(1000×MSErob) is the reported perfor-

mance metric. We reported the determinant rather than the trace as it better
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4.2 Simulation results: Parameter recovery

accounts for unequal variances for and correlations between estimated parame-

ters. Smaller (larger) values of det(MSErob) indicate better (worse) performance

of estimators in a square error loss sense.

4.2 Simulation results: Parameter recovery

Tables 1 and 2 present results for simulation settings I and II with nrep = 2;

results with nrep = 3 and are presented in Section S4.2 of the Supplementary

Materials and show similar conclusions. The true OLS estimator stands out with

much smaller performance metrics than those of the estimators computed using

data with measurement error; note that this true estimator is not available in

practice since the true covariates Xi’s are not observed. On the other hand, the

naive OLS estimator has the worst performance in all the settings, highlighting

the deleterious effect of ignoring measurement error as well as the importance

of measurement error correction. Next, we compare all the correction estima-

tors. For the t2.5 and contaminated normal errors, all versions of the GMM

estimator outperform the moment-corrected estimator, often with significant ef-

ficiency gains. For normally distributed errors, the GMM estimators perform

competitively compared to moment-correction. That being said, in the normal

error scenarios, GMM occasionally performs worse than moment-correction; see

Setting II. When comparing GMM weighting schemes, there is no clear supe-
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4.2 Simulation results: Parameter recovery

Table 1: Performance of uncontaminated OLS (True), naive OLS (Naive),
moment-corrected (MC), and GMM estimators with equal (Equal), minimax
(MM) and quasi-likelihood (QL) weights with nrep = 2 as measured by
det(1000×MSErob) in Setting (I).

R U n True Naive MC GMM
Equal MM QL

ρ = 0 Normal 250 0.012 9.799 1.394 1.040 1.020 1.102
500 0.001 2.889 0.240 0.224 0.222 0.234

1000 0.000 0.668 0.026 0.025 0.027 0.030
t2.5 250 0.018 11.413 0.816 0.576 0.525 0.593

500 0.001 5.128 0.134 0.100 0.075 0.077
1000 0.000 1.502 0.021 0.013 0.011 0.010

Cont.Normal 250 0.010 17.965 1.290 0.693 0.605 0.556
500 0.001 4.305 0.149 0.105 0.077 0.090

1000 0.000 1.143 0.022 0.014 0.009 0.011

ρ = 0.5 Normal 250 0.008 27.999 3.155 2.698 3.399 2.953
500 0.001 7.365 0.355 0.362 0.378 0.373

1000 0.000 1.339 0.037 0.036 0.038 0.039
t2.5 250 0.015 34.374 1.351 0.643 0.661 0.730

500 0.001 8.390 0.211 0.128 0.112 0.111
1000 0.000 2.583 0.026 0.017 0.016 0.016

Cont.Normal 250 0.008 45.002 2.976 1.405 1.048 1.228
500 0.001 10.191 0.287 0.193 0.120 0.157

1000 0.000 2.331 0.034 0.024 0.015 0.021

rior weighting scheme, but minimax and quasi-likelihood weights perform better

than equal weighting for non-normal errors.

Table 3 presents the results for setting (III) where the asymmetry condition

C4 is violated, again for the case with nrep = 2 replicates. The case with nrep = 3

replicates is summarized in Section S4.2 in the Supplementary Materials. Sim-

ilar to other settings, there is little difference in the performance between the

moment-corrected estimator and the GMM estimator when the measurement
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4.2 Simulation results: Parameter recovery

Table 2: Performance of uncontaminated OLS (True), naive OLS (Naive),
moment-corrected (MC), and GMM estimators with equal (Equal), minimax
(MM) and quasi-likelihood (QL) weights with nrep = 2 as measured by
det(1000×MSErob) in Setting (II).

