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Corresponding authors: Deyuan Li, Department of Statistics and Data Science, School

of Management, Fudan University, Shanghai, China. E-mail: deyuanli@fudan.edu.cn.

Zhengjun Zhang, School of Economics and Management, and MOE Social Science Lab-

oratory of Digital Economic Forecasts and Policy Simulation, University of Chinese

Academy of Sciences, Beijing, China; Center for Forecasting Sciences, Chinese Academy

of Sciences, Beijing, China; Department of Statistics, University of Wisconsin, Madison,

WI, USA. E-mail: zhangzhengjun@ucas.ac.cn.

1

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0248



Decoupling Systemic Risk

new endopathic and exopathic competing risk indices for better learning risk pat-

terns, decoupling systemic risk, and making better risk management. The paper

establishes the probabilistic properties of stationarity and ergodicity of the AcAF

model. Statistical inference is developed through conditional maximum likelihood

estimation. The consistency and asymptotic normality of the estimators are de-

rived. Simulation demonstrates the efficiency of the proposed estimators and the

AcAF model’s flexibility in modeling heterogeneous data. Empirical studies on

the stock returns in S&P 500 and the cryptocurrency trading show the supe-

rior performance of the proposed model in terms of the identified risk patterns,

endopathic and exopathic competing risks, being informative with greater inter-

pretability, enhancing the understanding of the systemic risks of a market and

their causes, and making better risk management possible.

Key words and phrases: Business statistics, extreme value analysis, nonlinear

time series, risk management, time-varying tail risk

1. Introduction

Systemic risk refers to the risk of collapse of an entire complex system due

to the actions taken by the individual component entities or agents that

comprise the system. Systemic risk may occur in almost every area, for

example, financial crisis, flooding, forest fire, earthquake, market crash,

economic crisis, global disease pandemic (like COVID-19), among many

others (see Zhang, 2021a,b). Typically, a system contains a number of
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risk sources, and once one comes first to collapse, the whole system is

affected immediately, i.e., the risk sources are competing. When a disaster

event (systemic risk) occurs, it may not be known what causes the event,

i.e., its risk source. In such a scenario, it is of significance to decompose

systemic risk into competing risks for learning risk patterns and better risk

management.

Internal risk refers to the risk from shocks that are generated and ampli-

fied within the system. It stands in contrast to external risk, which relates

to shocks that arrive from outside the system. Many systems (e.g., social,

political, geopolitical, economic, financial, market, regional, global, envi-

ronmental, transportation, epidemiological, material, chemical, and phys-

ical systems) are subject to both types of risk. For instance, the cargo

ship MV Ever Given stuck in the Suez Canal on March 26, 2021, faced two

major sources of risk. One is its internal operation errors corresponded to

internal risk, and the other is strong winds and weather factors contributed

to external risk. For more examples of risk decoupling, we refer the readers

to Danielsson and Shin (2003).

The occurrence of systemic risk is strongly correlated with extreme

events (rare or accumulated). Modeling systemic risk through modeling

extreme events is one of the essential topics in risk management. Many
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extreme events in history have been associated with systemic risk. Over

the past two decades, extreme financial events have repeatedly shown their

dramatic and adverse effects on the global economy, which include the Asian

financial crisis in 1998, the subprime mortgage crisis of the United States in

2008, the European sovereign debt crisis in 2013, and the “crash” of Chinese

stock market in 2015. Failure to recognize these extreme events’ probability

makes regulators and practitioners lack effective methods to deal with and

prevent the financial crisis. As such, measuring and monitoring extreme

financial events’ risk is essential in financial risk management.

