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Abstract: In survey sampling, model-assisted approach is often used to improve

the precision of survey estimators when auxiliary information is available.

Generally, the model-assisted estimators are nonlinear functions of some classical

Horvitz-Thompson estimators constructed via inverse probability weighting,

which are seriously affected by the heterogeneous inclusion probabilities. In

this paper, we improve the classical model-assisted estimation via probability

thresholding, and propose the improved linear and nonparametric model-assisted

estimators for finite populations. The proposed estimators are shown to be

asymptotically design unbiased and design consistent. The corresponding design

mean squared errors and their estimators are also derived. We theoretically

prove that the new model-assisted estimators are asymptotically not worse than

the commonly used model-assisted estimators. Two simulation examples and an

empirical application indicate good finite sample performance of the proposed

estimators.

Key words and phrases: Horvitz-Thompson estimator, Model-assisted estimation,

Probability thresholding, Superpopulation model, Survey sampling.
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1. Introduction

In survey sampling, three kinds of frameworks are used to make statistical

estimation and inference: design-based approach, model-based approach,

and model-assisted approach. Generally, the last one is better than the

first two when auxiliary information is available. Model-assisted method

provides a convenient framework that uses a superpopulation model to

describe the relationship between the variable of interest and the auxiliary

variables. A model-assisted estimator improves the precision of the

traditional survey estimators when the model is correct, and maintains

desirable properties such as asymptotic design unbiasedness and design

consistency when the model is incorrect. In the past decades, various

superpopulations are considered. For instance, Särndal et al. (1992) detailed

linear model-assisted estimation that assumes the superpopulation models

are ratio or linear models. Based on the hypothesis of nonparametric model,

Breidt and Opsomer (2000) used local polynomial regression to construct

a nonparametric model-assisted estimator. Breidt et al. (2007) proposed

a semiparametric model-assisted estimator. Moreover, Wang (2009) and

Wang and Wang (2011) discussed single-index model-assisted estimation

and nonparametric additive model-assisted estimation, respectively.

Typically, the above model-assisted estimators can be written as the

nonlinear functions of some classical Horvitz-Thompson (HT) estimators

proposed by Horvitz and Thompson (1952). The HT estimator is a design

unbiased estimator constructed via inverse probability weighting. It has

2

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0295



IMPROVED MODEL-ASSISTED ESTIMATION

been applied to many other fields such as treatment effect (Rosenbaum,

2002), functional data analysis (Cardot and Josserand, 2011) and optimal

subsampling for big data (Wang et al., 2018). However, when the first-order

inclusion probabilities of some units are relatively small, the variance of the

HT estimator becomes large due to inverse probability weighting. In order

to solve this problem, a simple and common method is to modify the large

design weights (i.e., inverses of small inclusion probabilities) by trimming.

Weight trimming, often with a threshold, can be explained as a shrinkage

strategy which generally improves the estimation accuracy. Benrud (1978)

trimmed all weights below some factor c of the square root of the mean of the

squared weights, which is called the “NAEP procedure” because of its use

in the National Assessment of Educational Progress. Potter (1988, 1990)

assumed the distribution of weights and then truncated some “unlikely”

weights by the estimated distribution. Further, Kokic and Bell (1994) and

Rivest and Hurtubise (1995) selected the threshold by minimizing the mean

squared error of the winsorized estimator that trims large weighted y-values.

Beaumont et al. (2013) constructed a robust version of the HT estimator

based on the concept of conditional bias. This method can be extended to

the generalized regression estimator. For the winsorized estimator, Favre-

Martinoz et al. (2015) suggested determining the threshold that minimizes

the absolute estimated conditional bias. Chen et al. (2017) reviewed the

weight trimming methods and commented that the thresholds obtained by

the optimization methods are usually y-specific and the resulting weights
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are not multipurpose. In addition, the calibration method can also improve

the estimation accuracy by adjusting the weights. See, for example, Deville

and Särndal (1992), Wu and Sitter (2001) and Montanari and Ranalli

(2005). Recently, Zong et al. (2019) proposed a method of trimming

the small inclusion probabilities, and determined a probability threshold

by comparing the MSEs of the traditional estimators and the resulting

estimators. An improved Horvitz-Thompson (IHT) estimator can be

constructed based on the modified inclusion probabilities. It should be

emphasized that the probability threshold for the IHT estimator does not

need to assume the weights distribution and the resulting weights are not

y-specific. In exploring theoretical properties of the IHT estimator, Zong

et al. (2019) assumed that the first-order inclusion probabilities have a lower

bound away from zero, which will be removed in this paper.

The main purpose of this paper is to improve the classical model-

assisted estimation via using the modified first-order inclusion probabilities

from Zong et al. (2019). The improved linear and nonparametric model-

assisted estimators are proposed. Compared to Zong et al. (2019) who

improved only the design-based estimator, our proposed estimators are

generally more efficient and robust than the traditional design-based

estimators and model-assisted estimators. Like the existing model-assisted

estimators, we establish the design properties of the improved model-

assisted estimators including calibration, design consistency and asymptotic

design unbiasedness. The design mean squared errors and their estimators
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for all the proposed estimators are also obtained. In addition, we

theoretically compare the design mean squared errors of traditional model-

assisted estimators and improved model-assisted estimators.

The remainder of this paper is organized as follows. Section 2 briefly

introduces the IHT estimator, and the proofs of its theoretical properties are

provided without the constraint that the first-order inclusion probabilities

have a lower bound away from zero. Section 3 proposes the improved

linear model-assisted estimator. Its design properties are established in

Section 4. Section 5 develops the improved nonparametric model-assisted

estimator based on local polynomial regression. In Section 6, we derive

the design properties of such a nonparametric model-assisted estimator.

Section 7 provides numerical examples from two simulations and a real data

analysis. Section 8 concludes. Proofs of theoretical results are contained in

the supplementary material.

2. Improved Horvitz-Thompson Estimator

Consider a finite population U = {1, · · · , k, · · · , N}. For each unit k, the

value of target characteristic Y is denoted as yk. A sample s of size n is

randomly drawn from the population U according to a sampling design p(·),

where p(s) is the probability of drawing the sample s. We implement the

unequal probability sampling without replacement. Denote πk = Pr{k ∈

s} =
∑
{s: s3k} p(s) and πkl = Pr{k, l ∈ s} =

∑
{s: s3k,l} p(s) for all k, l ∈

U as the first-order inclusion probabilities and the second-order inclusion
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probabilities, respectively. Our aim is to estimate the population mean,

t̄y = N−1
∑

U yk.

Let Ik = 1 or 0, if the kth unit is drawn or not, k = 1, . . . , N . Note that

Ep(Ik) = πk, where Ep(·) denotes expectation with respect to the sampling

design. A well-known design unbiased estimator of t̄y (i.e. Ep(ˆ̄ty) = t̄y) is

the HT estimator,

ˆ̄tHT =
1

N

∑
k∈s

yk
πk

(2.1)

with the variance given by

Vp(ˆ̄tHT) =
1

N2

∑
k,l∈U

πkl − πkπl
πkπl

ykyl. (2.2)

Note that when the first-order inclusion probabilities of some units are

relatively small, the variance of the HT estimator will be large due to

inverse probability weighting. Hence, Zong et al. (2019) used a hard-

threshold method for the first-order inclusion probabilities to construct an

IHT estimator.

Definition 1. Let π(1) ≤ π(2) ≤ · · · ≤ π(N) be the ordered values of the first-

order inclusion probabilities {π1, π2, · · · , πN}. Assume that there exists an

integer K ≥ 2 such that π(K) ≤ (K + 1)−1. Define the modified first-order

inclusion probabilities as follows

π∗k =


πk πk > π(K),

π(K) πk ≤ π(K).

1 ≤ k ≤ N,

From this definition, the finite population is divided into two parts:

U1 = {k : πk > π(K)} with size N −K, and U2 = {k : πk ≤ π(K)} with size
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K. Obviously, the efficiency of the IHT estimator relies on the choice of K,

which provides a control of the variance-bias tradeoff. Zong et al. (2019)

chose K∗ = max{k ∈ U : π(k) ≤ (k + 1)−1} as the threshold and gave an

algorithm to find it.

Using the modified first-order inclusion probabilities {π∗k}Nk=1, the IHT

estimator can be constructed by

ˆ̄tIHT =
1

N

∑
k∈s

yk
π∗k
. (2.3)

Zong et al. (2019) showed that such an estimator is asymptotically design

unbiased and design consistent, and compared it with the HT estimator in

terms of design mean squared errors. However, they assumed that the first-

order inclusion probabilities have a lower bound away from zero, which holds

in many practical surveys but deviates from the purpose of improvement.

