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Abstract: Categorical responses arise naturally within various scientific disci-

plines. In many circumstances, there is no predetermined order for the response

categories, and the response has to be modeled as nominal. In this study, we

regard the order of response categories as part of the statistical model, and show

that the true order, when it exists, can be selected using likelihood-based model

selection criteria. For predictive purposes, a statistical model with a chosen order

may outperform models based on nominal responses, even if a true order does

not exist. For multinomial logistic models, widely used for categorical responses,

we show the existence of theoretically equivalent orders that cannot be differen-

tiated based on likelihood criteria, and determine the connections between their

maximum likelihood estimators. We use simulation studies and a real-data anal-

ysis to confirm the need and benefits of choosing the most appropriate order for

categorical responses.

Key words and phrases: AIC, BIC, categorical data analysis, model selection,

multinomial logistic model
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1. Introduction

Categorical responses, in which the measurement scale consists of a set of

categories, arise naturally in many scientific disciplines. Examples include

the social sciences for measuring attitudes and opinions, health sciences for

measuring responses to a medical treatment, behavioral sciences for diag-

nosing mental illness, ecology for determining primary land use in satellite

images, education for measuring student responses, marketing for deter-

mining consumer preferences, among many others (Agresti, 2018). When

the response is binary, generalized linear models are widely used (McCul-

lagh and Nelder, 1989; Dobson and Barnett, 2018). When responses have

three or more categories, multinomial logistic models are popular (Glonek

and McCullagh, 1995; Zocchi and Atkinson, 1999; Bu et al., 2020), and

include four kinds of logit models: baseline-category, cumulative, adjacent-

categories, and continuation-ratio logit models.

Following the notation of Bu et al. (2020), we consider summarized data

in the form of {(xi,Yi), i = 1, . . . ,m} from an experiment or observational

study with d ≥ 1 covariates and J ≥ 3 response categories, where xi =

(xi1, . . . , xid)
T , for i = 1, . . . ,m, are distinct level combinations of the d

covariates, and Yi = (Yi1, · · · , YiJ)
T , with Yij indicating the number of

original observations associated with the covariates xi and the jth response
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category, for j = 1, . . . , J . A multinomial logistic model assumes Yi ∼

Multinomial(ni; πi1, · · · , πiJ) independently, with ni =
∑J

j=1 Yij > 0 and

positive categorical probabilities πij associated with xi, for i = 1, . . . ,m.

For nominal responses, that is, the response categories do not have a

natural ordering (Agresti, 2013), baseline-category logit models, also known

as multiclass logistic regression models, are commonly used. Following Bu

et al. (2020), the baseline-category logit model with partial proportional

odds (ppo) can be described in general as

log

(
πij

πiJ

)
= ηij = hT

j (xi)βj + hT
c (xi)ζ , (1.1)

where hT
j (·) = (hj1(·), . . . , hjpj(·)) and hT

c (·) = (h1(·), . . . , hpc(·)) are known

predictor functions, and βj = (βj1, . . . , βjpj)
T and ζ = (ζ1, . . . , ζpc)

T are

unknown regression parameters, for i = 1, . . . ,m, j = 1, . . . , J − 1. As

special cases, hT
j (xi) ≡ 1 leads to a proportional odds (po) model that

assumes the same parameters for all categories, except the intercepts, and

hT
c (xi) ≡ 0 leads to a nonproportional odds (npo) model that allows all

parameters to change across categories. For additional explanations and

examples about ppo, po, and npo models, see Bu et al. (2020).

In model (1.1), the Jth category is treated as the baseline category. It is

well known that the choice of baseline category does not matter, because the

resulting models are equivalent (e.g., see Section 4.4 in Hastie et al. (2009)).
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However, the equivalence of choices of baseline categories is true only for

npo models. As we show in Section 4.4, for po or general ppo models, those

with different baseline categories are not equivalent, and thus the baseline

category should be chosen carefully.

The other three logit models assume that the response categories have

a natural ordering or a hierarchical structure, and are known as ordinal or

hierarchical models, respectively. Following Bu et al. (2020), these three

logit models with ppo can be written as follows:

log

(
πi1 + · · ·+ πij

πi,j+1 + · · ·+ πiJ

)
= ηij = hT

j (xi)βj + hT
c (xi)ζ , cumulative (1.2)

log

(
πij

πi,j+1

)
= ηij = hT

j (xi)βj + hT
c (xi)ζ , adjacent categories (1.3)

log

(
πij

πi,j+1 + · · ·+ πiJ

)
= ηij = hT

j (xi)βj + hT
c (xi)ζ , continuation ratio.

(1.4)

These are special cases of the multivariate generalized linear models (Mc-

Cullagh, 1980) or multivariate logistic models (Glonek and McCullagh,

1995).

Note that cumulative logit models have been extended to cumulative

link models and ordinal regression models (McCullagh, 1980; Agresti, 2013;

Yang et al., 2017). A baseline-category logit model can be modified with a

probit link, and is known as a multinomial probit model (Aitchison and Ben-
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nett, 1970; Agresti, 2013; Greene, 2018). Furthermore, the continuation-

ratio logit model can be changed with a complementary log-log link (O’Connell,

2006) for data analysis. We focus on multinomial logistic models, because

the logit link is the most commonly used.

For some applications, the ordering of the response categories is clear.

For example, trauma data (Chuang-Stein and Agresti, 1997; Agresti, 2010;

Bu et al., 2020) includes J = 5 ordinal response categories, namely, death,

vegetative state, major disability, minor disability, and good recovery,

known as the Glasgow Outcome Scale (Jennett and Bond, 1975). A cumu-

lative logit model with npo has been recommended for modeling such data

(Bu et al., 2020).

