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Abstract: The receiver operating characteristic (ROC) curve is frequently used

to evaluate the accuracy of medical diagnostic tests. Currently, analysis based

on the ROC curve has been performed in large public-use data arising from

complex survey samples by ignoring the sampling scheme. This paper proposes

a nonparametric estimator for the ROC curve that accounts for complex survey

sampling. The asymptotic properties of the estimator are developed using empir-

ical process arguments. Simulation studies showed that our proposed estimator

performed well in the practical situations we considered, with better performance

for larger sample size and disease proportions. The estimator was illustrated in

the National Health and Nutrition Examination Survey (NHANES) to evaluate

the discrimination of a traditional risk calculator of undiagnosed diabetes.
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1. Introduction

Diagnostic medicine is the process of identifying the disease or condition

that a patient has, and ruling out conditions that the patient does not have,

through assessment of the patient’s signs, symptoms, and results of various

diagnostic tests (Zhou et al., 2009). It has evolved over the years as the

advances in technology allowed the development of new diagnostic tests for

detecting diseases. Examples of diagnostic tests include biochemical serum

markers, such as prostate specific antigen (PSA) for prostate cancer, CA-

125 for ovarian cancer, creatinine for kidney dysfunction, and cholesterol

and blood pressure for cardiovascular disease. Given the importance of diag-

nostic medicine to population’s overall health, and understanding of disease

mechanism, statistical methods that assess the accuracy of diagnostic tests

in a reliable way are crucial.

The receiver operating characteristic (ROC) curve is the most popu-

lar method to assess the performance of a continuous diagnostic test. The

curve is defined as the plot of the false positive rate (1-specificity) versus

the true-positive rate (sensitivity) across all possible cutoffs of the diagnos-

tic test. The false-positive rate (FPR) is the proportion of non-diseased

individuals that test positive for the disease based on the diagnostic test,

and the true-positive rate (TPR) is the proportion of diseased individuals
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that test positive for the disease. The curve is especially useful to compare

the performance of different diagnostic tests and obtain optimal cutoffs for

the diagnostic test to minimize the misclassification of diseased and non-

diseased individuals. Although we focus on medical diagnosis, the ROC

curve is widely used in many binary classification problems. A comprehen-

sive discussion on ROC curves can be found in Pepe (2000) and Inácio et al.

(2021), for example.

The ROC curve has been widely used in the analysis of data arising from

complex surveys. Sample surveys play a critical role in providing essential

information in a broad range of areas, serving as an essential resource to

guide actions and policies. In the United States, the National Center for

Health Statistics (NCHS) is the principal health statistics agency under the

Centers for Disease Control and Prevention (CDC), and conducts several

population surveys, such as the National Health and Nutrition Examination

Survey (NHANES), the National Health Interview Survey (NHIS), and the

National Survey of Family Growth (NSFG).

In large scale surveys, the final sample usually does not represent a

simple random sample of independent, identically distributed observations

from an infinite population. Instead, these studies generally use complex

survey designs, including stratification, multistage cluster sampling and un-
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equal selection probabilities to obtain a representative sample in the most

effective manner from a finite population. Failure to account for complex

survey design may result in biased and inconsistent parameter estimators,

underestimated standard errors, and possibly misleading conclusions.

Due to the limited availability of statistical methods, analyses using

ROC curves on complex survey data is currently done by ignoring the sam-

pling scheme, even in papers that correctly account for the survey design

in other aspects of the analysis. For example, Pandya et al. (2011) assessed

the discrimination of traditional cardiovascular disease risk scores in the

Third National Health and Nutrition Examination Survey (NHANES III)

using unweighted ROC curves. Similarly, DeBoer and Gurka (2014) used

an ROC curve to assess the ability of metabolic syndrome Z-score to dis-

criminate impaired glucose tolerance in adolescents, without accounting for

the survey design.

The current literature on ROC curves in the context of complex survey

sampling predominantly revolves around developing methodologies for the

area under the ROC curve (AUC-ROC). For example, Bisoffi et al. (2000)

approximated the standard error of the AUC-ROC for two-phase sampling

design using bootstrap and jackknife methods. More recently, Yao et al.