Here, we break this constraint and establish the same theoretical properties.

To this end, we need the following regularity conditions.

Condition 1. maxi∈U |yi| ≤ c with c being a positive constant.

Condition 2. min
i∈U

πi ≥ λN > 0, min
i,j∈U

πij ≥ λ∗N > 0, and

lim sup
n→∞

n max
i6=j∈U

| πij − πiπj |<∞,

where λN and λ∗N can depend on N .

Condition 1 states that the study variable is bounded. This is a

reasonable assumption in many situations, but not when the variables are

heavily skewed. In Condition 2, λN and λ∗N are allowed to tend to zero as
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N → ∞. The last part of Condition 2 is a commonly used assumption,

which captures sampling dependence between pairs of units (Robinson and

Särndal, 1983). This assumption holds, say, for simple random sampling

without replacement, Poisson sampling and rejective sampling (Hájek, 1964;

Boistard et al., 2012), but not for the designs with strong dependencies,

such as multistage sampling and systematic sampling (Delevoye and Sävje,

2020).

Theorem 1. If Conditions 1 and 2 are satisfied and (nλ2N)
−1

= o(1), then

the IHT estimator, defined in (2.3), is asymptotically design unbiased and

design consistent.

It is clear that Theorem 1 allows λN to tend to 0 at a rate slower

than n−1/2. Additionally, from the proof of Theorem 1, we see that this

result is also right for the IHT estimator with the correction ratio satisfying

K/N = O
(
n−1/2λ−1N

)
.

The following theorem compares the design MSEs of the two estimators

ˆ̄tHT and ˆ̄tIHT.

Theorem 2. If Conditions 1 and 2 are satisfied and (Nλ3N)
−1

= o(1), then

MSEp(ˆ̄tIHT) ≤ MSEp(ˆ̄tHT) + o
(
n−1
)
.

Especially, for Poisson sampling, we have

MSEp(ˆ̄tIHT) ≤ MSEp(ˆ̄tHT),

where the strict inequality holds if and only if there exist k 6= l ∈ U2 such

that (πk − π(K))yk 6= (πl − π(K))yl.
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Theorem 2 shows that the improved estimator is asymptotically not

worse than the classic estimator. However, for Poisson sampling, the IHT

estimator outperforms the HT estimator.

3. Improved Linear Model-Assisted Estimation

In this section, we use the modified first-order inclusion probabilities to

construct an improved linear model-assisted estimator. Assume that there

are J auxiliary variables, denoted by z1, . . . , zJ . The value of the jth

auxiliary variable for the kth population unit is written as zjk. Define

zk = (z1k, . . . , zJk)
′. As before, the study variable Y takes the value

yk for the kth unit. Our target is to estimate the population mean,

t̄y = N−1
∑

U yk, assuming that we have observed (yk, zk) for k ∈ s, and t̄z,

the population mean of auxiliary vector, is also known.

We suppose that {(yk, zk), k ∈ U} are from the following superpopula-

tion model ξ,

yk = z′kβ + εk, k ∈ U, (3.1)

where εk (k ∈ U) are independent random variables with Eξ(εk) = 0 and

Vξ(εk) = σ2, and β = (β1, . . . , βJ)′ is the regression coefficients vector.

Note that ξ introduces a new type of randomness, that is, Eξ and Vξ denote

expectation and variance with respect to the model ξ, respectively.

Let Z = (z1, . . . ,zN ), y = (y1, . . . , yN)′ and ε = (ε1, . . . , εN)′. In

matrix notation, (3.1) may be written as y = Z ′β+ ε, so the least-squares

9

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0295



ZONG, TSO AND ZOU

estimator of β is

B = (ZZ ′)−1Zy =

(
1

N

∑
U
zkz

′
k

)−1(
1

N

∑
U
zkyk

)
, T−1t.

Note that B cannot be calculated in the present context, because only the

yk in s are known. A design-based estimator of B is given by

B̂ = [B̂1, . . . , B̂J ]′ =

(
1

N

∑
s

zkz
′
k

πk

)−1(
1

N

∑
s

zkyk
πk

)
, T̂−1t̂. (3.2)

Then the linear model-assisted estimator for the population mean is written

as

ˆ̄tyr = ˆ̄tyπ +
J∑
j=1

B̂j(t̄zj − ˆ̄tzjπ), (3.3)

where t̄zj is the population mean of the jth auxiliary variable zj, and ˆ̄tyπ

and ˆ̄tzjπ are the HT estimators of t̄y and t̄zj , respectively, i.e.,

ˆ̄tyπ =
1

N

∑
k∈s

yk
πk

; ˆ̄tzjπ =
1

N

∑
k∈s

zjk
πk
.

Define the J-vector t̄z = (t̄z1 , . . . , t̄zJ )′ and its HT estimator as ˆ̄tzπ =

(ˆ̄tz1π, . . . ,
ˆ̄tzJπ)′. With these notations we can write

ˆ̄tyr = ˆ̄tyπ + (t̄z − ˆ̄tzπ)′B̂ , f(ˆ̄tyπ, ˆ̄tzπ, T̂ , t̂). (3.4)

Further, the approximate design variance of the linear model-assisted

estimator is

AVp(ˆ̄tyr) =
1

N2

∑
k,l∈U

πkl − πkπl
πkπl

(yk − z′kB)(yl − z′lB)
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[Särndal et al. (1992), page 235]. Note that the linear model-assisted

estimator is a nonlinear function of some classical HT estimators, and when

the first-order inclusion probabilities of some units are relatively small,

the approximate design variance AVp(ˆ̄tyr) becomes large due to inverse

probability weighting.

To overcome this shortcoming, we apply the modified first-order

inclusion probabilities {π∗k}Nk=1 defined by Definition 1 to improve the linear

model-assisted estimator. Accordingly, an improved design-based estimator

of B is given by

B̂∗ = [B̂∗1 , . . . , B̂
∗
J ]′ =

(
1

N

∑
s

zkz
′
k

π∗k

)−1(
1

N

∑
s

zkyk
π∗k

)
, (T̂ ∗)−1t̂∗, (3.5)

and then the improved linear model-assisted (ILMA) estimator for the

population mean is written as

ˆ̄t∗yr = ˆ̄t∗yπ +
J∑
j=1

B̂∗j (t̄zj − ˆ̄t∗zjπ), (3.6)

where ˆ̄t∗yπ and ˆ̄t∗zjπ are the IHT estimators of t̄y and t̄zj , respectively, i.e.,

ˆ̄t∗yπ =
1

N

∑
k∈s

yk
π∗k

; ˆ̄t∗zjπ =
1

N

∑
k∈s

zjk
π∗k
.

Denote the IHT estimator of t̄z as ˆ̄t∗zπ = (ˆ̄t∗z1π, . . . ,
ˆ̄t∗zJπ)′, then we have

ˆ̄t∗yr = ˆ̄t∗yπ + (t̄z − ˆ̄t∗zπ)′B̂∗ , f(ˆ̄t∗yπ,
ˆ̄t∗zπ, T̂

∗, t̂∗). (3.7)

In the next section, we will discuss some properties of the improved

linear model-assisted estimator, and theoretically show its effectiveness

compared to the traditional linear model-assisted estimator.
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4. Properties of ILMA Estimation

In this section, we investigate the properties of the improved estimators B̂∗

and ˆ̄t∗yπ. To this end, we make the following assumptions.

Condition 3. max
j=1,...,J ;k∈U

|zjk| < c1 and c2 ≤ λmin(T ) ≤ λmax(T ) ≤ c3,

where c1, c2 and c3 are some positive constants.

Condition 4. Let πijk = Pr{i, j, k ∈ s} =
∑
{s: s3i,j,k} p(s) for all i, j, k ∈ U

be the third-order inclusion probabilities, and denote Dt,N as the set of all

distinct t-tuples (i1, i2, . . . , it) from U . Then

lim sup
n→∞

n max
(i,j,k)∈D3,N

|πijk − πijπk| <∞,

lim sup
n→∞

n2 max
(i,j,k,l)∈D4,N

|Ep{(Ii − πi)(Ij − πj)(Ik − πk)(Il − πl)}| <∞,

and for some α ∈ (0, 1),

lim sup
n→∞

nα max
(i,j,k,l)∈D4,N

|Ep{(IiIj − πij)(IkIl − πkl)}| <∞.