For some other applications, the ordering is either unknown or diffi-

cult to determine. As a motivating example, the police data described in

Section 5 contain covariates about individuals killed by the police in the

United States for the period 2000 to 2016. The responses have four cate-

gories, namely, shot, tasered, shot and tasered, and other. To model

the responses that are relevant to the police’s actions on various covariates

of the suspects, one strategy is to treat the response as nominal and use the

baseline-category logit model (1.1). Another strategy is to determine an

appropriate order for the categories, and then to use one of the other three
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logit models (1.2), (1.3), and (1.4). Our analysis in Section 5 shows that a

continuation-ratio npo model with a chosen order performs best, and that

the second strategy is significantly better.

A critical question that needs answering is whether we can identify the

true order of the response categories, when it exists. Our answer is summa-

rized as follows. First, we will show in Section 3 that if there is a true order

with a true model, it will attain the maximum likelihood asymptotically, so

that it can be identified using a likelihood-based model selection technique,

such as the AIC or BIC. Second, depending on the type of logit model,

some orders are indistinguishable or equivalent, because they attain the

same maximum likelihood (see Table 1 for a summary of the equivalence

among the orders identified in Section 2). Third, depending on the range of

covariates or predictors, some order that is not equivalent to the true one

may approximate the maximum likelihood so well that it is not numerically

distinguishable from the true order (see Section 4.3).

In practice, nevertheless, even there is no true order among the response

categories, we can still use likelihood-based model selection techniques to

choose a working order supported by the data. As such, an ordinal model

based on the working order will outperform nominal models in terms of

prediction accuracy (see Sections 4.4 and 4.5). We provide a real-data
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Table 1: Equivalence among Orders of Response Categories

Logit model ppo or po npo

Baseline-category Same if the baseline is unchanged All orders are the same

(Theorem 2.2) (Theorem 2.5)

Cumulative Same as its reversed order Same as its reversed order

(Theorem 2.3) (Theorem 2.3)

Adjacent-categories Same as its reversed order All orders are the same

(Theorem 2.4) (Theorem 2.6)

Continuation-ratio All orders are distinguishable Same if switching last two

(Section 4.1) (Theorem 2.7)

example in Section 5 that shows how to reduce the prediction errors signif-

icantly based on the working order. Overall, we suggest that practitioners

view identifying the most appropriate order of response categories as part

of the model selection procedure.
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2. Equivalence among orders of response categories

In this section, before investigating which order of the response categories

is best, we first answer a more fundamental question that occurs when two

different orders lead to the same maximum likelihood. In this case, if one

uses the AIC or BIC to select the best model (e.g., see Hastie et al. (2009)

for a good review), these two orders are indistinguishable, or equivalent.

Such a phenomenon has been observed for some baseline-category mod-

els (Hastie et al., 2009), and here we show that it exists fairly generally in

other multinomial logistic models as well (see Table 1 for a summary).

Given the original data {(xi,Yi), i = 1, . . . ,m}, Yi = (Yi1, . . . , YiJ)
T

consists of the counts of observations falling into the response categories in

the original order or labels {1, . . . , J}. If we consider a regression model

with a different order {σ(1), . . . , σ(J)} of the response categories, where

σ : {1, . . . , J} → {1, . . . , J} is a permutation, this is equivalent to fitting

the model using the permuted data {(xi,Y
σ
i ), i = 1, . . . ,m}, where Yσ

i =

(Yiσ(1), . . . , Yiσ(J))
T . We denote P as the collection of all permutations

on {1, . . . , J}. Then, each permutation σ ∈ P represents an order of the

response categories, also denoted by σ.

Now, we consider two orders or permutations σ1, σ2 ∈ P . For i = 1, 2,

we denote li(θ) as the likelihood function with order σi or {σi(1), . . . , σi(J)}.
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2.1 Partial proportional odds (ppo) models

We say that σ1 and σ2 are equivalent, denoted as σ1 ∼ σ2, if maxθ∈Θ l1(θ) =

maxθ∈Θ l2(θ), where Θ is the parameter space, that is, the set of all feasible

θ. It is straightforward that “∼” is an equivalence relation among the

permutations in P . That is, σ ∼ σ for all σ; σ1 ∼ σ2 if and only if σ2 ∼ σ1;

and σ1 ∼ σ2 and σ2 ∼ σ3 imply σ1 ∼ σ3 (e.g., see Section 1.4 in Wallace

(1998)).

2.1 Partial proportional odds (ppo) models

According to Bu et al. (2020) (see also Glonek and McCullagh (1995);

Zocchi and Atkinson (1999)), all four logit models (1.1), (1.2), (1.3), and

(1.4) with ppo (that is, the most general case) can be rewritten in a unified

form

CT log(Lπi) = ηi = Xiθ, i = 1, · · · ,m, (2.1)

where C is a J × (2J − 1) constant matrix, L is a (2J − 1) × J constant

matrix, depending on the type of logit model, πi = (πi1, . . . , πiJ)
T are

category probabilities at xi satisfying
∑J

j=1 πij = 1, ηi = (ηi1, . . . , ηiJ)
T are

the linear predictors, Xi is the model matrix consisting of hj(xi) and hc(xi),

and θ = (βT
1 , . . . ,β

T
J−1, ζ

T )T consists of p = p1 + · · ·+ pJ−1 + pc regression

parameters. Please see Bu et al. (2020) for more details and examples.

According to Theorem 5.1 in Bu et al. (2020), for cumulative logit mod-
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2.1 Partial proportional odds (ppo) models

els, the parameter space Θ = {θ ∈ Rp | hT
j (xi)βj < hT

j+1(xi)βj+1, for j =

1, . . . , J − 2, i = 1, . . . ,m} depends on the range of covariates. For the

other three logit models, Θ is typically Rp itself. Apparently, neither the

parameter space Θ nor the model (2.1) is affected by a permutation of the

data Yi .

By reorganizing the formulae in Section S.11 of the Supplementary Ma-

terial of Bu et al. (2020), we write the category probabilities πij as explicit

functions of ηij (and thus of θ) in Lemma 1. To simplify the notation, we

denote ρij = logit−1(ηij) = eηij/(1 + eηij), and thus ρij/(1− ρij) = eηij , for

j = 1, . . . , J − 1, and ρi0 ≡ 0, for i = 1, . . . ,m.

