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Abstract: Researchers have used and discussed multisource data integrative anal-

ysis in many fields. In this paper, we focus on quantile regression for an analysis

that has not been investigated in the literature. Specifically, we consider quantile

integrative analysis of multisource and high-dimensional data where both ho-

mogeneity and heterogeneity may exist in covariate effects among different data

sets. We aim to detect the homogenous and heterogenous effects, obtain the

estimators of corresponding parameters, and improve the statistical efficiency of

the potential homogeneous covariate effects by integrating the information con-

tained in different data sources, while the raw data are unavailable. For the

problem, we propose an objective function based on a composite penalty. In

particular, we propose the composite penalty term to pursue the homogeneous

and nonzero covariate effects when the dimension of covariates is high; the main

term of the objective function can aggregate the quantile regression estimators

from the various data sources and hence improve the statistical efficiency of po-

tential homogeneous covariate effects. Meanwhile, it relies only on the summary
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statistics from each data source and thus can protect privacy to a great extent.

The proposed privacy protection estimators of the homogeneous effects achieve

the same statistical efficiency as the benchmark estimators obtained based on

individual-level data. We establish the selection consistency and asymptotic nor-

mality of the proposed estimators for homogeneous effects, and the numerical

results suggest the performance of the proposed estimators is good. Finally, we

apply the proposed method to the Chinese Annual Survey of Industrial Firms

data set.

Keywords and phrases: Privacy preservation; Quantile regression; Heterogeneous

data; Integrative analysis; Distributed learning; High dimensional.

1. Introduction

Multisource data integrative analysis or meta-analysis has become increas-

ingly important because of the amount of data generated in various applica-

tion fields. Examples include the PM2.5 data from different cities in China

(Liang et al., 2016), the social media data from different social platforms

(Moniz and Torgo, 2018), and the electronic health records data from differ-

ent hospitals (Cai et al., 2022). Among others, multisource data integrative

analysis can improve statistical efficiency by increasing the effective sample

size, and provide more comprehensive information for decision makers.

One area very close to integrative analysis is distributed learning be-
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cause both involve data fusion. Distributed learning can be categorized

into two types depending on whether all data is stored together. The first

type involves all data being stored in same place, also often referred to as

“divide and conquer”. It divides the whole dataset into small data blocks

and collaboratively trains the model by using parallel computing systems

(Zhang et al., 2015). Hence, it requires data to be homogeneous because the

data is usually randomly divided. The second type is where the data has

been naturally collected and stored in different locations, and hence there

may be heterogeneity among different data blocks (Duan et al., 2021). It

is also known as federated learning (Ghosh et al., 2019). It is worth noting

that distributed learning focuses on the trade-off between computational

efficiency and estimation efficiency, while integrative analysis prioritizes es-

timation efficiency. Integrative analysis and the second type of distributed

learning can be regarded as the same if the differences in focus are ignored.

In the following context, we will no longer distinguish the literature from

the two fields, since many methods are common to both fields, although we

still focus more on integrative analysis.

Multisource data integrative analysis faces several challenges. The first

challenge is that individual-level data for integrative analysis are often un-

available because of privacy considerations. Hence authors usually focus
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on data fusion based on summary statistics from different data sources. In

particular, meta-analysis (Lin and Zeng, 2010) and confidence distribution

methods (Liu et al., 2015) based on summary statistics alone are frequently

applied. The second challenge is that data is usually high-dimensional.

High-dimensional inference problems have captured attention within statis-

tics over the past decade (Tibshirani et al., 2015), and led to the investiga-

tion of high-dimensional distributed learning as a means of tackling large

datasets with high-dimensional features, see, e.g., Lee et al. (2017). The

third challenge is that there exists potential heterogeneity among different

data sources. The identification of homogeneity can reduce model complex-

ity and improve statistical efficiency and power. Note that “homogeneity”

and “heterogeneity” may have different meanings or interpretations in var-

ious applications. In our paper, homogeneity means that the effects on

the same covariates are the same across all data sources, and heterogene-

ity allows for the effects on the same covariates to be different, see, e.g.,

Cai et al. (2022). It is worth mentioning that although Cai et al. (2022)

have considered integrative regression analysis of high-dimensional hetero-

geneous data and gave a method to identify the effects of the homogeneous

covariates, their approach relies on smooth objective functions or estima-

tion equations, and thus cannot be generalized easily to some powerful but
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unsmooth approaches such as the quantile regression.

Quantile regression (QR), first introduced by Koenker and Bassett

(1978), has been studied extensively because of its fascinating features,

such as its robustness to data with outliers, and its ability to provide a com-

prehensive analysis of the impact of covariates on response variables, etc.

QR integrative analysis or QR distributed learning faces challenges both

from computation and theoretical derivation due to the non-smoothness

of the objective function involved. Some authors have discussed QR for

distributed learning while there are few studies of QR integrative analy-

sis. For example, Volgushev et al. (2019) developed the inference procedure

for quantile process based on a naive divide and conquer quantile regres-

sion estimator at fixed quantile levels. Chen and Zhou (2020) presented

a divide-and-conquer based QR analysis method for big data. The pro-

posed estimator, which is a weighted average of local estimators obtained

using small data blocks and computed on separate machines, has a closed

form. However, their model fails to address the challenges posed by high-

dimensional sparse problems. To overcome the computational difficulty in

QR and the memory constraint, Chen et al. (2019) and Chen et al. (2020)

proposed divide and conquer QR methods based on kernel smoothing loss

function and least-square-type loss function respectively for massive data
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with high covariate dimensionality. However, both methods involve kernel

technique, and hence bandwidth choice caused some trouble in their ap-

plication. Wang and Lian (2020) extended the surrogate-likelihood idea of

Jordan et al. (2019) to high-dimensional QR and established the related the-

oretical properties of the non-smooth loss function for the situation where

the number of covariates is greater than the sample size. Notably, all of

the QR methods mentioned above do not take into account the potential

heterogeneity of the data. To our best knowledge, there is currently no

published paper on integrative QR analysis of high-dimensional heteroge-

neous multisource data, despite its crucial importance in various real-world

applications. For instance, when examining the economic development of

Chinese enterprises, it is intriguing to investigate how variables such as cor-

porate debt ratio and corporate size influence the total factor productivity

(TFP) of enterprises in four industrial cities in China. An enterprise’s TFP

is a significant metric for gauging its economic development accomplish-

ments, and a comprehensive exploration of it at various levels can provide

a more accurate reflection of the enterprise’s economic development status.