Similar to Conditions A2 and A8 in Breidt et al. (2007), Condition

3 is the common assumptions on the covariates and the minimum and

maximum characteristic values of T . Condition 4 extends Condition 2,

which is a regular assumption for the higher-order inclusion probabilities.

As shown in Boistard et al. (2012) and Breidt and Opsomer (2000), this

condition holds for simple random sampling without replacement, Poisson

sampling and rejective sampling, but not for the designs with nontrivial

clustering. Conditions 2 and 4 have been used to prove the consistency and
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the asymptotic normality of complex estimators in many literatures. See,

for example, Breidt et al. (2007), Wang (2009), Cardot et al. (2010), Wang

and Wang (2011) and Zong et al. (2019).

Theorem 3. If Conditions 1 - 4 are satisfied and (nλ2N)
−1

= o(1), then the

improved estimator B̂∗, defined in (3.5), is asymptotically design unbiased

and design consistent. Moreover, the design mean squared error matrix of

B̂∗ is given by

MSEp(B̂
∗) = Ep

{
(B̂∗ −B)(B̂∗ −B)′

}
= T−1V ∗T−1 +O

(
n−3/2λ−3N

)
with the rate holding component-wise, and V ∗ being a symmetric J × J

matrix with elements

v∗jj′ =
1

N2

∑
k,l∈U

∆∗kl
π∗kπ

∗
l

(zjkEk) (zj′lEl) ,

where Ek = yk − z′kB is the population fit residual and ∆∗kl = πkl − πkπ∗l −

π∗kπl + π∗kπ
∗
l .

Theorem 3 establishes the design properties of the improved regression

coefficients estimator B̂∗. The design mean squared error matrix of B̂∗ is

derived, and its second term is negligible if (nλ6N)
−1

= o(1). This theorem

is similar to Result 5.10.1 of Särndal et al. (1992) who discussed the design

properties of B̂.

From Theorem 3, the estimator of the design mean squared error matrix

of B̂∗ can be constructed as

M̂SEp(B̂
∗) = T̂ ∗−1V̂ ∗T̂ ∗−1
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with V̂ ∗ being a symmetric J × J matrix with elements

v̂∗jj′ =
1

N2

∑
k,l∈s

∆̌∗kl
π∗kπ

∗
l

(zjke
∗
k) (zj′le

∗
l ) ,

where e∗k = yk − z′kB̂∗ is the sample fit residual and ∆̌∗kl = ∆∗kl/πkl.

Theorem 4. If Conditions 1 - 4 hold and (nλ3N)
−1

= o(1), then

lim
n→∞

n1+κλ2Nλ
∗
NEp

∣∣v̂∗jj′ − v∗jj′∣∣ = 0,

where κ = min
{
α
2
, 1
4

}
.

From Theorem 4, it is found that v̂∗jj′ is an asymptotically design

unbiased and design consistent estimator for v∗jj′ as long as (nκλ2Nλ
∗
N)
−1

=

o(1). On the other hand, by Theorem 1, the improved estimator T̂ ∗ whose

elements are some IHT estimators is a design consistent estimator of T .

Thus M̂SEp(B̂
∗) is consistent for estimating MSEp(B̂

∗) if (nλ6N)
−1

= o(1)

and (nκλ2Nλ
∗
N)
−1

= o(1).

The following theorem theoretically compares the efficiency of the two

estimators B̂∗ and B̂.

Theorem 5. If Conditions 1 - 4 hold and (nλ6N)
−1

= o(1), then

tr
{

MSEp(B̂
∗)
}
≤ tr

{
MSEp(B̂)

}
+ o

(
n−1
)
.

Now we turn to study the design properties of the improved linear

14
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model-assisted estimator ˆ̄t∗yr. Note from (3.7) that

ˆ̄t∗yr = ˆ̄t∗yπ + (t̄z − ˆ̄t∗zπ)′B̂∗

=
1

N

∑
k∈s

{
1

π∗k
+ (t̄z − ˆ̄t∗zπ)′(T̂ ∗)−1

zk
π∗k

}
yk

=
1

N

∑
k∈s

ω∗ksyk. (4.1)

Thus ˆ̄t∗yr is a linear combination of the sample yk’s with the weights only

depending on the auxiliary information. Further, when the weights are

applied to the auxiliary information zk, we have

∑
s

ω∗ksz
′
k =

∑
k∈s

{
1

π∗k
+ (t̄z − ˆ̄t∗zπ)′(T̂ ∗)−1

zk
π∗k

}
z′k

=
∑
k∈s

z′k
π∗k

+N(t̄z − ˆ̄t∗zπ)′(T̂ ∗)−1T̂ ∗

=
∑
k∈U

z′k. (4.2)

(4.1) and (4.2) reveal the weighting and calibration properties of ˆ̄t∗yr

respectively, which are highly desirable properties in survey sampling.

Theorem 6. If Conditions 1 - 4 are satisfied and (nλ4N)
−1

= o(1), then the

improved estimator ˆ̄t∗yr, defined in (3.6), is asymptotically design unbiased

and design consistent. The design mean squared error of ˆ̄t∗yr is

MSEp

(
ˆ̄t∗yr

)
= Ep

(
ˆ̄t∗yr − t̄y

)2
=

1

N2

∑
k,l∈U

∆∗kl
π∗kπ

∗
l

EkEl +O
(
n−3/2λ−4N

)
.

Moreover, if (nλ8N)
−1

= o(1) and (nκλ2Nλ
∗
N)
−1

= o(1), then an asymptot-

ically design unbiased and design consistent estimator of the design mean
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squared error is given by

ÂMSEp

(
ˆ̄t∗yr

)
=

1

N2

∑
k,l∈s

∆̌∗kl
π∗kπ

∗
l

e∗ke
∗
l .

It is clear that Theorem 6 is similar to Result 6.6.1 of Särndal et al.

(1992) who discussed the design properties of ˆ̄tyr.

The following theorem theoretically compares the efficiency of the two

estimators ˆ̄t∗yr and ˆ̄tyr.

Theorem 7. If Conditions 1 - 4 hold and (nλ8N)
−1

= o(1), then

MSEp(ˆ̄t
∗
yr) ≤ MSEp(ˆ̄tyr) + o

(
n−1
)
.

Theorem 7 implies that the MSEp of the improved estimator ˆ̄t∗yr is

asymptotically not larger than that of the traditional estimator ˆ̄tyr. It

is worth pointing out that, when the linear superpopulation model has

heteroskedastic errors, i.e., Vξ(εk) = σ2
k, our modification idea is equally

applicable to the weighted least-squares model-assisted estimator given by

the equation (6.4.13) of Särndal et al. (1992).

5. Improved Nonparametric Model-Assisted Estimation

When the variable of interest has a complex non-linear relationship with an

auxiliary variable, Breidt and Opsomer (2000) proposed a nonparametric

model-assisted estimator based on local polynomial regression. In this

section, we use the hard-threshold method for the first-order inclusion

probabilities to improve their nonparametric model-assisted estimator.
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Assume that there is only one auxiliary variable x, and the value of the

auxiliary variable for the ith population unit is denoted as xi. Our target

remains to estimate the population mean, t̄y = N−1
∑

U yi, assuming that

we have observed (yi, xi) for i ∈ s, and xi with i ∈ U − s are known.

We suppose that {(yi, xi), i ∈ U} are from the following superpopulation

model ξ̃,

yi = m(xi) + ε̃i, (5.1)

where m(x) is a smooth function of x, ε̃i (i ∈ U) are independent random

variables with Eξ̃(ε̃i) = 0 and Vξ̃(ε̃i) = v(xi), and v(x) is smooth and strictly

positive.

Let K(·) be a continuous kernel function and hN be the bandwidth. To

obtain the local polynomial estimator of degree q for the regression function

m(x) based on the entire finite population, we denote

XUi =


1 x1 − xi . . . (x1 − xi)q
...

... . . .
...