Lemma 1. For the four logit models (1.1), (1.2), (1.3), and (1.4),

πij =



ρij
1−ρij

1+
∑J−1

l=1
ρil

1−ρil

, baseline category

ρij − ρi,j−1 , cumulative∏J−1
l=j

ρil
1−ρil

1+
∑J−1

s=1

∏J−1
l=s

ρil
1−ρil

, adjacent categories∏j−1
l=0 (1− ρil) · ρij , continuation ratio,

(2.2)

for i = 1, . . . ,m and j = 1, . . . , J − 1. In addition,

πiJ =



1

1+
∑J−1

l=1
ρil

1−ρil

, baseline category

1− ρi,J−1 , cumulative

1

1+
∑J−1

s=1

∏J−1
l=s

ρil
1−ρil

, adjacent categories∏J−1
l=1 (1− ρil) , continuation ratio,

(2.3)
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2.1 Partial proportional odds (ppo) models

for i = 1, . . . ,m.

Because ηij = hT
j (xi)βj + hT

c (xi)ζ, Lemma 1 indicates that πij are

functions of xi and θ, and do not depend on Yi or Yσ
i , which is true for

general multinomial logit models (2.1). The following theorem provides a

sufficient condition for σ1 ∼ σ2.

Theorem 2.1. Consider the multinomial logit model (2.1) with independent

observations and two permutations, σ1, σ2 ∈ P. Suppose for any θ1 ∈ Θ,

there exists a θ2 ∈ Θ, and vice versa, such that,

πiσ−1
1 (j)(θ1) = πiσ−1

2 (j)(θ2), (2.4)

for all i = 1, . . . ,m and j = 1, . . . , J . Then, σ1 ∼ σ2. Furthermore,

σσ1 ∼ σσ2 , for any σ ∈ P.

Here, σσ1 in Theorem 2.1 represents the composition of σ and σ1. That

is, σσ1(j) = σ(σ1(j)), for all j. Using this notation, (σσ1)
−1 = σ−1

1 σ−1.

The proof of Theorem 2.1 is relegated to the Supplementary Material.

Theorem 2.2. Consider the baseline-category logit model (1.1) with ppo.

Suppose h1(xi) = · · · = hJ−1(xi), for all i = 1, . . . ,m. Then, all orders of

response categories that keep J invariant are equivalent.

Theorem 2.2 includes baseline-category logit models with po, because

hj(xi) ≡ 1 for po models. It actually includes many npo or ppo models
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2.2 Nonproportional odds (npo) models

used in practice, where h1 = · · · = hJ−1. For example, main-effects models

that assume h1(xi) = · · · = hJ−1(xi) = (1,xT
i )

T are widely used.

Theorem 2.2 also implies that if σ(J) ̸= J , then σ may not be equivalent

to the original order id, or the identity permutation. We provide such a

numerical example in Section 4.4.

Theorem 2.3. Consider the cumulative logit model (1.2) with ppo. Suppose

hj(xi) = hJ−j(xi), for all i = 1, . . . ,m and j = 1, . . . , J − 1. Then, any

order σ1 is equivalent to its reverse order σ2, which satisfies σ2(j) = σ1(J +

1− j), for j = 1, . . . , J .

Theorem 2.3 includes cumulative logit models with po, because hj(xi) ≡

1. It also includes many npo or ppo models used in practice that satisfy

h1 = · · · = hJ−1 .

Theorem 2.4. Consider the adjacent-categories logit model (1.3) with ppo.

Suppose h1(xi) = · · · = hJ−1(xi), for all i = 1, . . . ,m. Then, any order σ1

is equivalent to its reverse order σ2 , which satisfies σ2(j) = σ1(J + 1− j),

for all j = 1, . . . , J .

2.2 Nonproportional odds (npo) models

By removing the item hT
c (xi)ζ from (1.1), (1.2), (1.3), and (1.4), we obtain

explicit forms of the four logit models with npo. For npo models, θ =
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2.2 Nonproportional odds (npo) models

(βT
1 , . . . , β

T
J−1)

T , p = p1 + · · ·+ pJ−1 , and ηij = hT
j (xi)βj, for i = 1, . . . ,m

and j = 1, . . . , J − 1. Compared with po models, npo models involve more

regression parameters, and thus are more flexible. For more details about

multinomial logistic models with npo, please see, for example, Section S.8

in the Supplementary Material of Bu et al. (2020).

Theorem 2.5. Consider the baseline-category logit model with npo. Sup-

pose h1(xi) = · · · = hJ−1(xi), for all i = 1, . . . ,m. Then, all orders of

response categories are equivalent.

Theorem 2.5 confirms that the choice of baseline category does not

matter for multiclass logistic regression models (Hastie et al., 2009). What

is new here is the explicit correspondence between θ1 and θ2 provided in

the proof of Theorem 2.5. Based on the correspondence, if we obtain the

maximum likelihood estimate (MLE) for θ1, we can easily derive the MLE

for θ2 explicitly, without running another optimization.

Theorem 2.6. Consider the adjacent-categories logit model with npo. Sup-

pose h1(xi) = · · · = hJ−1(xi), for all i = 1, . . . ,m. Then, all orders of

response categories are equivalent.

The result of Theorem 2.6 is truly surprising. The order of the response

categories in an ordinal model does not matter! The transformation (S.1)
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and its inverse (S.3) in the proof of Theorem 2.6 in the Supplementary

Material are not trivial either.

Theorem 2.7. For the continuation-ratio logit model with npo, σ1 ∼ σ2 if

σ2 = σ1(J − 1, J), where (J − 1, J) is a transposition that switches J − 1

and J .

3. Asymptotic Optimality of True Order

In this section, we discuss the optimality of the true order of the response

categories, when it exists. In short, the model with the true order is asymp-

totically optimal in terms of an AIC or BIC likelihood-based model selection

criterion.