(2015) proposed a nonparametric estimator for the AUC that accounts for

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0290



complex sampling, and employed jackknife method and balanced repeated

replication for the variance estimation.

While the AUC-ROC offers a convenient summary of diagnostic mea-

sure performance, it lacks the granularity of the ROC curve, which compre-

hensively depicts the trade-off between sensitivity and specificity across all

potential thresholds and, as noted by Pepe (2003), small discrepancies in

AUC-ROC values can correspond to significant differences in ROC curves.

Furthermore, the AUC-ROC’s inability to provide optimal cutoff values for

diagnostic measures based on sensitivity and specificity further highlights

its limitations compared to the ROC curve.

In light of the existing methods’ limitations, we propose a non-parametric

ROC curve estimator that accounts for complex survey sampling. The pro-

posed estimator’s asymptotic properties are derived and evaluated through

simulation studies. Furthermore, the method’s practical utility is demon-

strated by applying it to the National Health and Nutrition Examination

Survey (NHANES).
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2. Methods

2.1 Setup

Classical sampling theory concerns the inference for finite population quan-

tities (parameters). In this context, the design-based (also called randomization-

based) inference is often employed, where the characteristics of interest are

considered fixed quantities associated with the finite population. The source

of randomness is resulting from the sampling scheme, with random variables

indicating whether the population unit is contained in the sample. When

the questions of interest are based on parameters of a statistical model, the

model-based (also called prediction-based) inference is often preferred. In

this framework, the characteristics of interest are considered to be random

variables generated from a statistical model.

In this paper, we handle the model-based and design-based inference

jointly, using the super-population framework described in Rubin-Bleuer

et al. (2005), and followed by Boistard et al. (2017) and Han and Wellner

(2021). Under this approach, the finite population is viewed as a realization

from a statistical model (superpopulation model), and a sample is drawn

from this finite population according to the sampling design. Inference un-

der this approach requires to explicitly account for two sources of random-
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2.1 Setup

ness: the model-based randomness, accounting for the difference between

the finite population parameter and the superpopulation model parameter,

and the design-based randomness, accounting for the difference between the

sample estimator and the finite population parameter (Pfeffermann, 2000).

Consider a sequence of finite populations UN of size N = 1, 2, · · · ,

with corresponding set of indices UN = {1, · · · , N}. Each index i ∈ UN

is associated with a unique vector (yi, zi) ∈ Rp × Rq
+ representing, respec-

tively, the characteristics of interest, and the sampling design information

available at the time of the design of the survey on all units. We assume

that {(yi, zi)}Ni=1 are realizations of random variables (Y, Z), Y : Ω 7→ Rp,

Z : Ω 7→ R
q
+, defined on a common probability space (Ω,F,Pm), and

denote yN = (y1, · · · , yN), Y N = (Y1, · · · , YN), zN = (z1, · · · , zN), and

ZN = (Z1, · · · , ZN).

Let SN = {s : s ⊂ UN} be the collection of subsets of UN selected

under a given sampling scheme and let σ(SN) be the σ-algebra generated

by SN . A sampling design associated with a sampling scheme is a function

p : σ(SN)×Rq×N
+ 7→ [0, 1] such that

(i) for all s in SN , z
N 7→ p(s, zN) is Borel-measurable on Rq×N

+ ;

(ii) for zN ∈ Rq×N
+ , A 7→ p(A, zN) is a probability measure on σ(SN).

Note that since p does not depend on yN , only non-informative sampling
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2.2 ROC curve for complex survey sampling

designs are considered. Similarly to Boistard et al. (2017), for each ω ∈ Ω

we define a probability measure A 7→ Pd(A, ω) =
∑

s∈A p(s,ZN(ω)), and

we say that (SN , σ(SN),Pd) is the design probability space. We will work

on a product probability space (SN × Ω, σ(SN) × F,Pd,m) that includes

both the super-population and the design space with probability measure

Pd,m defined as Pd,m(s×E) =
∫
E
Pd(s, ω) dPm(ω), with (s, E) ∈ σ(SN)×

F. We adopt Ed, Em and Ed,m to denote the expectation with respect to

the probability space (SN , σ(SN),Pd), (Ω,F,Pm) and (SN × Ω, σ(SN) ×

F,Pd,m), respectively. For a sample s drawn according to a sampling design

p, the sampling indicators ξi = I(i ∈ s) are random variables defined on

(SN×Ω, σ(SN)×F,Pd,m), with first-order inclusion probabilities defined as

πi(ω) = Ed,m{ξi|ZN(ω)}, and second-order inclusion probabilities defined

as πij(ω) = Ed,m{ξiξj|ZN(ω)}.