1 xN − xi . . . (xN − xi)q

 ,
[
1 xj − xi . . . (xj − xi)q

]
j∈U

,

yU = (y1, . . . , yN)′ ,
[
yi
]
i∈U and WUi = diag

{
1
hN
K
(
xj−xi
hN

)}
j∈U

. Thus,

the local polynomial estimator of degree q for the regression function m(x)

at xi is given by

mi = e′1(X
′
UiWUiXUi)

−1X ′UiWUiyU , w′UiyU ,

where e1 is a vector of length q + 1 with one in the first position and

zeros elsewhere. Note that mi cannot be calculated in the present context,
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because only the yk in s are known. A design-based estimator of mi is given

by

m̂o
i = e′1(X

′
siWsiXsi)

−1X ′siWsiys , w
o′

siys, (5.2)

where Xsi =
[
1, xj − xi, . . . , (xj − xi)q

]
j∈s

, Wsi = diag
{

1
πjhN
K
(
xj−xi
hN

)}
j∈s

and ys =
[
yi
]
i∈s. Further, from the perspective of model-assisted

estimation, we have the following local polynomial regression estimator for

the population mean

t̃oyr =
1

N

(∑
i∈s

yi − m̂o
i

πi
+
∑
i∈U

m̂o
i

)
. (5.3)

In order to makeX ′siWsiXsi invertible for all xi, Breidt and Opsomer (2000)

proposed an adjusted sample estimator for mi,

m̂i = e′1

(
X ′siWsiXsi + diag

{
δ

N2

}q+1

j=1

)−1
X ′siWsiys , w

′
siys,

for some small δ > 0. The nonparametric model-assisted estimator of t̄y is

then constructed by replacing m̂o
i in (5.3) by m̂i,

t̃yr =
1

N

(∑
i∈s

yi − m̂i

πi
+
∑
i∈U

m̂i

)
. (5.4)

From Theorem 2 of Breidt and Opsomer (2000), the design mean squared

error of the nonparametric model-assisted estimator t̃yr is

MSEp(t̃yr) =
1

N2

∑
k,l∈U

πkl − πkπl
πkπl

(yk −mk)(yl −ml) + o(n−1).

It is clear that, when the first-order inclusion probabilities of some units

are relatively small, MSEp(t̃yr) may become large due to inverse probability

weighting.
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To overcome this shortcoming, we use the modified first-order inclusion

probabilities {π∗k}Nk=1 defined by Definition 1 to improve the nonparametric

model-assisted estimator. An improved design-based estimator of mi is

given by

m̂o∗
i = e′1(X

′
siW

∗
siXsi)

−1X ′siW
∗
siys , w

o∗′
si ys,

where W ∗
si = diag

{
1

π∗j hN
K
(
xj−xi
hN

)}
j∈s

. Then the improved nonparametric

model-assisted (INMA) estimator for the population mean is

t̃o∗yr =
1

N

(∑
i∈s

yi − m̂o∗
i

π∗i
+
∑
i∈U

m̂o∗
i

)
. (5.5)

Further, to make X ′siW
∗
siXsi invertible for all xi, we adjust m̂o∗

i to

m̂∗i = e′1

(
X ′siW

∗
siXsi + diag

{
δ

N2

}q+1

j=1

)−1
X ′siW

∗
siys , w

∗′
siys.

Finally, the INMA estimator for the population mean is given by

t̃∗yr =
1

N

(∑
i∈s

yi − m̂∗i
π∗i

+
∑
i∈U

m̂∗i

)
. (5.6)

In the next section, we will discuss some properties of the new non-

parametric model-assisted estimator, and theoretically show its effectiveness

compared to the existing nonparametric model-assisted estimator.

6. Properties of INMA Estimation

In this section, we investigate the properties of the improved nonparametric

model-assisted estimator. The following regularity conditions are required.
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Condition 5. The errors ε̃i (i ∈ U) have compact support uniformly for

all N .

Condition 6. The xi (i ∈ U) are independent and identically distributed

as F (x) =
∫ x
−∞ f(t)dt, where f(·) is a density with compact support [ax, bx].

Condition 7. The mean function m(·) has the (q + 1)th continuous

derivative, and the variance function v(·) is bounded and strictly greater

than 0.

Condition 8. The kernel K(·) has compact support [−1, 1], is symmetric

and continuous, and satisfies
∫ 1

−1K(u)du = 1.

Condition 9. As N → ∞, the sampling fraction f = n/N → π ∈ (0,1],

hN → 0 and Nh2N/(log logN) →∞.

Condition 10. Let Ii,k(hN) = I{|xk−xi|≤hN} be an indicator function. Then

as n→∞,
∑

k∈s
Ii,k(hN )

NhNπk
is uniformly bounded in i and s.

Conditions 5 - 9 are common assumptions, which are used by Breidt

and Opsomer (2000) and Breidt et al. (2007). Breidt and Opsomer (2000)

discussed the rationality of these conditions in detail. Condition 10 is

to ensure that the nonparametric model-assisted estimators are uniformly

bounded in i and s. In particular, for the simple random sampling

without replacement, Condition 10 is obtained from Lemma 1 of Breidt

and Opsomer (2000).

We first study the design properties of the improved nonparametric

20

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0295



IMPROVED MODEL-ASSISTED ESTIMATION

model-assisted estimator. Note from (5.5) that

t̃o∗yr =
1

N

∑
i∈s

yi
π∗i

+
1

N

∑
j∈U

(
1− Ij

π∗j

)
wo∗′
sj ys

=
1

N

∑
i∈s

{
1

π∗i
+
∑
j∈U

(
1− Ij

π∗j

)
wo∗′
sj ei

}
yi

=
1

N

∑
i∈s

ω∗isyi. (6.1)

Thus t̃o∗yr is a linear combination of the sample yk’s with the weights only

depending on the auxiliary information. In addition, when the weights are

applied to the auxiliary variables {1, xi, . . . , xqi}, we have∑
s

ω∗isx
l
i =

∑
i∈s

{
1

π∗i
+
∑
j∈U

(
1− Ij

π∗j

)
wo∗′
sj ei

}
xli

=
∑
i∈s

xli
π∗i

+
∑
j∈U

(
1− Ij

π∗j

)
xlj

=
∑
i∈U

xli (6.2)

for l = 0, . . . , q, where ei is a vector with one on component i and zero

elsewhere. (6.1) and (6.2) show the weighting and calibration properties of

t̃o∗yr respectively. As in the case of linear model-assisted estimation, these

are highly desirable properties in survey sampling.

Theorem 8. If Conditions 2 and 4 - 10 are satisfied, and (nh2Nλ
4
N)
−1

=

o(1), then the improved estimator t̃∗yr, defined in (5.6), is asymptotically

design unbiased and design consistent. The design mean squared error of

t̃∗yr is

MSEp(t̃
∗
yr) =

1

N2

∑
k,l∈U

∆∗kl
π∗kπ

∗
l

(yk −mk)(yl −ml) +O
(
n−3/2h−1N λ−4N

)
.
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Moreover, if (nh2Nλ
8
N)
−1

= o(1) and (nκλ2Nλ
∗
N)
−1

= o(1), then an

asymptotically design unbiased and design consistent estimator of the design

mean squared error is given by

ÂMSEp(t̃
∗
yr) =

1

N2

∑
k,l∈s

∆̌∗kl
π∗kπ

∗
l

(yk − m̂∗k)(yl − m̂∗l ).

It is clear that Theorem 8 is similar to Theorems 1 - 3 of Breidt and

Opsomer (2000) who discussed the design properties of t̃yr.

The following theorem theoretically compares the efficiency of the two

estimators t̃∗yr and t̃yr.

Theorem 9. If Conditions 2 and 4 - 10 are satisfied, and (nh2Nλ
8
N)
−1

=

o(1), then

MSEp(t̃
∗
yr) ≤ MSEp(t̃yr) + o

(
n−1
)
.

Theorem 9 implies that the MSEp of the improved estimator t̃∗yr is

asymptotically not larger than that of the traditional estimator t̃yr.

7. Numerical Studies

In this section, we assess the empirical performances of our proposed

estimators based on two simulation examples and one real data analysis.

For each example, D = 2000 replicated samples are selected from a finite

population by the unequal probability sampling, and then the squared-bias

(Bias2), variance (Var) and mean squared error (MSE) of each estimator

are computed empirically.
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7.1 Linear model-assisted estimation

We generate a finite population U of size N = 1000 as follows:

yk =
√

12ρ1 ·x1k+
√

12ρ2 ·x2k+
√

12ρ3 ·x3k+
√

1− ρ21 − ρ22 − ρ23 ·ek, k ∈ U,

where x1k
iid∼ U(0, 1), x2k and x3k

iid∼ U(1, 2), ek
iid∼ N(0, 1), and are all

mutually independent. The correlation between yk and xik can be controlled

by ρi, and denote ρ = (ρ1, ρ2, ρ3). To realize πps sampling, we set the

first-order inclusion probabilities πk ∝ x1k for all k ∈ U. Let the sampling

fraction f vary at {0.02, 0.04, 0.06, 0.08, 0.10, 0.12}. We consider the

following estimators of the finite population mean t̄y:

(a) The HT estimator given by (2.1).