Suppose an experiment is performed under the multinomial logit model

(2.1), with predetermined design points x1, . . . ,xm , the true parameter

values θ0 ∈ Θ ⊆ Rp, and the true order σ0 ∈ P of the response categories.

Recall that the original experiment assigns ni subjects to xi , with the total

number of subjects n =
∑m

i=1 ni. To avoid trivial cases, we assume ni > 0

for each i (otherwise, we may delete any xi with ni = 0).

In order to consider the asymptotic properties of the parameter and

order estimators, we consider independent and identically distributed (i.i.d.)

observations (Xl, Yl), for l = 1, . . . , N , generated as follows: (i) X1, . . . , XN
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are i.i.d. from a discrete distribution taking values in {x1, . . . ,xm} with

probabilities n1/n, . . . , nm/n, respectively; (ii) given Xl = xi, Yl follows

Multinomial(1;πiσ−1
0 (1)(θ0), . . . , πiσ−1

0 (J)(θ0)), that is, Yl takes values in {1,

. . . , J} with probabilities πiσ−1
0 (1)(θ0), . . . , πiσ−1

0 (J)(θ0), respectively. The

summarized data can still be denoted as {(xi,Yi), i = 1, . . . ,m}, where

Yi = (Yi1, . . . , YiJ)
T ∼ Multinomial

(
Ni; πiσ−1

0 (1)(θ0), . . . , πiσ−1
0 (J)(θ0)

)
,

and Ni =
∑J

j=1 Yij is the total number of subjects assigned to xi .

Given the count data Yij, the log-likelihood function under the multino-

mial logit model (2.1) with parameters θ and a permutation σ ∈ P applied

to Yij to determine the true order is

l(θ, σ) =
m∑
i=1

J∑
j=1

Yiσ(j) log πij(θ) +
m∑
i=1

log(Ni!)−
m∑
i=1

J∑
j=1

log(Yiσ(j)!)

=
m∑
i=1

J∑
j=1

Yij log πiσ−1(j)(θ) +
m∑
i=1

log(Ni!)−
m∑
i=1

J∑
j=1

log(Yij!)

=
m∑
i=1

J∑
j=1

Yij log πiσ−1(j)(θ) + constant,

Then, the MLE (θ̂, σ̂) that maximizes l(θ, σ) maximizes

lN(θ, σ) =
m∑
i=1

J∑
j=1

Yij log πiσ−1(j)(θ)

as well.

Lemma 2. If θ̂ ∈ Θ and σ̂ ∈ P satisfy πiσ̂−1(j)(θ̂) = Yij/Ni for all i and

j, then (θ̂, σ̂) must be an MLE.
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To explore the asymptotic properties of log-likelihood and MLEs, we

denote l0 =
∑m

i=1

∑J
j=1 niπij(θ0) log πij(θ0)/n ∈ (−∞, 0), which is a fi-

nite constant. We further denote n0 = min{n1, . . . , nm} ≥ 1 and π0 =

min{πiσ−1
0 (j)(θ0), i = 1, . . . ,m; j = 1, . . . , J} ∈ (0, 1).

Lemma 3. As N → ∞, N−1lN(θ0, σ0) → l0 < 0 almost surely.

Let (θ̂N , σ̂N) denote an MLE that maximizes lN(θ, σ) or, equivalently,

l(θ, σ). The following theorem indicates that the true values (θ0, σ0) asymp-

totically maximize lN(θ, σ) as well. That is, the true parameter values θ0

and the true order σ0 are asymptotically optimal in terms of the likelihood

principle.

Theorem 3.1. As N → ∞, N−1|lN(θ̂N , σ̂N) − lN(θ0, σ0)| → 0 almost

surely. Furthermore, N−1lN(θ̂N , σ̂N) → l0 and lN(θ0, σ0)/lN(θ̂N , σ̂N) → 1

almost surely as well.

Following Burnham and Anderson (2004), we define

AIC(θ, σ) = −2l(θ, σ) + 2p

BIC(θ, σ) = −2l(θ, σ) + (logN)p.

Then, the usual AIC = AIC(θ̂N , σ̂N) ≤ AIC(θ0, σ0), and the usual BIC =

BIC(θ̂N , σ̂N) ≤ BIC(θ0, σ0). As a direct conclusion of Theorem 3.1, we

have the following corollary.
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Corollary 1. N−1|AIC − AIC(θ0, σ0)| = N−1|BIC − BIC(θ0, σ0)| → 0

almost surely, as N → ∞.

Theorem 3.1 and Corollary 1 confirm that the true parameter and order

(θ0, σ0) are among the best options asymptotically under likelihood-based

model selection criteria. Nevertheless, note that there are two cases where

one may not be able to identify the true order σ0 easily.

Case one: If there exists another order σ ∼ σ0, as discussed in Section 2,

then there exists another θ such that πiσ−1(j)(θ) = πiσ−1
0 (j)(θ0), for all i and

j. In this case, l(θ, σ) = l(θ0, σ0), and the true order σ0 with θ0 is not

distinguishable from the order σ with θ.

Case two: In practice, given the set of experimental settings {x1, . . . ,xm},

it is not unlikely, especially when the range of experimental settings is nar-

row, that there exists a (θ, σ) such that πiσ−1(j)(θ) ≈ πiσ−1
0 (j)(θ0), for all

i and j. Then, the order σ with θ achieves roughly the same likelihood.

In this case, the difference between σ0 and σ could be insignificant, and

may not improve unless one increases the sample size N and the range

of {x1, . . . ,xm} (e.g., see Sections 4.1 and 4.3). Compared with po mod-

els, npo models have more parameters and are more flexible. As a result,

Case two may occur more often for npo models.

In both Case one and Case two, the true order σ0 is not significantly
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better than all other orders, even with an increased sample size N . Nev-

ertheless, the results of our simulation studies (see Section 4) show that

there are two situations in which the true order σ0 can be identified easily.