R U n True Naive MC GMM
Equal MM QL

ρ = 0 Normal 250 0.001 19.898 3.427 4.418 4.472 3.763
500 0.000 2.053 0.145 0.161 0.203 0.157

1000 0.000 0.121 0.003 0.004 0.004 0.004
t2.5 250 0.001 24.749 0.985 0.751 0.594 0.574

500 0.000 2.359 0.087 0.055 0.052 0.045
1000 0.000 0.139 0.001 0.001 0.001 0.001

Cont.Normal 250 0.001 13.924 1.564 1.200 1.048 0.793
500 0.000 0.985 0.043 0.042 0.038 0.033

1000 0.000 0.063 0.002 0.002 0.001 0.001

ρ = 0.5 Normal 250 0.001 83.078 11.799 11.058 11.721 12.045
500 0.000 5.037 0.266 0.288 0.332 0.292

1000 0.000 0.286 0.007 0.008 0.009 0.009
t2.5 250 0.001 81.873 5.663 3.799 3.669 4.338

500 0.000 4.953 0.130 0.104 0.097 0.086
1000 0.000 0.329 0.003 0.003 0.003 0.002

Cont.Normal 250 0.001 71.486 5.833 3.522 2.922 2.260
500 0.000 3.010 0.150 0.126 0.105 0.088

1000 0.000 0.230 0.004 0.004 0.003 0.002

error is Gaussian. However, we continue to note that GMM represents a sub-

stantive improvement over moment correction for contaminated normal and t2.5

error distributions. Also, in the latter two error settings, minimax and quasi-

likelihood weights outperform equal weighting; neither of the latter two weighting

scheme is clearly preferred.

We also note that across settings I through III, it is observed that the MSE

metric for the naive estimators also decreases as sample size increases. This is
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Table 3: Performance of uncontaminated OLS (True), naive OLS (Naive),
moment-corrected (MC), and GMM estimators with equal (Equal), minimax
(MM) and quasi-likelihood (QL) weights with nrep = 2 as measured by
det(1000×MSErob) in Setting (III).

R U n True Naive MC GMM
Equal MM QL

ρ = 0 Normal 250 0.001 10.963 1.625 1.623 1.615 1.623
500 0.000 0.926 0.069 0.069 0.068 0.068

1000 0.000 0.064 0.002 0.002 0.002 0.002
t2.5 250 0.001 11.607 0.944 0.936 0.855 0.890

500 0.000 0.996 0.041 0.040 0.032 0.036
1000 0.000 0.062 0.001 0.001 0.001 0.001

Cont.Normal 250 0.001 12.622 1.665 1.663 1.467 1.572
500 0.000 1.477 0.068 0.070 0.066 0.067

1000 0.000 0.072 0.002 0.002 0.001 0.001

ρ = 0.5 Normal 250 0.001 54.053 7.288 7.162 7.214 7.338
500 0.000 2.879 0.147 0.145 0.147 0.148

1000 0.000 0.169 0.004 0.004 0.004 0.004
t2.5 250 0.001 41.193 2.852 2.782 2.374 2.524

500 0.000 2.484 0.078 0.074 0.067 0.070
1000 0.000 0.162 0.002 0.002 0.002 0.002

Cont.Normal 250 0.001 65.616 5.556 5.552 4.945 5.375
500 0.000 3.563 0.144 0.143 0.130 0.140

1000 0.000 0.205 0.004 0.004 0.004 0.004

an artifact of the scaling used. The interested reader can easily verify that the

MSE metric for the naive estimator decreases at a much slower rate than the

same metric for the MC and GMM estimators.

In conclusion, the GMM estimator has a competitive performance compared

to the moment-corrected estimator when the measurement errors are Gaussian.

However, the relative decrease in det(MSErob) is often so large for the heavier-

tailed error distributions that some would be willing to risk a small loss in
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4.3 Simulation results: Standard error estimation

efficiency were the error distribution closer to a true normal. Furthermore, the

two weighting schemes that account for heteroscedasticity tend to result in better

estimators than the equal weighting.