2.2 ROC curve for complex survey sampling

Let {(Yi, Zi) = (Xi, Di, Zi) ∈ R × {0, 1} × R
q
+}Ni=1 be i.i.d realizations of

the diagnostic test measure X, the disease indicator D, and the sampling

design information Z. We denote the cumulative distribution function (cdf)

of X conditioned on D = 0 as G, and similarly, the cdf of X conditioned

on D = 1 as F . We assume that F and G have continuous probability
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2.2 ROC curve for complex survey sampling

density functions (pdf) f and g, respectively. The ROC curve is defined as

the plot of {(1 − G(c), 1 − F (c)) : c ∈ R}, or equivalently, as the plot of

{(s, R(s)) : s ∈ [0, 1]}, where R(s) = 1 − F ◦ G−1(1 − s), with G−1(s) =

inf{x ∈ R : G(x) ≥ s}, and F ◦ G−1(.) ≡ F (G−1(.)). The area under

the ROC curve (AUC-ROC) is A =
∫ 1

0
R(s) ds. The corresponding finite-

population quantities areRN(s) = 1−FN◦G−1
N (1−s) and AN =

∫ 1

0
RN(s)ds,

where GN(x) = N−1
0

∑N
i=1 I(Xi ≤ x,Di = 0), FN(x) = N−1

1

∑N
i=1 I(Xi ≤

x,Di = 1), and Nd =
∑N

i=1 I(Di = d), d = 0, 1.

Consider a sample s, consisting of n (0 ≤ n ≤ N) units drawn from the

finite population using a sampling design p. A survey-weighted estimator

for the ROC curve can be obtained by substituting F and G by their Hájek

type estimators:

Rn(s) = 1− Fn ◦G−1
n (1− s), (2.1)

where

Gn(x) =
1

N̂0

N∑
i=1

ξi
πi
I(Xi ≤ x,Di = 0) and Fn(x) =

1

N̂1

N∑
i=1

ξi
πi
I(Xi ≤ x,Di = 1),

(2.2)

with N̂d =
∑N

i=1 ξiπ
−1
i I(Di = d), d = 0, 1.

The correspondent estimator for the area A under R(s) is

An =

∫ 1

0

Rn(s) ds. (2.3)
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2.2 ROC curve for complex survey sampling

The estimators Fn(.) andGn(.) can be seen as ratios of Horvitz-Thompson

empirical measures defined in the Supplementary Material with respect to

the class of function F = {fs,l(y) ≡ fs,l(x, d) = I(x ≤ s, d = l) : s ∈ R, l ∈

{0, 1}}. Note that this class of functions is P-Donsker (Kosorok, 2008).

The finite-dimensional convergence of Gπ
N(fs,l) can be shown similarly as

done in Boistard et al. (2017) using Crámer-Wold device. By Corollary 3.13

from Han and Wellner (2021),
√
n(Pπ

N −PN)⇝ Gπ in ℓ∞(F), where Gπ is

a tight Gaussian process with covariance function

Cov{Gπ(fs,d),Gπ(fu,d′)} = λ {µπ1P (fs,dfu,d′) + µπ2(Pfs,d)(Pfu,d′)} fs,d, fu,d′ ∈ F ,

with P (fs,l) =
∫
Y fs,l(y)P (dy) = P (X ≤ s,D = l) and P (fs,dfu,d′) =∫

Y fs,d(y)fu,d′(y)P (dy) = P (X ≤ s ∧ u,D = d) for d′ = d, and zero if

d′ ̸= d.

The proposed estimator Rn for the ROC curve depends on the pair

(Gn, Fn) through the map ψ(A,B) = B(A−1), where A−1 is the inverse

map of A. Combining the results from Han and Wellner (2021) and Func-

tional Delta Method (Vaart and Wellner, 1996) arguments presented in the

Appendix, the following result will follow:

Theorem 1 (FINITE POPULATION INFERENCE). Consider the esti-

mators Fn, Gn, Rn and An as defined in (2.1), (2.2) and (2.3). Suppose

that conditions (A1.1)-(A2.2) in the appendix hold and n,N → ∞.
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2.2 ROC curve for complex survey sampling

(a) (Survey-weighted empirical distributions).