One is with larger absolute values of the regression coefficients (e.g., see

Section 4.2). The other is with a larger range of experimental settings (see

Section 4.3). Both situations reduce the possibility of Case two, but neither

can fix Case one.

4. Simulation Studies

4.1 Simulation study based on trauma data

In the example mentioned in Section 1, the trauma data (see Table 1 in

Chuang-Stein and Agresti (1997) or Table 7.6 in Agresti (2010)) are the

responses of N = 802 trauma patients from four treatment groups under

different dose levels. The response categories (GOS) have a clear order,

namely, death (1), vegetative state (2), major disability (3), minor

disability (4), and good recovery (5). That is, the original order σ0 = id

is the true order. In this case, J = 5. For illustration purposes, the only

predictor x is chosen as the dose level, taking values in {1, 2, 3, 4}.

In this section, we present simulation studies to explore whether we can

identify the true order of the response categories under different multino-
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4.1 Simulation study based on trauma data

mial logit models. For each model, for example, the baseline-category logit

model with po (see baseline-category po in Table 2), (i) we fit the model

using the original data (Yij)ij against the dose level xi = i to obtain esti-

mated parameter values θ̂o; (ii) we simulate a new data set (Y ′
ij)ij with total

sample size N using the model with regression coefficients θ̂o; that is, for

the simulated data, we have a true order σ0 = id and true parameter values

θ0 = θ̂o; (iii) for each possible order σ ∈ P , we fit the model using per-

muted simulated data (Y ′
iσ(j))ij and calculate the corresponding AIC value;

and (iv) we check the difference between the AIC at σ0 (denoted as AIC0)

and the AIC at σ̂ (denoted as AIC∗) that minimizes the AIC value, as well

as the rank of AIC0 among all orders. Ideally, we have AIC0−AIC∗ = 0

with rank 1 out of 5! = 120; that is, the original order achieves the smallest

AIC value. Nevertheless, in practice, the result depends on the sample size

N and the set of experimental settings.

In Table 2, we list the simulation results with N = 802, the origi-

nal sample size. According to Theorems 2.5 and 2.6, all orders under a

baseline-category npo model or an adjacent-categories npo model are indis-

tinguishable in terms of the AIC. Thus, we omit these two models, and list

the other six commonly used multinomial logit models. In Table 2, the true

order is not evident under any of the multinomial logit models; that is, the
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4.1 Simulation study based on trauma data

Table 2: Trauma Simulation Study with N = 802

True Order Best Order

Model aic0 Rank aic∗ aic0−aic∗

Baseline-category po 96.77 73 96.40 0.37

Cumulative po 94.54 7 93.84 0.70

Cumulative npo 102.15 51 101.70 0.45

Adjacent-categories po 92.66 3 92.08 0.58

Continuation-ratio po 96.25 20 94.38 1.87

Continuation-ratio npo 102.43 21 102.03 0.40

rank is not one, or the AIC value is not the smallest. To check whether

the true order can be regarded approximately as the best one, or whether

the difference between the true order and the best order is significant, we

denote ∆ = AIC0 − AIC∗, the difference in terms of their AIC values. Ac-

cording to Burnham and Anderson (2004), ∆ ≤ 2 suggests that the true

order is considered substantially the best; 4 ≤ ∆ ≤ 7 indicates that the

true order is considerably less than optimal; and ∆ > 10 suggests the true

order is essentially worse than the best one. Because no AIC difference in

the last column of Table 2 is greater than two, we conclude that the AIC
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4.1 Simulation study based on trauma data

differences between the true order and the best order are not significant.

Note that because the number of parameters does not change across orders,

using the BIC is equivalent to using the AIC here.

The simulation results (not listed in Table 2) also show that all 120

orders under the continuation-ratio po model lead to distinct AIC values.

That is, all orders are distinguishable, or no two orders are equivalent,

supporting the corresponding statement in Table 1.

Table 3: Trauma Simulation Study with N = 8020

True Order Best Order

Model AIC0 Rank AIC∗ AIC0−AIC∗

Baseline-category po 133.19 1 133.19 0

Cumulative po 130.52 1 130.52 0

Cumulative npo 135.55 1 135.55 0

Adjacent-categories po 130.31 1 130.31 0

Continuation-ratio po 130.54 1 130.54 0

Continuation-ratio npo 141.51 21 139.96 1.55

In Table 3, we increase the sample size N to 8020, 10 times as large as

the original one, to numerically check the asymptotic optimality of the true
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4.2 True order and treatment effects

order. That is, the new data (Y ′
i1, . . . , Y

′
iJ) ∼ Multinomial(10ni; πi1(θ̂o), . . . ,

πiJ(θ̂o)), where θ̂o is fitted from the original data (Yij)ij and ni =
∑J

j=1 Yij .

Clearly, all models except the continuation-ratio npo model perform best

in terms of the true order of the response categories. This confirms our

conclusion in Section 3 that the true order is asymptotically optimal. In

this case, the continuation-ratio npo model behaves differently. With 10

times the original sample size, the true order still ranks 21st, with an even

bigger AIC difference 1.55 (not statistically significant either). If we further

increase the sample size to N = 40 × 802, the true order ranks third with

an AIC difference 0.05. Actually, even for a very large N , there are still

six orders among the top tier, the true order, transpositions (3, 4) and

(3, 5), and their equivalent orders (see Theorem 2.7). This simulation study

provides a numerical example for Case two described in Section 3.

4.2 True order and treatment effects

In Section 3, we noted that larger absolute values of the regression coef-

ficients may make the true order easier to identify. In this section, we

illustrate such a scenario using a cumulative po model, which has fewer

coefficients and is easier to modify.

The cumulative po model for the trauma data consists of p = 5 pa-
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4.2 True order and treatment effects

rameters θ = (β1, β2, β3, β4, ζ)
T , where ζ represents the treatment effect of

the dose level x. By fitting the model using the original data, we obtain

the estimated parameters θ̂ = (−0.7192,−0.3186, 0.6916, 2.057,−0.1755)T .