Extreme value theory (EVT) has been a powerful tool in risk analysis

and is widely applied to model extreme events in finance, insurance, health,

climate, and environmental studies (e.g., Embrechts et al. (1999); McNeil

and Frey (2000); Poon et al. (2004); Deng et al. (2020)). Extreme events

often appeared dynamically and clustered in finance. In the literature,

Smith and Goodman (2000), Bali and Weinbaum (2007), Chavez-Demoulin

et al. (2014), Kelly and Jiang (2014), Massacci (2017), Zhao et al. (2018),

Mao and Zhang (2018), Koo et al. (2020), and Ji and Li (2021) investi-

gate the overall dynamical tail risk structures. In financial applications,

Chavez-Demoulin et al. (2016) offers an extreme value theory-based statis-

tical approach for modeling operational risk losses by taking into account
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dependence of the parameters on covariates and time; Zhang and Smith

(2010) studies multivariate maxima of moving maxima (M4) processes and

apply the methodology to model jumps in returns; Daouia et al. (2018)

uses the extreme expectiles to measure Value-at-Risk (VaR) and marginal

expected shortfall; Harvey (2013) studies the volatility clustering behavior

which implies the extreme events’ behavior and structure may also change

as time goes by.

In the era of Big Data, data may come from multiple sources, and the

data from each source has its own generating process, i.e., its probability

distribution. The models mentioned above for overall tail risk cannot cap-

ture the sources of tail risk accurately. To model extreme values observed

from different data sources, there exist some recent studies, e.g., Heffernan

et al. (2007), Naveau et al. (2011), Tang et al. (2013), Malinowski et al.

(2015), Zhang and Zhu (2016) and Idowu and Zhang (2017). However,

these models do not provide insights in risk sources, i.e., they do not differ-

entiate different competing risks. Most recently, the accelerated max-stable

distribution has been proposed by Cao and Zhang (2021) to fit the ex-

treme values of data generated from a mixture process (i.e., from different

sources), whose mixture patterns vary with the time or sample size. The

accelerated max-stable distributions form a new family of extreme value
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distributions for modeling maxima of maxima. They provide new proba-

bility foundations and statistical tools for modeling competing risks, e.g.,

endopathic and exopathic competing risks in this paper. These two paired

competing risks in our model settings are treated as time-varying tail risks.

They show clear paths when clustered disaster events occur, and their in-

terpretations as internal risk and external risk respectively are meaningful

both quantitatively and qualitatively in a time series context.

This paper develops an endopathic and exopathic dynamic competing

risks model that provides a new tool for better informative and rigorous

tail risk analysis. The advantage of our model is to decouple systemic risk

into endopathic and exopathic competing risks and measure them. Such

decomposition methodology is new to the literature. Our model does not

distinguish the data sources apriori, but refines the data’s information, char-

acterizes the dynamic tail risk behavior of extreme events through estimated

parameter dynamics, and explicitly distinguishes the risk sources, i.e., endo-

pathic risk and exopathic risk. The implementation uses autoregressive con-

ditional accelerated Fréchet (AcAF) distributions to model systemic risks

from different sources dynamically. The AcAF model can be applied to fi-

nancial markets and many other areas where endopathic risk and exopathic

risk are intertwined.
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This paper makes the following contributions to the growing literature

on tail risk measurement in the financial economics and the literature in

probability theory and time series, and many applied sciences. First and

foremost, we propose a new decoupling risk framework to handle systemic

risk. We decouple the systemic risk into endopathic risk and exopathic risk,

which is the first based on our knowledge in the field. The AcAF model

has two unique features. 1) Although we do not know which data sources

the observations come from, the risks from different sources can be recon-

structed through the estimated results. 2) The reconstructed parameter

dynamics accurately capture the behavior of different risks. Second, the

empirical analysis shows our model’s superior performance in two finan-

cial markets: the U.S. stock market and the Bitcoin trading market. For

the U.S. stock market, we find that the dynamics of exopathic risks are

more volatile than the dynamics of endopathic risks. Under normal mar-

ket conditions, endopathic risks (i.e., smaller index values) dominate the

stock market price fluctuations, while under turbulent market conditions,

exopathic risks dominate. For the Bitcoin trading market, we observe a

reverse pattern, i.e., the dynamics of endopathic risks are more volatile

than the dynamics of exopathic risks. Exopathic risks dominate the cryp-

tocurrency market price fluctuations under normal market conditions, while
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under turbulent market conditions, endopathic risks dominate. We also ob-

serve that endopathic risk index values are intermittently but frequently

smaller (i.e., dominate) than exopathic risk index values. The apparent

opposite phenomena in these two markets are consistent with the actual

market structure. Third, our technical proof is non-trivial and can not fol-

low the existing literature’s proof directly. They can be applied to other

scenarios involving tail processes and parameter dynamics.