√
N

Gn −GN

Fn − FN

⇝
Gπ

0

Gπ
1

 =

{(1− p)−1µπ1}1/2B1(G)

{p−1µπ1}1/2B2(F )

 ,
where B1(.) and B2(.) denote two independent Brownian bridges and

p = P (D = 1).

(b) (Survey-weighted ROC curve). Suppose that F and G have continuous

positive densities f and g, respectively, on [G−1(a) − ϵ, G−1(b) + ϵ],

ϵ > 0 and that f(G−1)/g(G−1) is bounded on any subinterval (a, b),

0 < a < b < 1. Then, for 0 < s < 1

√
n
{
Fn ◦G−1

n (s)− FN ◦G−1
N (s)

}
⇝
√
λµπ1

[
p−1/2B2{F ◦G−1(s)}+

+ (1− p)−1/2f{G−1(s)}
g{G−1(s)}

B1(s)

]

where B1(.) and B2(.) denote two independent Brownian bridges. This

result implies that
√
n{Rn(s) − RN(s)} ⇝ W{G−1(1 − s)}, where

W(u) is a Gaussian process with mean zero and covariance function

Ed,m{W(u)W(t)} = σ2(u, t) given by

σ2(u, t) = λµπ1

[
p−1{F (u ∧ t)− F (u)F (t)}+

+ (1− p)−1f(u)f(t)

g(u)g(t)
{G(u ∧ t)−G(u)G(t)}

]
(2.4)
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2.2 ROC curve for complex survey sampling

(c) (Survey-weighted AUC)

√
n (An − AN) → N(0, δ2)

in distribution, where

δ2 =

∫ 1

0

∫ 1

0

σ2{G−1(1−s), G−1(1−t)} ds dt =
∫ ∞

−∞

∫ ∞

−∞
σ2(s, t) dG(s) dG(t)

The proof for Theorem 1 are presented in Appendix A of the Supple-

mentary Material.

The results for the super-population inference can be obtained from the

decomposition

√
n
(
Fn ◦G−1

n − F ◦G−1
)
=
√
n
(
Fn ◦G−1

n − FN ◦G−1
N

)
+

√
n
(
FN ◦G−1

N − F ◦G−1
)
.

From the results presented in Theorem 1, we have that the first compo-

nent converges to a zero mean Gaussian process under Pd,m (and Pd). Using

similar arguments, combined with classical empirical processes results, we

have that the second component also converges to a zero mean Gaussian

process under Pm. Theorem 5.1(iii) from Rubin-Bleuer et al. (2005) imply

that the two components are asymptotically independent, leading in the

following result:
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2.2 ROC curve for complex survey sampling

Theorem 2 (SUPER POPULATION INFERENCE). Consider the esti-

mators Fn, Gn, Rn and An as defined in (2.1), (2.2) and (2.3). Suppose

that conditions (A1.1)-(A2.2) hold in the appendix hold and n,N → ∞.

(a) (Survey-weighted ROC curve). Suppose that F and G have continuous

positive densities f and g, respectively, on [G−1(a) − ϵ, G−1(b) + ϵ],

ϵ > 0 and that f(G−1)/g(G−1) is bounded on any subinterval (a, b),

0 < a < b < 1. Then, for 0 < s < 1

√
n
{
Fn ◦G−1

n (s)− F ◦G−1(s)
}
⇝
√
λ(1 + µπ1)

[
p−1/2B2{F ◦G−1(s)}+

+ (1− p)−1/2f{G−1(s)}
g{G−1(s)}

B1(s)

]

where B1(.) and B2(.) denote two independent Brownian bridges. This

result implies that
√
n{Rn(s)−R(s)}⇝W{G−1(1−s)}, where W(u)

is a Gaussian process with mean zero and covariance function Ed,m{W(u)W(t)} =

σ2(u, t) given by

σ2(u, t) = λ(1 + µπ1)

[
p−1{F (u ∧ t)− F (u)F (t)}+

+ (1− p)−1f(u)f(t)

g(u)g(t)
{G(u ∧ t)−G(u)G(t)}

]

(b) (Survey-weighted AUC).