(b) A trimmed Horvitz-Thompson (HT-Beta) estimator in which weights

from upper tail of the weight distribution, say 1−Fω(·) < 0.01, are trimmed.

Based on Beta distribution, the parameters in Fω(·) are estimated by the

method-of-moment (Potter, 1990).

(c) A trimmed Horvitz-Thompson (HT-MSE) estimator in which threshold

is based on an unbiased estimator of mean squared error (Potter, 1988).

(d) The robust Horvitz-Thompson (HT-Rob) estimator proposed by Beau-

mont et al. (2013).

(e) The IHT estimator given by (2.3).

(f) The Hájek (HA) estimator defined as the HT estimator with N̂ =∑
k∈s π

−1
k replacing N (Hájek, 1971).

(g) The trimmed Hájek (HA-Beta) estimator based on the weight distribu-

tion, analogous to (b).
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(h) The trimmed Hájek (HA-MSE) estimator based on an unbiased

estimator of mean squared error, analogous to (c).

(i) The robust Hájek (HA-Rob) estimator, analogous to (d).

(j) The improved Hájek (IHA) estimator defined as the IHT estimator with

N̂∗ =
∑

k∈s π
∗−1
k replacing N .

(k) The LMA estimator given by (3.3).

(l) The trimmed linear model-assisted (LMA-Trim) estimator with the

calibration weights being trimmed, analogous to (b).

(m) The robust linear model-assisted (LMA-Rob) estimator proposed by

Beaumont et al. (2013).

(n) The ILMA estimator given by (3.6).

Table 1 shows the empirical MSEs of the above estimators under

different f and ρ. We also set up a scenario where the first-order inclusion

probabilities are equal inside classes defined by the quantiles of the variable

x1k. Tables 2 and 3 show the simulation results for the cases of 50 classes

and 100 classes respectively. Under each scenario, the minimum MSE of all

estimators is displayed in bold. It is clear that the accuracy of all estimators

increases as the sample size n increases. The LMA-type estimators [(k)

- (n)] are superior to the HA-type estimators [(f) - (j)], while the HA-

type estimators are better than the HT-type estimators [(a) - (e)]. It is

also observed that our proposed ILMA estimator has the best performance,

followed by LMA-Rob estimator. This may be because the two methods

not only make use of additional auxiliary information (x2k and x3k), but
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also modify the weights based on the model unlike the LMA-Trim estimator

which trims calibration weights by an estimated weight distribution. We

mark the minimum MSE of HT-type estimators with a symbol (∗), and it

is found that the performance of the IHT estimator is the best. Similarly,

for the HA-type estimators, the IHA estimator performs the best except for

the case of low correlation (ρ1=0.1).

In the supplementary material S2.1, we also report the biases and

variances of all estimators, and the results are presented in Tables S1 -

S6. It is obvious that the squared biases of all estimators are negligible

compared to their variances. For each estimation type, the untrimmed

estimators often have lower biases than the trimmed estimators.

Tables S15 - S17 show the empirical MSE of each estimator under small

sample. In this case, our proposed estimators (IHT, IHA and ILMA) still

have the best performance in their respective estimation types, but the

LMA-type estimators are no longer the best compared to the HT-type and

HA-type estimators. Based on the estimated conditional bias, the robust

trimmed estimators (HT-Rob, HA-Rob and LMA-Rob) perform poorly

when the sample size is small. There are little differences in MSEs between

the trimmed estimators (HT-Beta, HT-mse or HA-Beta, HA-mse) and the

untrimmed estimators (HT or HA), this may be because the thresholds

obtained by these methods only slightly modify the first-order inclusion

probabilities in the case of small sample.

Tables S18 - S20 show the empirical MSE of each estimator under the
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Table 1: Empirical MSE of each estimator under different f and ρ.

f 0.02 0.04 0.06 0.08 0.10 0.12

ρ=(0.1, 0.3, 0.8)

HT 3.5529 1.3939 0.8923 0.6165 1.2633 0.5387

HT-Beta 1.1211 0.5925 0.4846 0.4187 0.3762 0.3428

HT-MSE 3.5992 1.3898 0.9216 0.6223 1.2820 0.5686

HT-Rob 1.7290 0.7976 0.5672 0.4173 0.5530 0.3299

IHT 0.7562∗ 0.4643∗ 0.3686∗ 0.2950∗ 0.2516∗ 0.2071∗

HA 0.0750 0.0418 0.0298 0.0229 0.0192 0.0163

HA-Beta 0.0638 0.0308 0.0216 0.0159∗ 0.0115∗ 0.0098∗

HA-MSE 0.0537∗ 0.0287 ∗ 0.0211∗ 0.0162 0.0123 0.0107

HA-Rob 0.0641 0.0346 0.0246 0.0189 0.0149 0.0128

IHA 0.0613 0.0337 0.0244 0.0190 0.0145 0.0125

LMA 0.0200 0.0103 0.0071 0.0052 0.0041 0.0034

LMA-Trim 0.0847 0.0354 0.0252 0.0177 0.0131 0.0110

LMA-Rob 0.0196 0.0098 0.0066 0.0049 0.0038 0.0031

ILMA 0.0195 0.0097 0.0066 0.0049 0.0038 0.0031

ρ=(0.5, 0.4, 0.3)

HT 2.7486 0.7330 0.4736 0.5075 0.2898 0.2587

HT-Beta 0.5178 0.2849 0.2355 0.1977 0.1826 0.1683

HT-MSE 3.2123 0.9176 0.6222 0.5845 0.3574 0.3117

HT-Rob 1.0575 0.3962 0.2748 0.2553 0.1777 0.1520

IHT 0.3368∗ 0.2178∗ 0.1744∗ 0.1370∗ 0.1139∗ 0.0958∗

HA 0.0952 0.0534 0.0409 0.0331 0.0263 0.0210

HA-Beta 0.0812 0.0425 0.0320 0.0259 0.0219 0.0180

HA-MSE 0.0802 0.0436 0.0330 0.0261 0.0210 0.0165

HA-Rob 0.0813 0.0443 0.0333 0.0268 0.0214 0.0169

IHA 0.0756∗ 0.0407∗ 0.0300∗ 0.0236∗ 0.0187∗ 0.0146∗

LMA 0.0485 0.0230 0.0162 0.0115 0.0098 0.0076

LMA-Trim 0.0911 0.0411 0.0296 0.0231 0.0202 0.0163

LMA-Rob 0.0475 0.0219 0.0153 0.0106 0.0092 0.0070

ILMA 0.0477 0.0221 0.0152 0.0104 0.0091 0.0068

ρ=(0.8, 0.3, 0.1)

HT 0.2833 0.1488 0.0968 0.0805 0.0626 0.0469

HT-Beta 0.1850 0.0957 0.0696 0.0585 0.0511 0.0474

HT-MSE 0.5569 0.2588 0.1625 0.1348 0.1003 0.0704

HT-Rob 0.1837 0.1035 0.0707 0.0573 0.0453 0.0378

IHT 0.1194∗ 0.0731∗ 0.0528∗ 0.0415∗ 0.0342∗ 0.0295∗

HA 0.1123 0.0616 0.0438 0.0350 0.0277 0.0237

HA-Beta 0.0986 0.0540 0.0390 0.0318 0.0263 0.0245

HA-MSE 0.1096 0.0615 0.0414 0.0317 0.0252 0.0224

HA-Rob 0.0999 0.0555 0.0377 0.0297 0.0237 0.0209

IHA 0.0852∗ 0.0463∗ 0.0322∗ 0.0246∗ 0.0199∗ 0.0178∗

LMA 0.0250 0.0118 0.0082 0.0057 0.0047 0.0039

LMA-Trim 0.0491 0.0259 0.0207 0.0182 0.0161 0.0148

LMA-Rob 0.0248 0.0114 0.0078 0.0053 0.0043 0.0036

ILMA 0.0243 0.0113 0.0078 0.0053 0.0044 0.0037

1 Under each scenario, the minimum MSE of all estimators is displayed in bold.
2 The minimum for each estimation type, except for the bold values, is marked with a symbol (∗).
3 Since four decimal places are reserved, some values in the table have the same display.26
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Table 2: Empirical MSE of each estimator in the case of 50 classes.

f 0.02 0.04 0.06 0.08 0.10 0.12

ρ=(0.1, 0.3, 0.8)