Similarly to Section 4.1, we treat σ0 = id and θ0 = θ̂ as the true val-

ues, and simulate a new data set (Y ′
ij)ij with the original sample size

N = 802. We then check for each possible order σ using the simulated

data set. In contrast to Section 4.1, we run four simulation studies, with

ζ = −0.1755,−0.3510, 0.3510,−0.7020, respectively, to observe how the

magnitude of the treatment effects affects the differences between the or-

ders.

Table 4: Best Order and Treatment Effects

Treatment effect ζ AIC (true) Rank AIC (best) AIC (3rd best when true=best)

−0.1755 94.54 7 93.84 -

−0.3510 98.93 3 98.23 -

0.3510 90.84 1 90.84 91.61

−0.7020 85.17 1 85.17 86.58

From Table 4, the true order tends to be the best order as |ζ| increases.

For ζ = 0.3510 and −0.7020, the true order attains the best or minimum
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4.3 True order and experimental settings

AIC value. According to Theorem 2.3 and its proof, the reversed order

with parameters θ2 = (−β4,−β3,−β2,−β1,−ζ)T achieves the same AIC

value, which can be viewed as the second best result. From ζ = 0.3510 to

ζ = −0.7020, the AIC difference between the true order and the third best

order increases from 91.61−90.84 = 0.77 to 86.58−85.17 = 1.41, indicating

that a larger treatment effect might make the true order easier to identify.

4.3 True order and experimental settings

In this section, we discuss how the experimental setting xi affects the iden-

tification of the true order. We use the trauma data under the continuation-

ratio npo model as an example, because this is a difficult case in which to

identify the true order, according to the results shown in Table 3.

We explore two ways of changing the set {xi, i = 1, . . . ,m} = {1, 2, 3, 4}

in the trauma data. In the first, we increase the range toXA = {1, 2, . . . , 16}.

In the second, we make finer changes to the experiment settings and obtain

XB = {1, 1.25, 1.50, . . . , 3.75, 4}, the range of which is still [1, 4]. In both

methods, the number m of experimental settings increases significantly.

Similarly to Section 4.1, we treat σ0 = id and θ0 = θ̂, estimated for

the continuation-ratio npo model from the original data, as the true values.

In this section, we simulate 100 new data sets (Y
(b)
ij )ij independently, with
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4.3 True order and experimental settings

N = 100 × 210m and b = 1, . . . , 100, using the continuation-ratio npo

model with σ0 and θ0. For each b = 1, . . . , 100 and each σ ∈ P , we fit

the continuation-ratio npo model using the permuted data (Y
(b)
iσ(j))ij against

the dose level xi. The corresponding AIC values are denoted as AIC
(b)
σ ,

for b = 1, . . . , 100. To compare the true order σ0 with each σ of the other

119 orders, we run a one-sided paired t-test on (AIC(b)
σ0
)b and (AIC(b)

σ )b.

A significant p-value indicates that the AIC value associated with σ0 is

significantly smaller than the AIC value of σ.

Under the first scenario XA, 118 out of 119 p-values are statistically

significant, indicating that the true order is significantly better than all

other orders, except the equivalent one listed by Theorem 2.7. That is, an

increased range may make the true order easier to identify.

Under the second scenario XB, there are still three p-values greater

than 0.05. Further tests indicate that these four orders, including the true

order, are indistinguishable. That is, increasing m while maintaining the

range of xi may not be an efficient way to improve the identifiability of the

true order.
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4.4 Choice of baseline category

4.4 Choice of baseline category

In this section, we use cross-validation to show that the choice of baseline

category makes a difference for baseline-category po models.

Table 5: Data from Baseline-category po Model with Baseline Category

J = 4

xi = i Yi1 Yi2 Yi3 Yi4 ni

1 22 33 10 35 100

2 31 40 14 15 100

3 23 43 22 12 100

4 27 49 18 6 100

Table 5 provides simulated data from a baseline-category po model,

with the fourth category as the true baseline category. The parameters used

for simulating the data are θ = (β1, β2, β3, ζ)
T = (−0.8,−0.3,−1.0, 0.5)T .

There are n = 400 observations in total. We randomly split the observations

into two parts, 267 as training data and 133 as testing data. We repeat the

random partition 100 times. For each random partition and each order

σ ∈ P , (1) we use the training data to fit the baseline-category po model

with order σ (similarly to Section 4.1), and denote the fitted model as

Model σ; (2) we predict the labels of the responses of the testing data using
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4.5 When true order does not exist

Model σ, and use the cross-entropy loss (e.g., see Hastie et al. (2009)) to

measure the prediction errors. In this way, we have 100 prediction errors

(cross-entropy loss) for each σ. For any two orders, we can run a one-sided

paired t-test to check whether one order’s prediction error is significantly

lower than that of the other (similarly to Section 4.3).

We conclude the following from this cross-validation study: (i) all orders

that share the same baseline category have the same cross-entropy loss,

indicating that they are indistinguishable in terms of their prediction errors,

and supporting the results of Theorem 2.2; (ii) supported by the pairwise

t-tests, the orders with the true baseline (J = 4) have significantly smaller

cross-entropy losses than the other orders, with p-values 5.69×10−42, 9.54×

10−47, and 8.99 × 10−51, respectively, showing that the correct choice of

baseline category matters in practice.

4.5 When true order does not exist

In this section, we investigate an order misspecification issue when the true

order does not exist. More specifically, for a baseline-category npo model,

all orders are equivalent, according to Theorem 2.5. In other words, there

is no true order. Nevertheless, given such a data set, we can still find the

best model with the best order, called the working order. The simulation
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4.5 When true order does not exist

study below shows that when the true order does not exist, we have the

following results: (1) with moderate sample sizes, a working order with a

different model can be selected, but may not be significantly better than

the true model in terms of the AIC; and (2) asymptotically, the true model

without a true order may be significantly better than any other model with

any working order.