In Section 6, our QR integrative analysis revealed heterogeneity in the im-

pact of covariates on the TFP of enterprises in the four industrial cities in

China. For a more detailed understanding, please refer to Section 6.
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One area closely to QR integrative analysis is QR transfer learning,

detail please see Huang et al. (2022) , Jin et al. (2022) and Zhang and Zhu

(2022). It’s important to note that QR transfer learning and QR integrative

analysis also have different focuses. The former aims to transfer knowledge

from source data to improve the learning performance of the target problem,

while the latter aims to improve the estimation efficiency of homogeneous

effects across all datasets. However, one common challenge encountered in

both fields is how to perform transfer learning or data integrative analysis

while data sets can not be shared due to privacy protection. Actually,

individual-level data is unavailable in many real applications.

It motivates us to consider the integrative QR analysis of high-dimensional

heterogeneous multisource data with privacy preservation. Specifically, the

contribution of this article is multi-fold. First, the proposed quantile inte-

grative framework accommodates the situation that all data sources may

be heterogeneous while some of the covariates effects may be homogeneous.

The procedure utilizes composite penalty to detect homogeneous and het-

erogeneous effects, estimates the corresponding parameters, and enhances

the statistical efficiency of potential homogeneous covariate effects by in-

tegrating information from diverse data sources. Second, we establish the

consistency and asymptotic normality of the estimators for homogeneous
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effects under regular conditions, when the number of covariates goes to infin-

ity as the smallest sample size among different data sources goes to infinity.

The proposed privacy protection estimators of the homogeneous effects can

achieve the same statistical efficiency as the benchmark estimators obtained

based on individual-level data. Third, the proposed approach can address

the high-dimensional data and obtain a sparse consistent estimator, which

relies on only the summary statistics from each data source and hence can

protect privacy to a great extent. Finally, the proposed procedure is highly

efficient and robust when the data are skewed, contain outliers, or suffer

heavy tail noise, and thus it has wide application prospects. It is worth

noting that the proposed method can be used as a communication-efficient

distributed learning approach for heterogeneous data.

The remainder of this paper is organized as follows. In Section 2, we

present the proposed estimation procedure, and in Section 3 we establish

the asymptotic properties of the proposed estimators. We discuss the imple-

mentation of the proposed approach in Section 4, particularly the adoption

of the minorization-maximization algorithm. In Section 5, we present simu-

lation results obtained to assess the proposed method’s performance; these

results suggest it works well for practical situations. In Section 6, we apply

the method to the Chinese Annual Survey of Industrial Firms data set.
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Finally, in Section 7, we offer discussion and concluding remarks. Techni-

cal details, additional simulations and the variable information in practical

application are given in the Supplementary Material.

2. Integrative QR analysis

Suppose that there are K independent data sources and let nk denote the

number of subjects in the kth data source, k = 1, . . . , K. Also, let Y
(k)
i ,X

(k)
i

denote the response variable and the pn-dimensional vector of covariates

associated with the ith subject in the k-th data source, respectively. With-

out loss of generality, we assume the observations within each data source

are independent and the covariate X
(k)
i includes 1 as the first component.

We assume some covariates have homogeneous effects across different data

sources, but we do not know which covariates they are. We will develop

a homogeneous detection method to identify them later. Beforehand, we

cannot and hence do not distinguish between homogeneous variables and

heterogeneous variables in the model, and we write all covariates effects in

heterogeneous form. For the k-th data source and a specified quantile level

τ ∈ (0, 1), define the population QR parameter of interest as

β
(k)
τ0 = argmin

β
(k)
τ

L(k)(β(k)
τ ),whereL(k)(β(k)

τ ) = Eρτ (Y
(k)
i −X

(k)T
i β(k)

τ ),
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where ρτ (ϵ) = ϵ(τ − I(ϵ < 0)). For simplicity, throughout the paper we will

omit the subscript τ of β(k)
τ when there is no confusion, or write the true

parameter β
(k)
τ0 as β

(k)
0 and further define β0 = (β

(1)T
0 , . . . ,β

(K)T
0 )T .

To estimate the QR parameters of interest, we first will discuss the

situation where raw data are available. For j = 1, . . . , pn and k = 1, . . . , K,

let βj = (β
(1)
j , . . . , β

(K)
j )T , where β

(k)
j is the j-th component of β(k). Define

β = (β(1)T , . . . ,β(K)T )T . Define β
(k)
0,−1 as a vector obtained by omitting

the 1th component of β
(k)
0 for k = 1, . . . , K. Denote N =

∑K
k=1 nk as the

total sample size of all data sources. If all data sources have the same

covariate effect, that is, when all data sources are homogeneous, to improve

the estimation efficiency, it is natural to consider the following integrative

loss function

LN(β) =
1

N

K∑
k=1

nkL
(k)
n (β(k)),where L(k)

n (β(k)) =
1

nk

nk∑
i=1

ρτ (Y
(k)
i −X

(k)T
i β(k)).

However, it is not easy to distinguish the covariates with and without ho-

mogeneous effects. To detect the potential homogeneous effects, we will

borrow the random effect modeling idea by treating the β(k), k = 1, . . . , K,

as random effects for different data sources. Specifically, if β
(1)
0,−1, . . . ,β

(K)
0,−1

share similar supports and magnitudes, for j = 2, . . . , pn, k = 1, . . . , K, we

can decompose β
(k)
j as αj + γ

(k)
j , where αj denotes the average effects and

γ
(k)
j represents the deviance of effects in study k from the average effects αj
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with
∑K

k=1 γ
(k)
j = 0 for identifiability. Cheng et al. (2015), and Cai et al.

(2022) among others, have used similar techniques.