HT 2.2006 0.8781 0.6466 0.4426 0.3678 0.2974

HT-Beta 1.1506 0.5299 0.4195 0.3324 0.2933 0.2585

HT-MSE 2.1459 0.8739 0.6444 0.4355 0.3604 0.2945

HT-Rob 1.3062 0.6047 0.4686 0.3439 0.2877 0.2342

IHT 0.6857∗ 0.4302∗ 0.3506∗ 0.2494∗ 0.2392∗ 0.1875∗

HA 0.0877 0.0461 0.0333 0.0232 0.0208 0.0161

HA-Beta 0.0720 0.0355 0.0232 0.0155∗ 0.0138∗ 0.0103∗

HA-MSE 0.0607∗ 0.0332∗ 0.0225∗ 0.0157 0.0144 0.0110

HA-Rob 0.0738 0.0388 0.0270 0.0189 0.0171 0.0130

IHA 0.0672 0.0379 0.0263 0.0180 0.0171 0.0128

LMA 0.0222 0.0111 0.0077 0.0053 0.0045 0.0038

LMA-Trim 0.0856 0.0371 0.0235 0.0155 0.0136 0.0102

LMA-Rob 0.0218 0.0107 0.0074 0.0050 0.0042 0.0035

ILMA 0.0217 0.0107 0.0074 0.0050 0.0042 0.0034

ρ=(0.5, 0.4, 0.3)

HT 1.1110 0.5450 0.3520 0.2498 0.1880 0.1626

HT-Beta 0.5512 0.2805 0.1980 0.1729 0.1512 0.1357

HT-MSE 1.4694 0.6952 0.4255 0.2961 0.2203 0.1845

HT-Rob 0.6424 0.3447 0.2394 0.1786 0.1443 0.1222

IHT 0.3340∗ 0.2120∗ 0.1592∗ 0.1359∗ 0.1087∗ 0.0915∗

HA 0.0953 0.0562 0.0378 0.0297 0.0243 0.0199

HA-Beta 0.0750 0.0405 0.0273 0.0208∗ 0.0176 0.0157

HA-MSE 0.0735 0.0423 0.0287 0.0219 0.0183 0.0156

HA-Rob 0.0777 0.0446 0.0303 0.0231 0.0192 0.0161

IHA 0.0692∗ 0.0389∗ 0.0269∗ 0.0212 0.0175∗ 0.0147∗

LMA 0.0428 0.0207 0.0141 0.0104 0.0085 0.0076

LMA-Trim 0.0761 0.0374 0.0242 0.0184 0.0147 0.0138

LMA-Rob 0.0423 0.0198 0.0134 0.0096 0.0078 0.0069

ILMA 0.0418 0.0194 0.0131 0.0096 0.0077 0.0068

ρ=(0.8, 0.3, 0.1)

HT 0.2104 0.1073 0.0697 0.0576 0.0432 0.0346

HT-Beta 0.1600 0.0862 0.0602 0.0477 0.0420 0.0385

HT-MSE 0.4259 0.1874 0.1110 0.0913 0.0630 0.0510

HT-Rob 0.1498 0.0853 0.0575 0.0456 0.0363 0.0304

IHT 0.1045∗ 0.0706∗ 0.0486∗ 0.0357∗ 0.0321∗ 0.0264∗

HA 0.1140 0.0668 0.0447 0.0334 0.0280 0.0241

HA-Beta 0.0943 0.0541 0.0379 0.0297 0.0270 0.0229

HA-MSE 0.1071 0.0608 0.0407 0.0304 0.0263 0.0210

HA-Rob 0.0969 0.0565 0.0378 0.0283 0.0247 0.0202

IHA 0.0812∗ 0.0475∗ 0.0315∗ 0.0233∗ 0.0216∗ 0.0170∗

LMA 0.0220 0.0113 0.0077 0.0057 0.0045 0.0042

LMA-Trim 0.0503 0.0285 0.0203 0.0182 0.0159 0.0142

LMA-Rob 0.0216 0.0107 0.0071 0.0052 0.0041 0.0037

ILMA 0.0214 0.0105 0.0069 0.0050 0.0040 0.0035

1 Under each scenario, the minimum MSE of all estimators is displayed in bold.
2 The minimum for each estimation type, except for the bold values, is marked with a symbol (∗).
3 Since four decimal places are reserved, some values in the table have the same display.27
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Table 3: Empirical MSE of each estimator in the case of 100 classes.

f 0.02 0.04 0.06 0.08 0.10 0.12

ρ=(0.1, 0.3, 0.8)

HT 2.8816 1.3489 0.8871 0.6931 0.5217 0.4772

HT-Beta 1.1556 0.6403 0.4566 0.3998 0.3585 0.3382

HT-MSE 2.8965 1.3218 0.8664 0.6821 0.5188 0.4677

HT-Rob 1.5082 0.8107 0.5551 0.4385 0.3504 0.3140

IHT 0.7501∗ 0.4976∗ 0.3508∗ 0.2773∗ 0.2416∗ 0.1991∗

HA 0.0789 0.0451 0.0331 0.0258 0.0197 0.0189

HA-Beta 0.0666 0.0342 0.0219 0.0162∗ 0.0121∗ 0.0106∗

HA-MSE 0.0591∗ 0.0325∗ 0.0217∗ 0.0168 0.0127 0.0116

HA-Rob 0.0686 0.0378 0.0259 0.0201 0.0150 0.0140

IHA 0.0653 0.0359 0.0241 0.0186 0.0142 0.0126

LMA 0.0241 0.0109 0.0071 0.0057 0.0042 0.0035

LMA-Trim 0.0899 0.0407 0.0238 0.0169 0.0132 0.0109

LMA-Rob 0.0240 0.0107 0.0069 0.0055 0.0040 0.0033

ILMA 0.0236 0.0107 0.0068 0.0054 0.0040 0.0032

ρ=(0.5, 0.4, 0.3)

HT 1.0895 0.6551 0.4665 0.4585 0.3573 0.2343

HT-Beta 0.5378 0.2745 0.2271 0.1942 0.1696 0.1543

HT-MSE 1.3852 0.8410 0.5160 0.4882 0.3811 0.2640

HT-Rob 0.6196 0.3652 0.2727 0.2551 0.1899 0.1416

IHT 0.3511∗ 0.2046∗ 0.1717∗ 0.1358∗ 0.1131∗ 0.0909∗

HA 0.0878 0.0463 0.0352 0.0265 0.0229 0.0186

HA-Beta 0.0762 0.0361 0.0267 0.0213 0.0169 0.0141

HA-MSE 0.0751 0.0369 0.0279 0.0214 0.0167 0.0139

HA-Rob 0.0746 0.0376 0.0288 0.0221 0.0179 0.0147

IHA 0.0703∗ 0.0346∗ 0.0259∗ 0.0197∗ 0.0158∗ 0.0132∗

LMA 0.0431 0.0195 0.0154 0.0108 0.0092 0.0074

LMA-Trim 0.0770 0.0310 0.0225 0.0177 0.0142 0.0116

LMA-Rob 0.0422 0.0187 0.0143 0.0099 0.0084 0.0067

ILMA 0.0424 0.0188 0.0145 0.0098 0.0083 0.0066

ρ=(0.8, 0.3, 0.1)

HT 0.4907 0.2211 0.1332 0.1044 0.0819 0.0672

HT-Beta 0.1848 0.0946 0.0766 0.0668 0.0583 0.0519

HT-MSE 1.2444 0.4291 0.2405 0.1853 0.1388 0.1108

HT-Rob 0.2428 0.1247 0.0832 0.0647 0.0535 0.0440

IHT 0.1228∗ 0.0717∗ 0.0570∗ 0.0452∗ 0.0367∗ 0.0319∗

HA 0.1181 0.0655 0.0502 0.0360 0.0308 0.0249

HA-Beta 0.0958 0.0523 0.0437 0.0330 0.0308 0.0251

HA-MSE 0.1064 0.0585 0.0461 0.0326 0.0289 0.0223

HA-Rob 0.0975 0.0543 0.0422 0.0297 0.0266 0.0208

IHA 0.0805∗ 0.0451∗ 0.0363∗ 0.0251∗ 0.0223∗ 0.0176∗

LMA 0.0252 0.0138 0.0093 0.0071 0.0055 0.0047

LMA-Trim 0.0490 0.0270 0.0232 0.0191 0.0183 0.0167

LMA-Rob 0.0248 0.0130 0.0085 0.0064 0.0050 0.0042

ILMA 0.0242 0.0128 0.0084 0.0064 0.0051 0.0043

1 Under each scenario, the minimum MSE of all estimators is displayed in bold.
2 The minimum for each estimation type, except for the bold values, is marked with a symbol (∗).
3 Since four decimal places are reserved, some values in the table have the same display.28
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misspecified model without considering the covariate {x3k}. Compared to

Tables 1 - 3, the efficiency of LMA-type estimators decreases. Specially,

when the misspecified degree of model is high (ρ3 = 0.8), the performances

of LMA-type estimators are worse than those of HA-type estimators. It is

observed that our proposed estimators (IHT, IHA and ILMA) perform the

best overall in their respective estimation types.