In this simulation study, we use the baseline-category npo model fitted

from the original trauma data as the true model, and simulate a data set

with the set of covariate levelsXA = {1, 2, . . . , 16}, which is a more informa-

tive experimental setting (see Section 4.3). For each level xi ∈ XA, we sim-

ulate nA = 200 observations, with the total sample size N = 16nA = 3, 200.

For the simulated data with N = 3, 200, the best model according to the

AIC is a continuation-ratio npo model, with AIC = 321.31, at its best

(working) order {death, major disability, vegetative state, minor

disability, good recovery}, whereas the AIC value of the true model

is 322.48. In other words, the best model with the working order is not

significantly better than the true model. If we increase the sample size N

to 3, 200 × 100, the continuation-ratio npo model is still the best model,

with AIC = 604.93 at the best order {vegetative state, death, minor

disability, major disability, good recovery}, which again is not sig-
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nificantly better than the true model, with AIC = 606.75. If we further

increase N to 3, 200×10, 000, the true model becomes the best model, with

AIC = 914.80, and is significantly better than the continuation-ratio npo

model, with AIC = 944.92 at its best order.

We repeat the procedure 100 times with various N . For each simulated

trauma data set from the baseline-catetory npo model, we calculate the

difference between AICtrue (the AIC value with the true model) and AICother

(the smallest AIC value among all other models and all orders). In Table 6,

we list the frequencies of the AIC differences falling into different ranges.

For example, The first column “< 0” provides the numbers of simulations

out of 100 with AICtrue − AICother < 0. As N increases from 1 × 3, 200

to 10, 000 × 3, 200, the number of cases increases from 0 to 100, showing

that the true model is increasingly likely to outperform other models with

any order in terms of AIC values. The other columns in Table 6 show

similar patterns, confirming the conclusions described at the beginning of

this section.

5. Real-Data Analysis

The US Police Involved Fatalities Data (hereafter, Police data) were down-

loaded from data.world (https://data.world/awram/us-police-involved-fatalities,
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Table 6: Frequencies of AICtrue − AICother Categories out of 100 Simulated

Trauma Data from Baseline-category npo Model

N < 0 [0, 2) [2, 4) [4, 7) [7, 10) ≥ 10

1× 3, 200 0 57 27 11 2 3

10× 3, 200 13 55 25 7 0 0

100× 3, 200 36 44 16 3 0 1

10, 000× 3, 200 100 0 0 0 0 0

version June 21, 2020), which was collected by Chris Awarm from three

data resources, namely, https://fatalencounters.org/, https://www.

gunviolencearchive.org/, and Fatal Police Shootings, from data.world.

The original data lists individuals killed by the police in the United States

from 2000 to 2016, including information on 12,483 suspects’ age, race, men-

tal health status, weapons they were armed with, and whether or not they

were fleeing. By way of example, we focus on whether the police’s action

can be predicted by the aforementioned information related to a suspect.

As summarized in Table 7, there are four categories of (police) re-

sponses, namely, other, shot, shot and tasered, and tasered. In our

notation, J = 4. In the original data, there are 60 different types of armed
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Table 7: US Police Involved Fatalities Data (2000–2016)

Armed Gender Flee Mental Illness Other Shot Shot and Tasered Tasered Total

Gun Female False False 0 134 0 1 135

Gun Female False True 0 57 0 1 58

Gun Female True False 0 8 0 0 8

Gun Female True True 0 4 0 0 4

Gun Male False False 2 3314 6 35 3357

Gun Male False True 0 810 4 15 829

Gun Male True False 0 271 5 0 276

Gun Male True True 0 33 1 0 36

Other Female False False 0 53 1 0 54

Other Female False True 1 42 1 0 44

Other Female True False 0 4 1 0 5

Other Female True True 0 2 0 0 2

Other Male False False 1 910 38 10 959

Other Male False True 2 478 21 5 506

Other Male True False 0 114 10 0 124

Other Male True True 0 14 2 0 16

Unarmed Female False False 1 231 0 3 235

Unarmed Female False True 0 61 0 5 66

Unarmed Female True False 0 2 0 0 2

Unarmed Male False False 10 4338 16 253 4617

Unarmed Male False True 12 832 5 214 1063

Unarmed Male True False 0 75 8 0 83

Unarmed Male True True 0 5 1 0 6

Note: The group (Unarmed, Female, Fleed, Has Mental Illness) contains no observation and is omitted.
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status. Here, we simplify these into three categories: gun, if the original

input is “gun,” unarmed, if the original input is “unarmed” or missing, and

other, if otherwise. As such, we have 24 possible level combinations of

armed status (xi1 = 1 (gun), 2 (other), or 3 (unarmed)), gender (xi2 = 0

(female) or 1 (male)), flee (xi3 = 0 (false) or 1 (true)), mental illness

(xi4 = 0 (false) or 1 (true)). Because there is no observation associated with

xi = (xi1, xi2, xi3, xi4)
T = (3, 0, 1, 1)T , m = 23 in this case (see Table 7).

As an example, we consider the main-effects baseline-category, cumu-

lative, adjacent-categories, and continuation-ratio logit models with po or

npo. In our notation, h1(xi) = · · · = hJ−1(xi) = (1,1{xi1=2},1{xi1=3}, xi2, xi3,

xi4)
T for all eight models under consideration. For each model, we choose

the best order out of 4! = 24 of the four response categories, based on the

AIC. Of the eight logit models, each with 24 orders, the continuation-ratio

npo model with the chosen order (t, s, o, st) or (t, s, st, o) (see Table 8)

performs best, and can be written as

log

(
πij

πi,j+1 + · · ·+ πiJ

)
= βj1+βj21{xi1=2}+βj31{xi1=3}+βj4xi2+βj5xi3+βj6xi4 ,

where j = 1, 2, 3 and i = 1, . . . , 23. The corresponding BIC values, not

shown here, provide a consistent selection result. According to the AIC

values, if we choose the continuation-ratio npo model with the best order

{tasered, shot, other, shot and tasered} against the baseline-category
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models (po or npo), which are commonly used for categorical responses

without an order, the improvement in the prediction accuracy is significant

(AIC differences > 5). Note that in this case, it is not trivial to determine

the baseline category for po models, owing to the existence of the category

other.