√
n (An − A) → N(0, δ2)
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2.2 ROC curve for complex survey sampling

in distribution, where

δ2 =

∫ 1

0

∫ 1

0

σ2{G−1(1−s), G−1(1−t)} ds dt =
∫ ∞

−∞

∫ ∞

−∞
σ2(s, t) dG(s) dG(t)

Theorem 2 implies that
√
n{Rn(s)−R(s)} converges in distribution to

N(0, σ2(s)), with σ2(s) given by

σ2(s) = λ(1+µπ1)

[
p−1R(s){1−R(s)}+ (1− p)−1f{G−1(1− s)}2

g{G−1(1− s)}2
s(1− s)

]
(2.5)

Let σ̂2(s) be the survey-weighted empirical version of σ2(s) with (R, p, F,G, f, g)

replaced by their survey-weighted estimates. An approximate level 1 − α

pointwise confidence interval forR(s) is given byRn(s)±z1−α/2{σ̂(s)2/n}1/2,

where zα is such that P (Z ≤ zα) = α with Z ∼ N(0, 1).

Our proposed estimator for the ROC curve reduces to the empirical

estimator for the ROC curve as defined in Bertail et al. (2008) for sampling

without replacement (SWOR). Additionally, because µπ1 = λ−1 − 1 for

SWOR, the result obtained in Theorem 2-a aligns with the corresponding

result for the empirical estimator for the ROC curve in a simple random

sampling setting also presented in Bertail et al. (2008).
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3. Simulation studies

In the simulation studies, we investigate the performance of the proposed es-

timator for the ROC curve under stratified simple random sampling (SSRS)

and stratified two-stage cluster sampling (STSCS). For each sampling scheme,

a total of 8 scenarios were considered according to different finite popula-

tion sizes N = 50,000 and 100,000, disease proportions p = 5%, 25% and

sampling fractions λ = 5%, 10%.

We generated populations subdivided in five strata containing 5%, 10%,

25%, 30% and 30% of the observations. We set the AUC for the strata to

0.95, 0.9, 0.8, 0.7, 0.6 respectively, and for each stratum h = 1, · · · , 5,

we generated Xh = αhD + ϵ, where D ∼ Ber(p) and ϵ ∼ N(0, 1). The

ROC curve in each stratum is given by the binormal model R(s) = Φ(αh +

Φ−1(s)), where Φ(.) is the standard normal cdf and αh is determined from

the corresponding AUC specified for the h-th stratum. For STSCS, M =

5,000 and 10,000 clusters of sizes 5, 10 and 15 were generated using quantiles

of Xh + τ , τ ∼ N(0, 1), in addition to the steps already described.

Samples with size determined by the sampling fraction were drawn as-

suming uniform allocation. For the first stage of STSCS, m = 310 and 625

clusters were selected from the population of size N = 50,000, and m = 625

and 1250 clusters were sampled from the population of size N = 100,000
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. At the second stage, 80% of the observations were sampled from each

cluster.

We evaluated the performance at s ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}

in terms of Relative Bias (RB), Empirical Standard Error (ESE), Asymp-

totic Standard Error (ASE), and Coverage Probability (CP) for 95% con-

fidence intervals. We compare our method (SVY) to the unweighted ROC

curve (UN), where the sampling weights are ignored, and the asymptotic

variance is computed following Hsieh et al. (1996). We also include the

weighted estimator (WT), which shares the same point estimate as our

proposed method, but the asymptotic variance is computed using the i.i.d.

setting from Hsieh et al. (1996) by plugging in the survey-weighted esti-

mators. Results are obtained by generating 2,000 finite populations and

selecting one sample from each of the finite populations.

The results for the relative biases under SSRS and STSCS are reported

in Figure 1 and Tables S1 and S2 in the Supplementary Materials. As

expected, the relative bias for the UN estimator is quite large, especially

at the beginning of the ROC curve, with relative biases close to 30%. In

contrast, the values for the SVY and WT estimators never exceed 0.5%.