The rest of the paper is organized as follows. In Section 2, we introduce

the AcAF model and investigate its probabilistic properties. In Section 3,

we construct the conditional maximum likelihood estimators (cMLE) for

estimation and provide a theory for the estimators’ consistency and asymp-

totic normality. Simulation study on the performance of cMLE is presented

in Section 4. In Section 5, we apply our model to three time series of maxima

of maxima of negative log-returns in the stock market and Bitcoin market:

one on the cross-sectional maximum losses (i.e., negative log-returns) of

stocks in S&P 500, one on the intra-day maximum losses of high-frequency

trading of GE stock, and the other on the intra-day maximum losses of

high-frequency Bitcoin trading. Section 6 gives concluding remarks and

discussions. We conclude that the real data results show that our model

has a strong ability to portray the endopathic and exopathic risks of the
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market and capture the market’s dynamic endopathic and exopathic struc-

ture. All the technical details and three more simulation studies are given

in the supplementary material.

2. Autoregressive conditional accelerated Fréchet model

2.1 Background and motivation

In the era of Big Data, data generated from multiple sources meet in a

commonplace. For instance, trading behavior in a market can be differ-

ent from time to time, e.g., in the morning and the afternoon. Trading

behavior in two different markets can be different at the same time. The

recorded maximal signal strengths in a brain region can be dynamic, and

their source origins can be different from time to time. The maximal precip-

itations/snowfalls/temperatures in a large area can be dynamic, and their

exact locations can be different from time to time. In these examples, the

available data are often in a summarized format, e.g., mean, median, low,

high, i.e., not all details are given. As a result, the observed extreme values

at a given time often come from different latent data sources with different

populations. Certainly, the maxima resulted from each individual source

has its data generating process, i.e., its limiting extreme value distribution

is unique. As such, the classical extreme value theory cannot be directly
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applied to model the maxima drawn from different populations mixed to-

gether. The new EVT for maxima of maxima introduced by Cao and Zhang

(2021) provides the probabilistic foundation of accelerated max-stable dis-

tribution for studying extreme values of cross-sectional heterogeneous data.

We will perform statistical modeling of extreme time series on the basis of

this new EVT framework.

The autoregressive conditional Fréchet (AcF) model in Zhao et al.

(2018) was the first benchmark model to model cross-sectional maxima

through parameter dynamics. It portrays the time series of maxima well.

Nevertheless, it does not directly model the heterogeneous data driven by

two different risk factors, i.e., endopathic risk dynamics and exopathic risk

dynamics. To further advance the new EVT of maxima of maxima and the

AcF model, we propose the AcAF model to characterize different sources of

tail risks in the financial market, under which a conditional evolution scheme

is designed for the parameter (µt, σt, α1t, α2t)
T of accelerated Fréchet dis-

tribution, so that time dependency and different risk sources of maxima of

maxima can be captured.
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2.2 Model specification

Suppose Qkt, k = 1, ..., d are latent processes, and Qt = max1≤k≤d Qkt where

each Qkt = max1≤i≤pkt Xk,i,t is again maxima of many time series at time t.

Following Zhao et al. (2018) and Mao and Zhang (2018), we assume

Qkt = µkt + σktY
1/αkt

kt ,

where µkt, σkt and αkt are the location, scale, and shape parameters with

Ykt being a unit Fréchet random variable with the distribution function

F (y) = e−1/y, y > 0. Specifically, we consider two latent processes Q1t and

Q2t to represent maximum negative log-returns across a group of stocks

or of a particular stock’s high-frequency trading whose price changes are

driven by normal trading behavior and external information (e.g., senti-

ments), respectively. For example, with normal trading behavior the trad-

ing price changes of a particular stock can be higher during the market

opening time and the market closing time, and with external information

the trading price changes can be quite different from normal trading pat-

terns, i.e., the price changes due to external information can occur at any

time. The resulting maximum negative log-returns across that group of

stocks or of that particular stock’s high-frequency trading can be expressed

as Qt = max(Q1t, Q2t) = max(max1≤i≤p1t X1,i,t,max1≤i≤p2t X2,i,t), where
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each {Xk,i,t}pkti=1, k = 1, 2, is a set of time series whose price changes are due

to corresponding price change driving factors, respectively.