Define γj = (γ
(1)
j , . . . , γ

(K)
j )T . In the following, we will consider the

composite penalty function

ϕ(β) =

pn∑
j=2

Pλ1(|αj|) +
pn∑
j=2

Pλ2(∥γj∥) ,

which is the mixture of a penalty for a single parameter and a group penalty

for a parameter vector. In the above, ∥ ·∥ denotes the L2 norm for a vector,

λ1 and λ2 are the tuning parameters, and Pλ(·) is a penalty function. In the

following, we will focus on the SCAD penalty (Fan and Li, 2001) because

of its oracle properties, and its first derivative is defined as

P ′
λ(b) = λ

{
I(b ≤ λ) +

(aλ− b)+
(a− 1)λ

I(b > λ)

}
,

where a > 2 and λ > 0 are tuning parameters. Note the use of the penalty

function divides covariate effects into three mutually exclusive groups as

follows (1) Homogeneous effects: αj ̸= 0 and ∥γj∥ = 0; (2) Heterogeneous

effects: ∥γj∥ ̸= 0; (3) Null effects: αj = 0 and ∥γj∥ = 0. It follows that a

natural objective function based on individual-level data is given by

GN(β) = LN(β) + ϕ(β). (2.1)

If individual-level data are available, then we can estimate β by β̂ILD =

argminβ GN(β) and reference it as the benchmark estimator.
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Of course, as discussed earlier, raw data are often unavailable because

of privacy preservation methods. Then when only summary statistics are

available, we write the integrative loss function LN(β) as

LN(β) =
1

N

K∑
k=1

nk(L
(k)
n (β(k))− L(k)

n (β̃
(k)
)) +

1

N

K∑
k=1

nkL
(k)
n (β̃

(k)
),

where β̃
(k)

= argminβ(k) L
(k)
n (β(k)), and we reference it as the local esti-

mator. Note the second term of the right-hand side of the equation above

does not contain unknown parameters. Thus, the minimization of LN(β)

is equivalent to the minimization of N−1
∑K

k=1 nk(L
(k)
n (β(k)) − L

(k)
n (β̃

(k)
)).

In addition, note that under some regularity conditions, we can derive (see

Lemma 2 for further details)

N−1

K∑
k=1

nk(L
(k)
n (β(k))− L(k)

n (β̃
(k)
))

= (2N)−1

K∑
k=1

nk(β
(k) − β̃

(k)
)TVk(β

(k) − β̃
(k)
) + op(1), (2.2)

where Vk = n−1
k

∑nk

i=1E[X
(k)
i X

(k)T
i fY |X(X

(k)T
i β

(k)
0 |X(k)

i )] and fY |X(·|X(k)
i )

denotes the conditional probability density function of Y given X. Mo-

tivated by these, we propose the following objective function

QN(β) =
1

2N

K∑
k=1

nk(β
(k) − β̃

(k)
)T Ṽk(β

(k) − β̃
(k)
) + ϕ(β), (2.3)

where Ṽk denotes an estimator of Vk, and one way to obtain it is to use the

bootstrap procedure (discussed later). Clearly, the integrative loss function
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QN(β) depends only on the summary statistics {nk, β̃
(k)
, Ṽk, k = 1, . . . , K}

provided by individual data sources. Thus, a natural estimator of the regres-

sion parameter β with privacy preservation is given by β̂ = argminβ QN(β).

Let α = (α1, . . . , αpn)
T and γ = (γ(1)T , . . . ,γ(K)T )T , where γ(k) =

(γ
(k)
1 , . . . , γ

(k)
pn )

T . To identify the structure of covariates, the objective func-

tion (2.3) can be rewritten as

QN(α,γ) =
1

2N

K∑
k=1

nk(α+ γ(k) − β̃
(k)
)T Ṽk(α+ γ(k) − β̃

(k)
) + ϕ(β).(2.4)

Based on this new objective function QN(α,γ), we can obtain (α̂, γ̂) =

argminα,γ QN(α,γ), and further obtain β̂
(k)
j = α̂j + γ̂

(k)
j .

Remark 1. The objective function QN(α,γ) (or QN(β)) has some nice

features. On the one hand, it protects the privacy of the data to some

extent since it only relies on summary statistics from different data sources

instead of raw data. On the other hand, the composite penalty function

can identify homogeneous, heterogeneous, and null effects, which results in

a sparse solution for high-dimensional issues.

3. Asymptotic properties

We will now establish the asymptotic properties of the proposed estimator

β̂. To do this, we first define some notation. Let L∗
N(α,γ) denote the
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first term on the right side of (2.4), and α0 = (α01, . . . , α0pn)
T and γ0 =

(γ
(1)T
0 , . . . ,γ

(K)T
0 )T be the true values of corresponding parameters. Let

qn = Kpn be the total number of parameters, FY |X(·|X(k)
i ) denote the

conditional distribution function of response Y given X. Denote Aα = {j :

αj ̸= 0, j = 2, . . . , pn}, Aγ = {j : ∥γj∥ ̸= 0, j = 2, . . . , pn}. Let A = Aα∪Aγ,

A∗ = Aα ∩Ac
γ, where A

c
γ denotes the complement of set Aγ. Obviously, the

index set Ac represents the covariates producing null effect, A∗ denotes the

covariates producing non null homogeneous effect. Throughout the paper,

Λ(·) are eigenvalues of a matrix, and Λmin(·) ≤ · · · ≤ Λmax(·). Furthermore,

let | · | represent its cardinality for a set, define ∥ · ∥1 as the L1 norm of the

vector, and for the matrix, ∥ · ∥ is defined by ∥ · ∥ = Λ
1/2
max(·). Also define

Uk = n−1
k

∑nk

i=1E(X
(k)
i X

(k)T
i )

In the following, we assume that the number of parameters pn goes to

infinity as the sample size nk increases but pn < nk, k = 1, . . . , K. We also

assume that the sample size nk for all data sources diverges in the same order

O(N/K), and K = O(nι) (0 ≤ ι ≤ 1/3), where n = min1≤k≤K{nk}. It is

common forK to diverge at some rate that depends on the minimum sample

size in meta-analysis and distributed learning (Lin and Xi (2011), Chen and

Zhou (2020)). In addition, we need the following regularity conditions.

(C1) The conditional probability density function of Y given covariates
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fY |X(·|X(k)
i ) and its first-order derivative is bounded for any k ∈

{1, . . . , K}.

(C2) There exist constants b1 and b2 such that 0 < b1 ≤ min1≤k≤K Λmin(Uk) ≤

max1≤k≤K Λmax(Uk) ≤ b2 < ∞ and max1≤i≤nk,1≤j≤pn |X
(k)
ij | = Op(1)

for k = 1, . . . , K.

(C3) ∥Ṽk − Vk∥ = Op(
√

pn
n
) for k = 1, . . . , K.

(C4) K(|Aα|λ2
1 + |Aγ|λ2

2) = o(1) as n → ∞, λ1 → 0, λ2 → 0.

(C5)
√

pn
n
/λ1 → 0 as n → ∞, λ1 → 0, and

√
pn
n
/λ2 → 0 as n → ∞,

λ2 → 0.