The estimates for the empirical and asymptotic standard errors under

SSRS and STSCS are presented in Figure 2 and Tables S3 and S4 Supple-
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mentary Materials. For the SVY estimator, the values were obtained by

plugging survey-weighted estimates of p, F , G, f , and g into the expression

(2.5). For the UN and WT estimators, unweighted and survey-weighted

estimates of p, F , G, f , and g were plugged into the asymptotic vari-

ance expression presented in Hsieh et al. (1996). In general, our method

estimates are close to the ESE, with better performance for larger sam-

ple sizes and disease proportions. The variance estimator that ignores the

complex-survey design leads to underestimated standard errors, even when

the sampling weights are employed (WT estimator).

Figure 3 and Tables S5 and S6 in the Supplementary Materials give the

coverage probabilities of the 95% confidence interval for the ROC curve.

In general, the coverage probabilities based on our method are closer to

95% at the beginning of the ROC curve and decrease as we increase the

FPR, except for FPR = 0.9 in the case of the smallest finite population,

sample size, and disease proportion. The WT estimator presents coverage

probabilities close to 92% at most, and the UN estimator performs poorly

due to the significant bias and underestimated variances.

We also compared the performance of our proposed estimator with a

parametric estimator based on the binormal model for the ROC curve Pepe

(2003). The point estimate for the binormal estimator (BIN) is derived by
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plugging in the survey-weighted estimators for the mean and variance for

the diseased and non-diseased populations, which are readily available in

standard software packages designed for complex survey sampling. Table

7 in the Supplementary Materials provide the RB for BIN under SSRS. In

general, the binormal estimator exhibits a positive bias at the beginning of

the ROC curve, with its RB gradually decreasing towards the end of the

curve.

4. Application

Diabetes and its complications are major causes of morbidity and mortality

worldwide. Currently, clinical practice guidelines recommend screening for

pre-diabetes and type 2 diabetes with an informal assessment of risk factors

or validated risk calculator in asymptomatic adults to guide providers on

whether performing a definitive diagnostic test is necessary (Draznin et al.,

2022). The current risk assessment tool used by the American Diabetes

Association (ADA) to screen for pre-diabetes and type 2 diabetes is adapted

from the algorithm developed in Bang et al. (2009) to estimate the risk of

undiagnosed diabetes.

In this application, we wish to evaluate the discrimination of the al-

gorithm developed by Bang et al. (2009) using the National Health and

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0290



Nutrition Examination Survey (NHANES) between 1999-2006. NHANES

is an annual survey conducted by the Centers for Disease Control and Pre-

vention’s (CDC) National Center for Health Statistics (NCHS) that utilizes

a complex, multistage probability sampling design to select a representa-

tive sample of the non-institutionalized resident population of the United

States.

Similarly as presented in Bang et al. (2009), we consider participants

aged 20 years or more, excluding pregnant women, that had fasting plasma

glucose (FPG) results. The participants are classified into four groups of

diabetes status: known diabetes (if answered “yes” to the question “Other

than during pregnancy, have you ever been told by a doctor or health

professional that you have diabetes or sugar diabetes?”), normal glucose

metabolism (FPG < 100 mg/dL), pre-diabetes (FPG 100-125 mg/dL), and

undiagnosed diabetes (FPG > 125 mg/dL). The participants classified as

“known diabetes” are not included in the analysis, and the undiagnosed di-

abetes was used as the binary outcome. The risk score was computed using

age (< 40, 40-49, 50-59, > 59), sex (female, male), family history of dia-

betes (yes, no), history of hypertension (yes, no), obesity (not overweight,

overweight, obese, extremely obese), physically active (yes, no).

In the 1999-2006 NHANES, 20,159 non-pregnant adults aged 20 years
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or more were enrolled. Out of this sample, 17,696 observations were clas-

sified as either normal glucose metabolism, pre-diabetes, and undiagnosed

diabetes, and 7,348 observations had information for all variables needed

to compute the risk score. In this final analytic sample, the proportion of

undiagnosed diabetes is 3.1% (95% CI: 2.6, 3.5).