Additionally, we compare the empirical performances of the LMA and

ILMA estimators in terms of their MSEs, biases, variances and coverage

rates. From Tables S21 - S23, the improved estimator has smaller MSE than

the traditional estimator, and the threshold K∗ decreases as the sample

size increases. Under the same sample size, the MSEs in the case ρ =

(0.5, 0.4, 0.3) are higher than those in other cases, ρ = (0.1, 0.3, 0.8) and

ρ = (0.8, 0.3, 0.1). This may be due to their different SNRs (Signal Noise

Ratios). It is found that the coverage rates CR1 and CR2 are roughly the

same under various scenarios with the latter corresponding to a shorter

interval length, and both grow when n increases.

7.2 Nonparametric model-assisted estimation

Similar to the settings of Breidt and Opsomer (2000), we consider the

following mean functions:

Linear: m1(x) = 1 + 2(x− 0.5), Cycle1: m4(x) = 2 + sin(2πx),

Quadratic: m2(x) = 1 + 2(x− 0.5)2, Cycle4: m5(x) = 2 + sin(8πx),

Exponential: m3(x) = exp{−8x}, CDF: m6(x) = Φ
(
1.5−2x
0.4

)
,
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where Φ is the standard normal cdf. For each mean function, we generate

a finite population U of size N = 1000 based on the superpopulation

model (5.1) with xi
iid∼ U(0, 1) and ε̃i

iid∼ N(0, 0.12). In order to realize πps

sampling, we set the first-order inclusion probabilities πk ∝ xk for k ∈ U ,

and the sampling fraction f = 0.06, 0.10. In this subsection, we compare

the performances of ten estimators:

(i) The HT-type estimators, (a) - (e) in Subsection 7.1.

(ii) The LMA-type estimators with xk = (1, xk), (k) - (n) in Subsection 7.1.

(iii) The nonparametric model-assisted (NMA) estimator given by (5.4).

(iv) The INMA estimator given by (5.6).

The Epanechnikov kernel K(t) = 3/4(1 − t2)I{|t|≤1} is used for all

nonparametric model-assisted estimators. We set the degree q = 1 and two

different bandwidths hN =0.1, 0.25. The empirical MSEs of all estimators

under various superpopulation models are provided in Table 4. In addition,

Tables 5 and 6 report the simulation results where the inclusion probabilities

are equal inside classes.

Similar to the simulation results in Subsection 7.1, from Tables 4 - 6, we

see that the IHT and ILMA estimators perform the best overall in HT-type

and LMA-type estimators respectively, and the model-assisted approaches

are generally better than the design-based approaches. Note that the

modified HT-type estimators perform well under the linear superpopulation

model. This may be because the sample is drawn by πps sampling with the

first-order inclusion probability proportional to x. In addition, our proposed
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Table 4: Empirical MSE of each estimator under different models.

f 0.06 0.10 0.06 0.10 0.06 0.10

Linear Quadratic Exponential

HT 0.00058 0.00037 0.10803 0.33274 0.06180 0.02202

HT-Beta 0.00031 0.00020 0.02255 0.01805 0.00453 0.00384

HT-mse 0.02885 0.05023 0.07371 0.19313 0.00659 0.00479

HT-Rob 0.00031 0.00019 0.04420 0.09744 0.01916 0.00823

IHT 0.00028 0.00015 0.01752∗ 0.01247∗ 0.00387∗ 0.00289∗

LMA 0.00034 0.00019 0.00221 0.00134 0.00273 0.00194

LMA-Trim 0.00569 0.00614 0.00216 0.00141 0.00316 0.00288

LMA-Rob 0.00033 0.00018 0.00226 0.00135 0.00260 0.00180

ILMA 0.00033∗ 0.00018∗ 0.00198 0.00115∗ 0.00222 0.00152

NMA1 0.03146 0.00339 0.02867 0.02003 0.03844 0.01338

INMA1 0.03146 0.00339 0.02866 0.02003 0.03844 0.01315

NMA2 0.01320 0.00065 0.01420 0.00062 0.00441 0.00173

INMA2 0.01320∗ 0.00065∗ 0.01420∗ 0.00062 0.00440∗ 0.00173∗

Cycle1 Cycle4 CDF

HT 0.17389 0.17535 0.25265 0.19873 1.03E-04 5.46E-05

HT-Beta 0.10474 0.07165 0.07353 0.05697 1.03E-04∗ 5.45E-05∗

HT-mse 0.17735 0.17287 0.21400 0.16959 1.03E-04 5.46E-05

HT-Rob 0.12114 0.09103 0.11934 0.08852 1.06E-04 5.55E-05

IHT 0.08461∗ 0.05351∗ 0.06166∗ 0.04423∗ 1.03E-04 5.46E-05

LMA 0.00862 0.00657 0.01481 0.00881 8.05E-05 4.62E-05

LMA-Trim 0.01155 0.00841 0.01341 0.00827 4.19E-04 3.49E-04

LMA-Rob 0.00796 0.00604 0.01524 0.00888 7.99E-05 4.47E-05

ILMA 0.00723∗ 0.00530∗ 0.01423 0.00862 7.69E-05∗ 4.33E-05∗

NMA1 0.02129 0.02372 0.04034 0.03526 3.04E-07 1.56E-07

INMA1 0.02117 0.02358 0.04029∗ 0.03524 3.04E-07 1.56E-07

NMA2 0.00662 0.00162 0.06441 0.02920 9.69E-06 4.85E-06

INMA2 0.00660 0.00161 0.06421 0.02911∗ 9.61E-06 4.81E-06

1 NMA1 and INMA1 are nonparametric model-assisted estimators with hN = 0.1.

2 NMA2 and INMA2 are nonparametric model-assisted estimators with hN = 0.25.
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Table 5: Empirical MSE of each estimator in the case of 50 classes.

f 0.06 0.10 0.06 0.10 0.06 0.10

Linear Quadratic Exponential

HT 0.00034 0.00020 0.02011 0.01233 0.00294 0.00173

HT-Beta 0.00029 0.00019 0.01708 0.01183 0.00221 0.00144

HT-mse 0.01079 0.00795 0.01782 0.01139 0.00240 0.00156

HT-Rob 0.00024 0.00014 0.01712 0.01113 0.00226 0.00150

IHT 0.00026 0.00015 0.01301∗ 0.00941∗ 0.00180∗ 0.00126∗

LMA 0.00028 0.00017 0.00140 0.00078 0.00096 0.00062

LMA-Trim 0.00638 0.00661 0.00135 0.00085 0.00096 0.00073

LMA-Rob 0.00027 0.00016 0.00141 0.00081 0.00088 0.00059

ILMA 0.00027∗ 0.00016∗ 0.00124∗ 0.00073∗ 0.00080∗ 0.00054∗

NMA1 0.00053 0.00042 0.00250 0.00076 0.00074 0.00034

INMA1 0.00053∗ 0.00042 0.00250 0.00076 0.00074 0.00034

NMA2 0.00094 0.00036 0.00049 0.00021 0.00060 0.00024

INMA2 0.00094 0.00036∗ 0.00049 0.00021 0.00060 0.00024

Cycle1 Cycle4 CDF

HT 0.07327 0.04546 0.03884 0.02230 1.25E-04 7.15E-05

HT-Beta 0.08094 0.05147 0.03689 0.02208 1.25E-04∗ 7.12E-05∗

HT-mse 0.07654 0.04677 0.03496 0.02039∗ 1.25E-04 7.15E-05

HT-Rob 0.07499 0.04602 0.03464 0.02087 1.30E-04 7.30E-05

IHT 0.06772∗ 0.04176∗ 0.03197∗ 0.02067 1.25E-04 7.15E-05

LMA 0.00360 0.00213 0.01206 0.00649 8.75E-05∗ 4.91E-05∗

LMA-Trim 0.00528 0.00324 0.01142∗ 0.00616∗ 1.36E-04 8.08E-05

LMA-Rob 0.00354 0.00212 0.01283 0.00678 9.09E-05 5.01E-05

ILMA 0.00343∗ 0.00202∗ 0.01186 0.00641 8.77E-05 4.91E-05

NMA1 0.00367 0.00060 0.00814 0.00347 3.72E-07 1.99E-07

INMA1 0.00367 0.00060 0.00813 0.00346 3.72E-07 1.99E-07

NMA2 0.00112 0.00050 0.02011 0.01019 1.03E-05 5.60E-06

INMA2 0.00111 0.00049 0.01993 0.01012 1.02E-05 5.59E-06

1 NMA1 and INMA1 are nonparametric model-assisted estimators with hN = 0.1.

2 NMA2 and INMA2 are nonparametric model-assisted estimators with hN = 0.25.
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Table 6: Empirical MSE of each estimator in the case of 100 classes.