(C6) lim infn→∞ lim infθ→0
P ′
λ(θ)

λ
> 0.

(C7) There are positive constants C and D, when α1, α2 > Cλ, |P ′′
λ (α1)−

P ′′
λ (α2)| ≤ D|α1 − α2|.

Note that Condition (C1) is common in the QR literature (Chen et al.

(2015)), and Condition (C2) is about the behavior of the covariate matrix.

Condition (C3) is essential to obtain the asymptotic normality of the pro-

posed estimator (Chen and Zhou (2020)), and Condition (C4) guarantees

the consistency of β̂ (Huang and Xie (2007)). Conditions (C5) and (C6) are

required to obtain the proposed estimator’s the selection consistency, and
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Condition (C7) is imposed for the smoothness of the nonconcave penalty

functions and is essential for the asymptotic normality of the proposed es-

timator. Conditions (C5)-(C7) can be found in Fan and Peng (2004).

Now we are ready to establish the consistency of the proposed estima-

tors and their selection consistency.

Theorem 1 (Estimation Consistency). Assume that Conditions (C1), (C2),

and (C4) hold, if pn(log pn)
3/n → 0 as n → ∞, then ∥β̂−β0∥ = Op

(
(qnK/N)1/2

)
.

Theorem 2 (Selection Consistency). Assume that Conditions (C1)-(C6)

hold, if λ1 → 0, λ2 → 0, and pn(log pn)
3/n → 0 as n → ∞, then Pr(β̂Ac =

0) → 1, Pr(α̂Ac
α
= 0) → 1, and Pr(∥γ̂Ac

γ
∥ = 0) → 1.

Remark 2. Theorem 2 guarantees the sparsity remains valid when the

number of parameters diverges, and it provides two results about consis-

tency. The first is the variable selection consistency, meaning for the case

of null effect (i.e. j ∈ Ac), the corresponding estimators equal to zero with

probability approaching 1. The second is the consistency of homogeneous

and heterogeneous detection. Note that β̂Ac
γ
= α̂Ac

γ
are the homogeneous

covariate effects because ∥γ̂Ac
γ
∥ = 0 with probability approaching 1. This

means the proposed method can detect the homogeneous covariate effect

correctly with probability approaching 1.
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To establish the asymptotic normality, divide β(k) as β(k) = (β
(k)T
A∗ ,β

(k)T
A∗c )T ,

where β
(k)
A∗ denotes the part of non null homogeneous effects and β

(k)
A∗c de-

notes the others. For simplicity, write α = (αT
A∗ ,αT

A∗c) and do the same

for α0. Note that for j ∈ A∗, β
(1)
j = · · · = β

(K)
j = αj. It thus follows

that β
(1)
A∗ = · · · = β

(K)
A∗ = αA∗ . Furthermore, decompose the matrix Vk as

(V 11
k , V 12

k ;V 21
k , V 22

k ), where V 11
k is the |A∗| × |A∗| submatrix of Vk and does

the same for Ṽk. Let b represent the gradient vector that is the derivative of

the first penalty term concerning αA∗ at α0A∗ with its jth component be-

ing P ′
λ1
(|α0j|)sign(α0j), j = 2, . . . , |A∗|. Let Σλ1 denote the diagonal hessian

matrix that is the second derivative of the first penalty term concerning

αA∗ at α0A∗ with its jth diagonal element being P ′′
λ1
(|α0j|), j = 2, . . . , |A∗|.

Theorem 3 (Asymptotic Normality). Assume that Conditions (C1)-(C7)

hold, if λ1 → 0, λ2 → 0, and p3n(log pn)
2/n → 0 as n → ∞, then for any j ∈

A∗, we have that
√
NeT

[(
N−1

∑K
k=1 nkV

11
k +Σλ1

)
(α̂A∗ −α0A∗)+ b

]
/σ

D−→

N(0, 1) for any |A∗|-dimensional vector e such that ∥e∥ = 1, where σ2 =

eTΣe and Σ = N−1
∑K

k=1 nk(V
11
k , V 12

k )τ(1− τ)V −1
k UkV

−1
k (V 11

k , V 12
k )T .

Remark 3. Theorem 3 presents the asymptotic normality of homogeneous

effects. The conclusion of this theorem and Lemma 5 suggests that α̂A∗

and α̂ILDA∗ , the proposed estimator and the benchmark estimator of the

homogeneous effects given by minimizing (2.4) and (2.1), can achieve same
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asymptotic efficiency.

Remark 4. In this paper, we focus on improving the asymptotic efficiency

of the homogeneous effects by integrative analysis of multiple data sources.

For the heterogeneous effects β̂Aγ
, compared to the naive estimator based on

only its own data source, the integrative estimator does not have significant

efficiency gain, which was confirmed by extended experimental exploration.

Asymptotic covariance estimation

To estimate the asymptotic covariance matrix of α̂A∗ , one approach

is to apply the plug-in method to obtain N−1B̃−1Σ̃B̃−1. In the above,

B̃ = N−1
∑K

k=1 nkṼ
11
k +Σ̂λ1 , where Σ̂λ1 denotes the estimator of Σλ1 with its

jth diagonal element given by P ′′
λ1
(|α̂j|), Σ̃ = N−1

∑K
k=1 nk(Ṽ

11
k , Ṽ 12

k )τ(1−

τ)Ṽ −1
k ŨkṼ

−1
k (Ṽ 11

k , Ṽ 12
k )T . Here Ṽk = n−1

k

∑nk

i=1X
(k)
i X

(k)T
i f̂Y |X(X

(k)T
i β̃

(k)|X(k)
i )

and Ũk = n−1
k

∑nk

i=1X
(k)
i X

(k)T
i . This involves the estimation of the condi-

tional density fY |X(X
(k)T
i β̃

(k)|X(k)
i ), which is usually done by the kernel

method in general, then the involved choice of the bandwidth is quite un-

stable, especially in high-dimensional situations.

To avoid the nonparametric density estimation, we suggest employing

the efficient resampling method discussed in Zeng and Lin (2008) to di-

rectly estimate Ṽk. Specifically, let Ψ
(k)
n (β(k)) ≜ n−1

k

∑nk

i=1X
(k)
i (I(Y

(k)
i −

X
(k)T
i β(k) < 0)− τ) = 0 be the estimating equation corresponding to mini-
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mizing L
(k)
n (β(k)). One can verify that nkΨ

(k)
n (β̃

(k)
) satisfies the asymptotic

expansion (2.1) of Zeng and Lin (2008) (see Lemma 3 for further details).