Figure 4 shows both survey-weighted and unweighted estimates of the

ROC curve, as well as its corresponding AUC. The most considerable dis-

crepancies between unweighted and survey-weighted estimates are observed

between FPR 0.1-0.5, with the unweighted ROC curve being lower than the

survey-weighted ROC curve. As a result, the AUC (survey-weighted = 0.83,

unweighted = 0.80) is smaller when the survey weights are not considered.

The observed discrepancy between survey-weighted and unweighted

ROC curve estimates in Figure 4 illustrates the importance of incorporat-

ing the complex survey sampling when evaluating diagnostic tests using the

ROC curve. In this application, failure to account for survey weights led to

an underestimation of the test’s accuracy, potentially misrepresenting its ef-

fectiveness. This underestimation is further illustrated by the differences in

cutoff values derived from the survey-weighted and unweighted ROC curves,

obtained by maximizing (sensitivity + specificity - 1). The cutoff obtained

using the survey-weighted estimator (0.958) resulted in a higher estimated
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proportion of at-risk individuals diagnosed as diabetic (32.2%) compared

to the cutoff from the unweighted estimator (0.965; 29.5%). This differ-

ence suggests that neglecting survey weights can lead to misclassification of

individuals, potentially impacting patient care and resource allocation.

5. Discussion

In this paper, we studied a nonparametric estimator for the ROC curve in

the context of complex survey data. We examined the asymptotic properties

of the proposed estimator and evaluated its performance in finite samples

through simulation studies. The asymptotic properties of the proposed

estimator were developed using empirical process arguments in the super-

population framework described in Rubin-Bleuer et al. (2005), where the

sources of randomness from both model-based and design-based inference

are jointly taken into account.

The uniform convergence for the ROC curve in the finite population and

super-population levels were established using key results presented in Han

and Wellner (2021), combined with empirical processes arguments. The

asymptotic distribution for the finite population and the super-population

level AUC was also presented. Simulation studies showed that our pro-

posed estimator performed well in the practical situations considered. The
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estimator was then applied to a national-level health survey to evaluate

the discriminatory ability of a traditional risk calculator of undiagnosed

diabetes.

The methods presented in this paper serve as a basis for nonparametric

estimation of the ROC curve in the context of complex survey data. The

weakly convergence results make it possible to further compute confidence

bands for the ROC curve in both super-population and finite population

levels. The proposed estimator may serve as an option when using data aris-

ing from complex survey data, preventing from biased results and possibly

misleading conclusions by ignoring the sampling design.

The developed methods encompass an expression for the variance of

the ROC-AUC, accompanied by an explicit formula for estimating the vari-

ance of this summary quantity without resorting to resampling methods, as

previously employed by Bisoffi et al. (2000) and Yao et al. (2015). Further-

more, our proposed method extends to a broader range of sampling design

schemes, leveraging the framework developed by Han and Wellner (2021).

The proposed estimator is a discrete function, whereas the true ROC

curve for continuous data is a continuous function. To have a smooth esti-

mate, the study of semiparametric and parametric models for ROC curve

estimation in the context of complex survey data deserves attention. In
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addition to smoothness, if the models are correctly specified, these alterna-

tive approaches might be more efficient in estimating the ROC curve in the

context of complex survey data.

Our method also assumes that the sampling is noninformative, and

further investigation for informative sampling will be worthwhile. There is

also little literature exploring the accuracy of a diagnostic test that varies

according to a set of characteristics in the context of complex survey data.

To address this issue, the estimation of covariate-specific ROC curve for

complex survey data is currently under investigation.

6. Figures and Tables
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Figure 1: Relative Bias (in %) of the UN, WT, and SVY estimators for the

super-population ROC curve with finite population size N , disease propor-

tion p, and sampling fraction λ.
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Figure 2: Empirical and Asymptotic Standard Error (in %) of the UN,

WT, and SVY estimators for the super-population ROC curve with finite

population size N , disease proportion p, and sampling fraction λ.
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Figure 3: Coverage Probabilities (in %) of the UN,WT, and SVY estimators

for the super-population ROC curve with finite population size N , disease

proportion p, and sampling fraction λ.
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Figure 4: Unweighted (UN) and survey weighted (SVY) estimates ROC

curves and survey weighted 95% confidence interval for NHANES data.
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Supplementary Material

The Supplementary Materials include the proofs for Theorems 1 and 2, and

supplemental simulation tables.
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