f 0.06 0.10 0.06 0.10 0.06 0.10

Linear Quadratic Exponential

HT 0.00048 0.00024 0.02895 0.01947 0.00552 0.00344

HT-Beta 0.00035 0.00023 0.02102 0.01590 0.00320 0.00235

HT-mse 0.03140 0.01564 0.02493 0.01700 0.00386 0.00271

HT-Rob 0.00028 0.00015 0.02230 0.01542 0.00373 0.00261

IHT 0.00028 0.00015 0.01553∗ 0.01093∗ 0.00271∗ 0.00200∗

LMA 0.00031 0.00017 0.00173 0.00102 0.00155 0.00099

LMA-Trim 0.00769 0.00762 0.00171 0.00108 0.00184 0.00153

LMA-Rob 0.00030 0.00016∗ 0.00175 0.00101 0.00144 0.00094

ILMA 0.00029∗ 0.00016 0.00156∗ 0.00088∗ 0.00128∗ 0.00083∗

NMA1 0.00073 0.00063 0.00531 0.00166 0.00145 0.00073

INMA1 0.00073∗ 0.00063 0.00531 0.00166 0.00145 0.00073

NMA2 0.00117 0.00043 0.00102 0.00035 0.00092 0.00038

INMA2 0.00117 0.00043∗ 0.00102 0.00035 0.00092 0.00038

Cycle1 Cycle4 CDF

HT 0.09935 0.05699 0.07824 0.04604 1.10E-04 6.06E-05

HT-Beta 0.09763 0.06322 0.05850 0.04023 1.10E-04∗ 6.04E-05∗

HT-mse 0.10184 0.05860 0.06227 0.03891 1.10E-04 6.06E-05

HT-Rob 0.09379 0.05573 0.06176 0.03997 1.14E-04 6.19E-05

IHT 0.07837∗ 0.04777∗ 0.04721∗ 0.03244∗ 1.10E-04 6.06E-05

LMA 0.00494 0.00334 0.01286 0.00832 7.85E-05 4.27E-05

LMA-Trim 0.00819 0.00568 0.01136 0.00774 2.52E-04 1.81E-04

LMA-Rob 0.00473 0.00324 0.01329 0.00855 8.06E-05 4.30E-05

ILMA 0.00439∗ 0.00299∗ 0.01223 0.00799 7.79E-05∗ 4.22E-05∗

NMA1 0.00924 0.00212 0.01890 0.00792 3.41E-07 1.69E-07

INMA1 0.00924 0.00212 0.01889∗ 0.00792∗ 3.41E-07 1.69E-07

NMA2 0.00190 0.00078 0.03874 0.01871 1.02E-05 5.03E-06

INMA2 0.00188 0.00078 0.03861 0.01863 1.01E-05 5.00E-06

1 NMA1 and INMA1 are nonparametric model-assisted estimators with hN = 0.1.

2 NMA2 and INMA2 are nonparametric model-assisted estimators with hN = 0.25.
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INMA estimator outperforms the traditional NMA estimator, while their

accuracy is affected by the bandwidths. Under the complex model, the

NMA estimator is better than the LMA estimator when an appropriate

bandwidth is selected. Tables S7 - S12 in the supplementary material S2.1

show the biases and variances corresponding to Tables 4 - 6. Similar to

Tables S1 - S6, the squared biases of all estimators are negligible and the

untrimmed estimators often have lower biases than the trimmed estimators.

7.3 Empirical example

We use a real data set called “BigLucy” in R package “TeachingSampling”

to compare the estimators given in Subsection 7.1. This data set is a

full business population database, and includes some financial variables of

85,396 industrial companies of a city in a particular fiscal year. D = 2000

replicated samples are selected from the data set by Poisson sampling, and

the first-order inclusion probability is proportional to the total amount

of a company’s earnings (Income, denoted by x). We report some

numerical characteristics and histograms of the inclusion probabilities in the

supplementary material S2.5. Let n0 be the sum of all first-order inclusion

probabilities. For the LMA-type estimators, the auxiliary variable is set to

be x = (1, x). We focus on estimating the mean number of employees in

the company.

Table 7 reports the empirical MSE of each estimator for the “BigLucy”

data set. Similar to the conclusions in Subsection 7.1, the accuracy of all
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Table 7: Empirical MSE of each estimator for the “BigLucy” data set.

n0 256 512 853 1279 1706 2132

HT 28.6199 12.1969 8.6787 6.3637 4.2780 3.6931

HT-Beta 20.1850 11.5708 7.3177 5.1427 4.2289 3.8235

HT-mse 37.3624 14.3698 9.5720 7.3897 5.0499 4.1914

HT-Rob 22.6932 11.4337 7.0996 4.7703 3.4765 3.0529

IHT 19.8424∗ 10.9296∗ 6.5290∗ 4.1379∗ 3.1888∗ 2.7307∗

HA 5.9226 2.9018 1.8254 1.3513 0.9601 0.8111

HA-Beta 5.2591 2.6245 1.7547 1.1579 0.8529 0.8150

HA-mse 5.2330 2.5328 1.6285 1.0518∗ 0.7318 0.6494

HA-Rob 5.5099 2.6745 1.7026 1.1371 0.7906 0.7302

IHA 5.1643∗ 2.5235∗ 1.6140∗ 1.0592 0.7317∗ 0.6426∗

LMA 3.9425 2.0699 1.2487 0.9047 0.6417 0.5581

LMA-Trim 4.1171 2.2671 1.4558 1.1946 0.8941 0.7629

LMA-Rob 3.9132 2.0377 1.1750 0.8178 0.5696 0.4978

ILMA 3.7602 1.9636 1.1248 0.7802 0.5262 0.4722

estimators increases as n0 increases. It is observed that the LMA-type

estimators are the best, and the HT-type estimators are the worst. The

improved estimators obtained by probability thresholding perform the best

in their respective estimation types, and the threshold K∗ (= 1800, 1080,

756, 576, 504, 451) decreases as n0 increases. Tables S13 - S14 in the

supplementary material S2.1 show the biases and variances corresponding

to Table 7. It can be found that the squared biases of all estimators

are negligible, and the untrimmed estimators have lower biases than the

trimmed estimators.

8. Concluding Remarks

In this paper, using the modified first-order inclusion probabilities given by

Zong et al. (2019), we have developed an improved model-assisted estima-
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tion approach via probability thresholding. Like classical model-assisted

estimators, we have established the design properties of the improved

model-assisted estimators including calibration, design consistency and

asymptotic design unbiasedness. The design mean squared errors and their

estimators for the proposed estimators have also been derived. Moreover,

we have theoretically compared the accuracy of the classical model-assisted

estimators and the improved model-assisted estimators. Two simulation

experiments and a real data analysis illustrate the promising of our method.

Our theoretical development on the model-assisted estimation could be

extended to the situations of some other superpopulation models, such as

semiparametric model-assisted estimation (Breidt et al., 2007), single-index

model-assisted estimation (Wang, 2009) and nonparametric additive model-

assisted estimation (Wang and Wang, 2011), and these warrant our further

researches. When the second-order inclusion probabilities of some units

are relatively small, the variance estimators will be very unstable. So it is

worth studying how to modify the first-order and second-order inclusion

probabilities by the hard-threshold method in order for improving the

variance estimators. Additionally, the hard-threshold method is also useful

to some other sampling designs such as multi-stage sampling, systematic

sampling with unequal probabilities and adaptive cluster sampling, and

other statistical problems like the treatment of missing data where inverse

probability weighting is often used.
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Supplementary Material

The supplementary material contains the proofs of theoretical results and

additional numerical results.
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