Then, the least squares (LS) resampling method proposed by Zeng and

Lin (2008) can be used to obtain the estimator Ṽk. More specifically, let

β̌
(k)

= β̃
(k)

+n
−1/2
k Z, where Z is a zero-mean pn -dimensional random vector

independent of the data and can be generated from the multivariate normal

distribution, as discussed later. Then, we have

√
nkΨ

(k)
n (β̌

(k)
) = VkZ+ op(1). (3.1)

Note each row of Vk can be regarded as the unknown parameter of a linear

regression by (3.1). To implement this, we can first generate R realiza-

tions of Z, denoted by Z1, . . . ,ZR, calculate
√
nkΨ

(k)
n (β̃

(k)
+ n

−1/2
k Zr)(r =

1, . . . , R) and the least squares estimator of
√
nkΨ

(k)
nj (β̃

(k)
+ n

−1/2
k Zr)(r =

1, . . . , R) on Zr(r = 1, . . . , R), and then set the jth least squares estimate

to be the jth row of Ṽk for j = 1, . . . , pn, where Ψ
(k)
nj denotes the jth compo-

nent of Ψ
(k)
n . Note the estimators Ṽk in (2.3) and (2.4) can also be obtained

by the same method.

4. MM algorithm

In this section, we discuss the determination of the proposed estimator β̂ or

the minimization of the objective function (2.4). This is not straightforward
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because the penalty function term ϕ(β) is nondifferentiable at the origin

and does not have continuous second-order derivatives. To overcome this,

we employ the minorization-maximization (MM) algorithm (Hunter and Li,

2005). Then the penalty function Pλ(|b|) can be represented by

Pλ(|b|) = Pλ(|b0|) +
(b2 − b20)P

′
λ(|b0|)

2(η + |b0|)
, (4.1)

where η is a prespecified perturbation to prevent the denominator on the

right side of (4.1) from being 0. Then, the m + 1 step estimates can be

updated by

(α̂{m+1}, γ̂{m+1}) = argmin
α,γ

{
L∗
N(α,γ) +

pn∑
j=2

(α2
j − α̂

{m}2
j )P ′

λ1
(|α̂{m}

j |)
2(η1 + |α̂{m}

j |)

+

pn∑
j=2

(∥γj∥2 − ∥γ̂{m}
j ∥2)P ′

λ2
(∥γ̂{m}

j ∥)
2(η2 + ∥γ̂{m}

j ∥)

}
.

In the above, following Hunter and Li (2005), we propose to fix η1 =

ε
2Nλ1

min{|α̂{0}
j | : α̂

{0}
j ̸= 0}, and η2 = ε

2Nλ2
min{∥γ̂{0}

j ∥ : ∥γ̂{0}
j ∥ ̸= 0}

for a given tolerance ε and then apply the Newton-Raphson algorithm. For

the initial estimates, a good choice is (α̂{0}, γ̂{0}) = argminα,γ L
∗
N(α,γ).

For the selection of the tuning parameters λ1 and λ2, which control the

sparsity of the model and are essential in the penalized procedure, a com-

monly used approach is the cross-validation criterion. However, it is not fea-

sible here because individual-level data are unavailable. We propose to min-

imize the generalized information criterion (GIC), defined as GIC(λ1, λ2) =
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L∗
N(α̂, γ̂) + ϑndf(λ1, λ2) (Zhang et al., 2010), where ϑn is a positive num-

ber that controls the properties of variable selection and df(λ1, λ2) is the

degrees of freedom of the model. Following Zhang et al. (2010), we em-

ploy df(λ1, λ2) = tr[(∇2
Aα̂,Aγ̂

QN(α̂, γ̂))−1∇2
Aα̂,Aγ̂

L∗
N(α̂, γ̂))], where tr(.) rep-

resents the trace of a matrix and∇2 denotes the second order partial deriva-

tive with respect to (αT
Aα̂

,γ
(1)T
Aγ̂

, . . . ,γ
(k−1)T
Aγ̂

,γ
(k+1)T
Aγ̂

, . . . ,γ
(K)T
Aγ̂

) after repa-

rameterizing by plugging γ(k) = −(γ(1) + . . . + γ(k−1) + γ(k+1) + γ(K))

into QN(α,γ) or L∗
N(α,γ). Further, let ϑn = logN/N , which leads to

GIC being the Bayesian information criterion (BIC). Meanwhile, based on

the conditions of Theorem 3, we provide the tuning parameters (λ1, λ2)

with a rough reference range
(
log(n)c1

√
pn/n, log(n)

c2
√

pn/n
)
for some

c1, c2 > 0. And the tuning parameters λ1, λ2 are selected by searching

on a two-dimensional grid to minimize the BIC. For the parameter a above,

following Fan and Li (2001), we will set a = 3.7. In the numerical studies

below, we evaluate the number of zero coefficients such that an estimate is

treated as zero if its absolute value is smaller than 10−6.

5. A simulation study

We conduct a simulation study to evaluate the proposed method’s

empirical performance. Consider the situation K = 4, pn = 50, and
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[n1, n2, n3, n4] = [1000, 1200, 1400, 1600]. In addition, we set α and γ as

αT

γ(1)T

γ(2)T

γ(3)T

γ(4)T


=



0 2.51×5 2.51×5 01×5 0pn−16

0 2.51×5 01×5 2.51×5 0pn−16

0 −2.51×5 01×5 −2.51×5 0pn−16

0 −2.51×5 01×5 2.51×5 0pn−16

0 2.51×5 01×5 −2.51×5 0pn−16


,

and generate the data from Y
(k)
i = X

(k)T
i β(k) + ϵ

(k)
i , where β(k) = α+ γ(k).

In the above, we assume that ϵ
(k)
i ∼ N(0, 1) or ϵ

(k)
i ∼ N(0, (1 + 0.3X

(k)
i7 )2),

corresponding to the location-shift model or the location-scale-shift model,

respectively; X
(k)
i follows the multivariate normal distribution N(0,ρ) with

ρuv = 0.5|u−v| and contains an intercept. Thus, the τth conditional quantile

of Y
(k)
i is given by Qτ (Y

(k)
i |X(k)T

i ) = X
(k)T
i β(k)

τ . Here, β(k)
τ = β(k) + Φ−1

τ ξ1

or β(k)
τ = β(k) + Φ−1

τ ξ1 + 0.3Φ−1
τ ξ7, corresponding to the location-shift or

location-scale-shift model, respectively; Φ−1
τ denotes the τ -th quantile of the

standard normal distribution, and ξj(j = 1, 7) is a pn-dimensional vector

with the jth element being one and all other elements being zero.