Table 8 also shows large gaps of AIC values between the npo models and

the corresponding po models, indicating that npo models are significantly

better than the corresponding po models in this case. The differences within

the AIC values of the npo models are also much smaller than those within

the po models. This provides strong evidence that for the Police data, the

parameters for the categories are very different, and thus the proportional

odds (po) assumptions are not appropriate (see the Introduction).

To validate the selected model, we conduct five-fold cross-validation

for the data, with cross-entropy loss as the criterion (e.g., see Hastie et al.

(2009)). We compare our selected continuation-ratio npo model with the

baseline-category npo model, which is commonly used for nominal responses.

In terms of cross-entropy loss, the continuation-ratio npo model achieves

550.50, which is less than the value of 555.91 for the baseline-category npo

model. This is consistent with our conclusion based on AIC values.

The estimated parameters for the chosen continuation-ratio npo model
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are provided in Table 9, which can be used to interpret the roles and effects

of different factors. For example, β̂13 = 2.03 indicates that the estimated

odds ratio of tasered and “unarmed” is e2.03 = 7.61, which implies that

“unarmed” leads to a much smaller chance of being shot. In contrast, β̂15 =

−18.02, with an estimated odds ratio e−18.02 = 1.49 × 10−8, implies that

suspects who flee have a much greater chance of being shot. Because shot

is usually regarded as more severe than tasered, the estimated parameters

imply that if suspects show a greater threat such as being armed (gun or

other), or try to flee, the police tend to take more extreme actions, such as

shooting a gun.

To investigate whether the best order is chosen because of randomness,

we conduct a simulation study similar to that in Section 4.5. We regenerate

the Police data simulated from the baseline-category npo model fitted from

the original data (see Table 10 for the parameter values). For the simulated

Police data, the best model is the cumulative npo model with the order

{shot and tasered, shot, other, tasered} with AIC 149.77, which is

not significantly better than the true model (baseline-category npo), with

AIC 151.04. If we increase the sample size by a factor of 10, the true model

with AIC 271.90 becomes better than the cumulative npo model, with AIC

274.53. If we further increase it by a factor of 100, the true model with
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Table 8: Model and Order Selection for Police Data

Model AIC with Best Order Best Order

Baseline-category po 401.33 t is the baseline

Baseline-category npo 197.81 All are the same

Cumulative po 318.14 (st, s, o, t) or (t, o, s, st)

Cumulative npo 194.48 (o, st, s, t) or (t, s, st, o)

Adjacent-categories po 290.17 (st, s, o, t) or (t, o, s, st)

Adjacent-categories npo 197.81 All are the same

Continuation-ratio po 320.22 (t, o, s, st)

Continuation-ratio npo 192.01 (t, s, o, st) or (t, s, st, o)

Note: s = shot, t = tasered, o = other, st = shot and tasered.

AIC 401.92 is significantly better than the cumulative npo model, with

AIC 440.45. In other words, with the original sample size of the Police

data, if there is no true order, then the selected model with a working order

may not be significantly better than the true model. As the amount of data

increases, the true model becomes significantly better than the other models

with any working order, supporting the simulation results in Section 4.5.
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Table 9: Estimated Parameters for Police Data under Continuation-ratio

npo Model

j Intercept Armed Status Armed Status Gender Flee Mental Illness

β̂j1 β̂j2 (Other) β̂j3 (Unarmed) β̂j4 β̂j5 β̂j6

1 -6.00 -0.44 2.03 1.17 -18.02 1.34

2 6.47 -2.43 -1.09 -0.58 -1.55 -0.59

3 0.26 -1.49 1.69 -2.29 -28.35 1.02

Note: j = 1, 2, 3 correspond to tasered, shot, and other, respectively.

Table 10: Estimated Parameters for Police Data under Baseline-category

npo Model

j Intercept Armed Status Armed Status Gender Flee Mental Illness

β̂j1 β̂j2 (Other) β̂j3 (Unarmed) β̂j4 β̂j5 β̂j6

1 -2.07 -1.34 6.00 -1.18 -0.82 -0.31

2 0.24 -8.83 -2.04 11.09 -1.39 12.74

3 1.89 0.19 0.40 -1.35 2.93 -1.02

Note: j = 1, 2, 3 correspond to other, shot, shot and tasered, respectively.

6. Discussion

In our analysis of real data, we consider both the type of model and the

order of the categories as parts of the model selection procedure. Our

examples show that the improvement by choosing a more appropriate order
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can be highly significant. For example, if we focus on adjacent-categories

po models for the Police data, the smallest AIC value from the best order

is 290.17, whereas the largest one from the worst order is 674.44, implying

a significant difference in terms of prediction accuracy.

For the Police data, there is no natural order, owing to the existence

of the category other. According to the AIC values, the continuation-ratio

npo model with the working order (t, s, o, st), or equivalently (t, s, st, o),

is significantly better than the baseline-category npo models (see Table 8).

On the one hand, if there is a true order, it will appear among the best

orders consistently (see Section 3). On the other hand, if there is no true

order for the Police data, then there is no ordinal model with a working

order that is significantly better than the baseline-category npo model, with

the current or a larger sample size (see the simulation study at the end of

Section 5). In other words, we can report the working order with confidence

if it is significantly better than other orders.

Finally, in the proofs of Theorems 2.2, 2.3, 2.4, 2.5, 2.6, and 2.7, we

provide explicit transformation formulae from θ1 with σ1 to θ2 with σ2

when σ2 ∼ σ1. This significantly reduces the computational cost of finding

MLEs with different orders.

Supplementary Material
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The online Supplementary Material contains proofs of Theorems 2.1, 2.2,

2.3, 2.4, 2.5, 2.6, 2.7, and 3.1, Lemmas 2 and 3, and Corollary 1.
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