4.3 Simulation results: Standard error estimation

We also performed a simulation study to examine the performance of the asymp-

totic covariance estimator in estimating the standard errors of the GMM esti-

mators. The data were simulated from Settings I and III with the sample size

n ∈ {500, 1000}, the measurement error Ujk following either a bivariate nor-

mal or bivariate t distribution with 2.5 degrees of freedom, and the correlation

matrix R having ρ = 0.5. We reported the Monte Carlo estimates of the true

standard errors obtained from 500 simulated pairs (β̂gmm, γ̂gmm) obtained from

independently generated datasets, as well as the average bootstrap plug-in stan-

dard errors as defined in Section 3.3 for the GMM estimators with the minimax

weighting scheme q̂mm
j defined in (3.4), while the results for other weighting

schemes are similar and hence are omitted. Table 4 presents the results for

nrep = 2, while the results for nrep = 3 are presented in Section S4.2 the Supple-

mentary Materials. The average bootstrap plug-in standard errors are similar to

the Monte Carlo standard error in all the considered settings, suggesting that the

bootstrap procedure in Section 3.3 provides a reliable estimator for the standard
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errors of the proposed GMM estimators.

Table 4: Monte Carlo standard errors (MC-SE) and average of the bootstrap
plug-in standard errors (Avg-SE) for the GMM estimators with the minimax
weighting scheme in Settings (I) and (III) with nrep = 2 replicates and ρ = 0.5.

Setting U Coeff n = 500 n = 1000
MC-SE Avg-SE MC-SE Avg-SE

I Normal β̂1 0.031 0.030 0.025 0.022

β̂2 0.031 0.029 0.023 0.021
γ̂00 0.043 0.044 0.033 0.032

t2.5 β̂1 0.029 0.026 0.021 0.018

β̂2 0.029 0.026 0.019 0.019
γ̂00 0.038 0.036 0.028 0.025

III Normal β̂1 0.037 0.033 0.021 0.024

β̂2 0.031 0.031 0.024 0.022
γ̂00 0.055 0.050 0.038 0.036
γ̂1 0.028 0.027 0.019 0.020
γ̂2 0.029 0.028 0.019 0.019

t2.5 β̂1 0.030 0.028 0.018 0.021

β̂2 0.029 0.028 0.019 0.021
γ̂00 0.042 0.043 0.029 0.032
γ̂1 0.024 0.026 0.019 0.018
γ̂2 0.025 0.024 0.016 0.018

5. Analysis of NHANES data

The National Health and Nutrition Examination Survey (NHANES) is a long-

running research survey conducted by the National Center for Health Statistics

(NCHS). The goal of this longitudinal survey study is to assess the health and

nutritional status of both adults and children in the United States, tracking the
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evolution of this status over time. During the 2009-2010 survey period, partic-

ipants were interviewed and asked to provide their demographic background as

well as information about nutrition habits. Participants also undertook a series

of health examinations. To assess the nutritional habits of participants, dietary

data were collected using two 24-hour recall interviews wherein the participants

self-reported the consumed amount for a series of food items during the 24 hours

prior to each interview. Based on these recalls, daily aggregated consumption of

water, food energy, and other nutrition components such as total fat and total

sugar consumption were computed. We used the 2009-2010 NHANES dietary

data to illustrate our new GMM estimation procedure.

In this illustrative analysis, we considered the relationship between partic-

ipants’ BMI (outcome of interest) and their age as well as daily aggregates of

energy, protein and fat consumption. As these nutritional variables were cal-

culated based on self-reported data, they are well-known to be subject to mea-

surement error. We restricted our analysis to n = 1595 white women and treat

the nutritional data from each of the interviews as nrep = 2 independently ob-

served replicates. We fitted the multiple linear EIV model to this data, treating

the nutritional quantities energy, protein, and fat consumption as error-prone

covariates with age considered an error-free covariate. Furthermore, all of these

covariates were standardized in the analysis. We computed the naive, moment-
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Table 5: NHANES study estimated coefficients for naive, moment-corrected
(MC) and GMM estimators with equal (Equal), minimax (MM), and quasi-
likelihood weights (QL) weights.