To assess the performance of the proposed method (denoted as PPD

below), we considered two types of quantities. (1) Identification accu-

racy: the true zero rate (TZR) and the error rate (ER) for α and γ to

identify the homogeneity and heterogeneity of covariates, which are de-

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0292



fined as TZR(γ) = 1
M

∑M
m=1

∑pn
j=2 I(∥γj∥=0)I(∥γ̂{m}

j ∥=0)∑pn
j=2 I(∥γj∥=0)

× 100% and ER(γ) ={
1 − TZR(γ) + 1

M

∑M
m=1

∑pn
j=2 I(∥γj∦=0)I(∥γ̂{m}

j ∥=0)∑pn
j=2 I(∥γj∦=0)

}
× 100% with respect to

γ, where M denotes the number of replications. The definition of TZR and

ER with respect to α are the same. (2) Estimation accuracy: the absolute

estimation error (AE) ∥ βτ − β̂τ ∥1.

In addition, we calculated the empirical bias (BIAS) of the estimates

of the homogeneous effect α7 ∼ α11, the standard deviation (SD), the stan-

dard errors of the estimators (SE) which is obtained by the resampling

based variance estimation method given in Section 3, and the 95% empir-

ical coverage probability (COV). For comparison, we also considered the

benchmark estimator given by the method based on individual-level data,

and refer to it as ILD. The results given below are on three quantile levels

τ = {0.25, 0.5, 0.75} with 500 replications. Additional simulations involving

more residual distributions and comparisons with integrative linear regres-

sions are included in the Supplementary Material, due to space limitation.

Tables 1 and 2 present the simulation results obtained under the location-

shift model, and the results on TZR and ER in Table 1 indicate both the

proposed and benchmark estimators can well identify the correct covariate

structure. In terms of estimation accuracy, the proposed estimates have

slightly larger AEs than the benchmark estimator, but the difference is
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Table 1: Simulation results based on the location-shift model.

τ Method

TZR ER

AE(×10−2)
α γ α γ

0.25 PPD 99.78 99.94 0.22 0.06 14.35

ILD 100.00 100.00 0.00 0.00 10.45

0.5 PPD 100.00 100.00 0.00 0.00 13.65

ILD 100.00 100.00 0.00 0.00 6.39

0.75 PPD 99.75 99.93 0.25 0.07 15.29

ILD 100.00 100.00 0.00 0.00 10.94

quite small. Table 2 provides the results of the homogeneous effects. We

can see the proposed estimator seems to be unbiased and the proposed

variance estimation also seems to perform well. In particular, the variance

estimates for the two estimators are close to each other. In addition, the

coverage probability of the PPD under different quantile levels is almost all

around the nominal level of 95%, which ensures the accuracy of the statisti-

cal inference on the covariates with homogeneous effects. Overall the PPD

is competitive with the ILD.

Simulation results under the location-scale-shift model are presented in

Tables 3 and 4 and show similar trends to those obtained under the location-

shift model. The high TZR and low ER in Table 3 demonstrate the PPD’s

accuracy in identifying covariate effects, with its AE asymptotically equal
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Table 2: Simulation results about the homogeneous effects based on the

location-shift model (all entries are multiplied by 100).

τ Method α7 α8 α9 α10 α11

0.25 PPD BIAS 0.04 -0.03 0.11 0.14 0.19

SD 2.41 2.37 2.39 2.42 2.28

SE 2.59 2.58 2.61 2.33 2.31

COV 97.40 96.20 96.20 93.40 95.20

ILD BIAS -0.07 0.13 0.03 -0.07 0.00

SD 2.60 2.55 2.54 2.39 2.19

SE 2.32 2.58 2.58 2.59 2.31

COV 93.60 96.00 96.20 93.80 95.60

0.5 PPD BIAS 0.04 0.08 0.13 0.30 0.26

SD 2.39 2.51 2.50 2.69 2.27

SE 2.33 2.61 2.60 2.60 2.33

COV 96.80 95.80 95.40 92.40 95.40

ILD BIAS -0.06 0.04 0.03 -0.05 0.05

SD 2.29 2.44 2.44 2.27 2.07

SE 2.25 2.51 2.52 2.51 2.25

COV 96.20 96.00 96.20 94.20 95.40

0.75 PPD BIAS 0.21 0.17 0.16 0.03 0.26

SD 2.52 2.53 2.66 2.64 2.19

SE 2.68 2.69 2.67 2.40 2.39

COV 95.99 95.99 95.39 93.39 95.99

ILD BIAS 0.00 -0.04 0.23 -0.09 0.02

SD 2.57 2.59 2.50 2.50 2.35

SE 2.39 2.67 2.68 2.68 2.40

COV 95.20 95.60 95.40 93.60 95.40
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to those of the ILD. Furthermore, the PPD’s four statistical performance

evaluation indicators in Table 4 are comparable to those of the ILD on

covariates with homogeneous effects. In summary, our proposed estimator

with privacy preservation and the benchmark estimator based on the ILD

are asymptotically equivalent, as shown by the simulation results.

Table 3: Simulation results based on location-scale-shift model.

τ Method

TZR ER

AE(×10−2)
α γ α γ

0.25 PPD 99.79 99.85 0.21 0.15 13.78

ILD 100.00 100.00 0.00 0.00 11.68

0.5 PPD 99.93 99.98 0.07 0.02 12.32

ILD 97.60 100.00 2.40 0.00 7.28

0.75 PPD 98.90 99.56 1.10 0.44 14.32

ILD 100.00 100.00 0.00 0.00 12.87

6. An application

We apply the proposed method to the data set of the Chinese An-

nual Survey of Industrial Firms (ASIF), which is conducted for all indus-

trial firms whose annual sales more than RMB 5 million. This dataset

collects the firm’s detailed information including name, identification, own-

ership, balance sheet, profit and loss, and cash flow. With approximately

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0292



Table 4: Simulation results about the homogeneous effects based on the

location-scale-shift model (all entries are multiplied by 100).

τ Method α7 α8 α9 α10 α11

0.25 PPD BIAS 0.98 -0.09 0.06 0.02 0.21

SD 2.12 2.23 2.18 2.25 1.88

SE 2.48 2.49 2.48 2.23 2.06

COV 95.59 97.39 97.60 94.39 96.39

ILD BIAS 0.67 0.02 0.04 -0.04 -0.11

SD 2.22 2.24 2.15 2.25 2.07

SE 2.01 2.39 2.38 2.38 2.13

COV 95.40 96.00 97.00 92.60 93.60

0.5 PPD BIAS 0.26 0.00 0.15 0.19 0.16

SD 2.15 2.13 2.42 2.29 1.96

SE 2.31 2.31 2.32 2.07 1.94

COV 96.20 97.20 94.40 92.60 95.80

ILD BIAS 0.10 -0.03 0.04 0.04 -0.07

SD 2.01 2.24 2.11 2.10 1.95

SE 1.95 2.32 2.32 2.32 2.07

COV 96.80 95.60 97.00 94.80 95.60

0.75 PPD BIAS -0.94 0.12 0.09 0.08 0.16

SD 2.17 2.25 2.40 2.19 1.90

SE 2.46 2.45 2.44 2.20 1.98

COV 95.80 96.60 94.80 94.00 96.40

ILD BIAS -0.51 -0.08 0.09 0.06 -0.11

SD 2.25 2.26 2.34 2.20 2.07

SE 1.93 2.36 2.36 2.36 2.12

COV 95.80 96.20 96.60 94.40 92.40
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400,000 firms surveyed annually, we have more than 1 million observations

for the years 2001-2007. An interesting note is how variables affect the

company’s total factor productivity(TFP), which computed via Olley and

Pakes (1996)’s method.

In this paper, we focus on the TFP performance of China’s four major

industrial cities Shanghai, Ningbo, Hangzhou, and Suzhou in 2006. Specif-

ically, one goal of the study is to assess the effects of various variables on

TFP in the four major industrial cities and to determine the homogeneous

effects, heterogeneous effects and null effects. The variable considered are

company age, company scale, fixed asset ratio, etc. Due to space limitation,

the complete variable information is described in Section S3 of the Supple-

mentary Material. In addition, we also introduce an intercept term (Int).

In summary, pn = 25, K = 4 and [n1, n2, n3, n4] = [5735, 4608, 3463, 4170].

Tables 5 - 7 present the analysis produced by the proposed method

based on the quantile levels τ = 0.25, 0.5, 0.75, respectively, including the

estimated β and α along with the estimated standard errors for the iden-

tified covariates with homogeneous effects (in parentheses). From Table 5,

we can find that under the 25th quantile level, the AgeS , Ind24, Ind34 and

Ind36 are detected as the null effects, while Age, DebtR, Worker, Ind33,

Ind39 and Ind40 are detected as homogeneous effects. Using our method,
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the remaining 14 covariates are detected as heterogeneous effects. From

Tables 6 and 7, we find that for median and 75th quantile level, Age and

Ind39 also have homogeneous effects while DebtR and Worker become het-

erogeneous. Moreover, the homogeneous properties for other industry codes

are different under three different quantile levels.

Among the heterogeneous effects, the scale of enterprises, which has

been claimed to have a direct effect on TFP possibly due to the scale of

economies (Geroski, 1998), exhibits obvious heterogeneity in different cities

because enterprises of different sizes in different cities have considerable

differences in industry layout, industry segmentation, and innovation. Re-

garding the homogeneous covariates, most of homogeneous effects on TFP

is significant under the significance level of 5%. First, the coefficient of Age

indicates the TFP will decrease as a company’s age increasing by one year.

A possible explanation is that a company’s TFP development exhibits some

regularity in its life cycle, with younger firms often having more advanced

technology than older firms, resulting in higher TFP (Demir et al., 2022).

Hence, the effects of age on TFP are homogeneous for firms in different

areas. The influence of debt ratio on firm TFP is homogeneous in the 25th

quantile but heterogeneous in the other quantiles. This might occur be-

cause firms in lower quantiles rely more on bank credit, and bank credit
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costs vary little in different regions; bank credit costs are mainly affected

by the benchmark interest rate set by the Peoples’ Bank of China. As a

result, the same debt burden has a consistent impact on firms in different re-

gions. However, this phenomenon does not exist in high-quantile estimates

because firms with higher TFP have greater leverage and more diverse fi-

nancing channels and finance a greater share of investments through equity

(Zhang and Liu, 2017), and the cost of debt varies greatly among firms

in different regions. The influence of the number of employees on TFP

is also homogeneous in the 25th quantile, but heterogeneous in the other

quantiles. This may occur because productivity exerts a positive effect on

employment (Mollick and Cabral, 2009) and thus firms with lower TFP

have lower employee requirements. Although the average salary level of

Shanghai, Hangzhou, Ningbo and Suzhou differ to some extent, the gap in

the minimum wage is quite small. In 2006, the average salary in Shang-

hai, Hangzhou, Ningbo, and Suzhou is 3232 RMB, 2703 RMB, 2408 RMB,

and 2334 RMB, respectively, whereas the minimum wage are the same (i.e,

750 RMB per month). Therefore, the labor costs faced by firms in the

lower TFP quantile are almost homogeneous. However, in firms with high

TFP scores, firms’ employee requirements differ considerably in different

regions, and the wage level gap in different cities is sizable as well since
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workers’ wages also increase with TFP (Chan et al., 2020). This leads to

the heterogeneous effect of the number of employees on TFP in the higher

quantiles. Finally, let’s look at the homogeneity performance of different

industries in the four industrial cities. The coefficient estimates of Ind33,

Ind39 and Ind40 all indicate they have more TFP than the textile industry,

potentially because the textile industry is more labor-intensive and its TFP

is generally low (Li and Lv, 2021). Specifically, Ind33, Ind39, and Ind40

have 10.5, 6.551 and 2.574 more TFP than textile industry, respectively.

Overall, when there may be heterogeneity and high-dimensional covariates

in different industrial cities, we do our best to identify the homogeneity

effect; further improve the effectiveness of the homogeneity coefficient, and

via the identification of null effects, concurrently process high-dimensional

issues.

7. Discussion and concluding remarks

In this paper, we discussed an integrative QR analysis of high-dimensional

and heterogeneous data from multiple sources with privacy preservation.

We propose a composite penalized objective function based only on the

summary statistics from each data source, and we establish the asymptotic

properties of the proposed estimators for the problem, including both es-
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Table 5: Analysis results for the ASIF data with τ = 0.25.