Naive MC GMM
Equal MM QL

Intercept 26.39 (0.18) 26.39 (0.18) 26.63 (0.18) 26.59 (0.18) 26.56 (0.18)
Energy -0.86 (0.47) -2.3 (1.05) -2.7 (0.78) -2.59 (0.85) -2.49 (0.83)
Protein 1.29 (0.34) 3.35 (1.03) 3.56 (0.43) 3.68 (0.49) 3.54 (0.47)
Fat 0.54 (0.43) 1.03 (0.99) 0.88 (0.57) 0.89 (0.64) 0.89 (0.59)
Age 3.92 (0.18) 3.71 (0.19) 3.82 (0.16) 3.78 (0.16) 3.79 (0.16)

corrected, and GMM estimators, the latter with the three different weighting

schemes. We further reported the estimated standard errors for these estima-

tors: The estimated standard errors for the naive estimators were obtained from

the linear regression model of the outcome on all the observed covariates, while

the standard errors for the moment corrected estimators were calculated from

the robust estimator given in Buonaccorsi (2010, Section 5.4). The estimated

standard errors for the GMM estimators were calculated in the same manner as

in our simulation using the asymptotic covariance and the bootstrap procedure.

Table 5 demonstrates that the consequences of ignoring measurement er-

ror are apparent – the naive estimator exhibits dramatic attenuation for all the

nutritional variables. On the other hand, the moment-corrected and GMM ap-

proaches all appear to correct for the bias as the estimated coefficients for energy,

protein and fat intake are much larger in absolute terms. Comparing the differ-
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ent corrected estimators, we note the magnitude of the coefficients corresponding

to energy and protein are smaller for moment correction than for GMM. The

reverse holds for the coefficient corresponding to fat consumption. The effect of

age on BMI is similar across all the estimators, which can be explained by the

low correlation between age and each of the nutritional variables (the correla-

tions between age and the averaged energy, protein, and fat intakes are -0.02,

0.10, and 0.03, respectively). Finally, the GMM estimators tend to have lower

estimated standard errors than the moment-corrected estimators. This possibly

reflects information contributions from the phase function beyond the first two

moments.

6. Conclusion

In this paper, we have explored distribution-free solutions for parameter esti-

mation in the linear errors-in-variables model with heteroscedastic measurement

errors across cases. The newly proposed solution combines the popular moment-

corrected estimator with a phase function-based estimator using a GMM frame-

work. On the one hand, the proposed GMM estimator inherits estimating equa-

tions from the moment-corrected estimator and in this way is able to relax a strict

asymmetry condition imposed on the covariates as in the phase function-based

estimator proposed by Nghiem et al. (2020). On the other hand, the proposed
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GMM estimator inherits estimating equations from the phase function-based

estimator that leverages the skewness of the true covariates if present, and in-

troduces observation-specific weighting to account for the measurement error

heteroscedasticity. Our simulation studies show that when the measurement er-

rors are normal, the GMM estimator is competitive with the moment-corrected

estimator. Nevertheless, when measurement errors are non-normal, the GMM

estimator has superior performance across all simulation settings considered,

including ones where some covariates are symmetrically distributed.

We close by noting some future research that could be explored relating to

this problem. Firstly, in the multivariate setting, the estimation of observation-

level measurement error covariance matrices is a challenge. Some form of covari-

ance regularization could be applied to further improve the estimation efficiency

of the regression parameters. Secondly, the idea of a continuously-updating

GMM treating the matrix ΩS as an explicit function of (β,γ) can be explored.

This could further improve estimator performance, but does increase the com-

putational complexity of the problem. Finally, the development of tools for

exploring and quantifying the skewness of the true covariates subject to sym-

metric measurement error will help practitioners understand when the GMM

approach is beneficial.
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Supplementary Materials

The Supplementary Materials contain the proofs of Lemma 1 and Theorem 1 in

Sections S1 and S2 respectively. Detailed calculations for the quasi-likelihood

weights are in Section S3, and additional simulation results are in Section S4.
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