Variable α β(Shanghai) β(Ningbo) β(Hangzhou) β(Suzhou)

Int 22.374 2.227 47.503 17.946 21.822

Age -0.070(0.016) -0.070 -0.070 -0.070 -0.070

AgeS 0.000 0.000 0.000 0.000 0.000

Asset 2.460 5.571 1.079 2.896 0.294

DebtR -7.413(0.717) -7.413 -7.413 -7.413 -7.413

FixR -33.417 -63.038 -24.310 -32.381 -13.939

ExpR 0.000 -6.600 5.983 -0.664 1.281

Worker -3.131(0.084) -3.131 -3.131 -3.131 -3.131

ScaleL 25.246 6.706 22.038 26.791 45.448

ScaleS -2.119 -5.880 1.016 -14.543 10.930

Col 0.002 10.740 -8.666 15.118 -17.186

LLC 8.459 9.343 -17.056 3.884 37.663

LBS 9.621 23.470 0.944 2.442 11.626

Pri 10.077 15.727 -11.090 17.792 17.877

HMT 4.128 18.005 -22.829 21.775 -0.439

Fore 6.642 17.665 -20.633 9.044 20.493

Ind24 0.000 0.000 0.000 0.000 0.000

Ind26 6.962 8.165 -0.568 1.988 18.263

Ind29 2.028 4.553 -1.803 -12.600 17.964

Ind33 10.500(0.128) 10.500 10.500 10.500 10.500

Ind34 0.000 0.000 0.000 0.000 0.000

Ind36 0.000 0.000 0.000 0.000 0.000

Ind39 6.551(0.100) 6.551 6.551 6.551 6.551

Ind40 2.574(0.324) 2.574 2.574 2.574 2.574

Ind41 6.688 -4.302 2.947 18.950 9.154
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Table 6: Analysis results for the ASIF data with τ = 0.5.

Variable α β(Shanghai) β(Ningbo) β(Hangzhou) β(Suzhou)

Int 19.088 -25.042 60.240 9.462 31.693

Age -0.128(0.018) -0.128 -0.128 -0.128 -0.128

AgeS 0.000 0.000 0.000 0.000 0.000

Asset 8.591 15.826 2.274 5.124 11.141

DebtR -13.695 -10.784 -9.049 -15.877 -19.069

FixR -59.591 -99.291 -45.809 -34.212 -59.050

ExpR 0.000 -5.011 -1.883 5.514 1.380

Worker -7.531 -12.538 -0.244 -2.732 -14.609

ScaleL 27.956 7.341 30.133 35.030 39.319

ScaleS -6.716 -7.655 -2.962 -2.723 -13.523

Col 4.189 11.915 -27.613 3.025 29.427

LLC 2.667 11.029 -26.606 13.388 12.855

LBS 5.200 -0.023 -23.311 24.856 19.277

Pri 2.216 21.229 -32.957 7.108 13.485

HMT 0.000 11.394 -31.936 12.251 8.291

Fore 3.366 22.550 -31.857 2.294 20.479

Ind24 1.969 0.927 5.996 8.502 -7.550

Ind26 7.341 4.704 4.882 -3.807 23.586

Ind29 -1.267 -5.725 20.198 -15.747 -3.792

Ind33 11.374 15.456 -0.148 11.909 18.281

Ind34 0.298(0.023) 0.298 0.298 0.298 0.298

Ind36 0.761(0.566) 0.761 0.761 0.761 0.761

Ind39 1.609(0.533) 1.609 1.609 1.609 1.609

Ind40 -0.466(0.590) -0.466 -0.466 -0.466 -0.466

Ind41 1.752 8.494 -9.569 2.131 5.952
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Table 7: Analysis results for the ASIF data with τ = 0.75.

Variable α β(Shanghai) β(Ningbo) β(Hangzhou) β(Suzhou)

Int 55.579 -52.291 184.849 -1.360 91.117

Age -0.058(0.009) -0.058 -0.058 -0.058 -0.058

AgeS 0.000 0.000 0.000 0.000 0.000

Asset 15.207 31.770 6.048 8.785 14.223

DebtR -13.208 -8.103 -19.590 -17.629 -7.511

FixR -91.445 -146.906 -49.679 -61.937 -107.260

ExpR 0.000 -16.327 0.037 10.983 5.308

Worker -14.559 -28.075 -4.229 -4.496 -21.435

ScaleL 38.587 15.748 22.302 56.141 60.157

ScaleS -7.707 -3.576 -1.788 -1.972 -23.491

Col -37.077 9.481 -151.095 30.686 -37.381

LLC -45.105 -1.404 -159.265 3.999 -23.750

LBS -32.042 -15.469 -152.932 60.758 -20.527

Pri -42.413 -7.107 -156.563 14.674 -20.655

HMT -45.448 -4.561 -160.118 14.798 -31.913

Fore -30.138 14.178 -147.399 19.368 -6.698

Ind24 -0.294(0.021) -0.294 -0.294 -0.294 -0.294

Ind26 21.117 4.595 23.463 18.434 37.976

Ind29 -9.651 -14.275 -2.465 -2.155 -19.709

Ind33 35.852 49.082 11.380 52.635 30.310

Ind34 -6.137 -18.847 -3.804 -7.311 5.413

Ind36 -2.157 -22.432 0.607 2.660 10.538

Ind39 1.849(0.881) 1.849 1.849 1.849 1.849

Ind40 0.000 -7.541 1.986 2.207 3.347

Ind41 -1.451(2.038) -1.451 -1.451 -1.451 -1.451
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timation and selection consistency and the asymptotic normality. For the

implementation of the proposed approach, we develop an MM algorithm.

The proposed method allows us to detect the homogeneous, heterogeneous

and nonzero covariate effects, and it enables the number of covariates to go

to infinity as the smallest sample size among different data sources goes to

infinity. The numerical results indicate it works well in practical situations.

In this article, we have assumed the number of covariates is smaller

than the sample size for each data source. However, it would be useful to

generalize the proposed method to the situation where the number of co-

variates is larger than these sample sizes. For this, we will need to address

the local variables selection issue, and the establishment of relevant theo-

ries is also challenging because the objective function is non-smooth. As

discussed earlier, the proposed approach preserves privacy in the sense that

it uses only summary statistics instead of individual, original data. Thus,

we may investigate the same problem under different privacy mechanisms

(Dwork and Roth, 2014).

Supplementary Material

We provide the proof details of our main results and additional simulations.

In addition, we provide variable information in practical application.
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