Note that p1t and p2t are the numbers of transactions, and they can be

different and itself can be different from time to time, and the corresponding

causes of price changes (negative log-returns) of X1,i,t and X2,i,t cannot be

fully determined, i.e., Q1t and Q2t are unobservable latent processes. Here

Q1t and Q2t do not correspond to the price changes during the market

opening time and the market closing time which were used as a motivating

example. They should be understood as they coexist all the time and the

dominant one at any given time is observed.

Note that in Qt = max(Q1t, Q2t), if Q1t and Q2t have different location

parameters µ1t and µ2t or different scale parameters σ1t and σ2t, a maximum

operator may not be meaningful as one latent component process may not

have an effect because the other one always dominates. Also, the theoretical

results of maxima of maxima in Cao and Zhang (2021) mainly depend on the

tail behaviors of Q1t and Q2t. For model parsimony, we assume µ1t = µ2t =

µt and follow the literature to assume µt as a constant, σ1t = σ2t = σt, and

focus on the dynamics of σt, α1t and α2t, which are the pivotal parameters

of modeling systemic risk and identifying risk sources. For the rest of the
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paper, we consider the following model:

Qt = max(Q1t, Q2t) = µ+ σt max(Y
1/α1t

1t , Y
1/α2t

2t ), (2.1)

log σt = β0 + β1 log σt−1 − β2 exp(−β3Qt−1), (2.2)

logα1t = γ0 + γ1 logα1,t−1 + γ2 exp(−γ3Qt−1), (2.3)

logα2t = δ0 + δ1 logα2,t−1 + δ2 exp(−δ3Qt−1), (2.4)

where {Y1t} and {Y2t} are sequences of independent and identically dis-

tributed (i.i.d.) unit Fréchet random variables. Y
1/α1t

1t and Y
1/α2t

2t can be

considered as the normal trading driving factor and external information

driving factor respectively as mentioned earlier. They compete against each

other. The distribution of max(Y
1/α1t

1t , Y
1/α2t

2t ) in equation (2.1) is called

the accelerated Fréchet distribution by Cao and Zhang (2021). In addi-

tion, β0, γ0, δ0, µ ∈ R, 0 ≤ β1 ̸= γ1 ̸= δ1 < 1 and β2, β3, γ2, γ3, δ2, δ3 > 0

are assumed for the model to be stationary and technical requirements.

For model estimation identifiability, we assume var(γ2 exp(−γ3Qt−1)) >

var(δ2 exp(−δ3Qt−1)).

Remark 1. Note that although β2, γ2, δ2 are all assumed greater than

zero, they can be set as zero. As long as any of them are set to be zero, all

theories and estimation methods developed can be easily adjusted because

the corresponding dynamic equations will become constants. For example,

13

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0248



2.2 Model specification

assuming γ2 = 0, then the dynamic equation (2.3) will result in a stationary

solution of α1t = exp(γ0/(1 − γ1)). This paper will not separately develop

additional theoretical results for any of β2, γ2, and δ2 being zero as we will

have a simplified model with the corresponding α1t as a constant in Section

5.2.

Remark 2. Note that Qt needs not to express as max(Q1t, Q2t) in equation

(2.1), i.e., we can directly express Qt = µ + σt max(Y
1/α1t

1t , Y
1/α2t

2t ). In

addition, we only observe one univariate time series Qt, i.e., a standardized

function (Qt−µ)/σt follows an accelerated Fréchet distribution. Therefore,

it should not be understood as our model is for a bivariate time series with

two different σ1t and σ2t.

Before introducing our proposed endopathic and exopathic risk indices

in a time series context, let’s consider an illustrative example of widely

studied endogenous and exogenous variables in the literature of economic

modeling. Suppose Y is a dependent variable, X1 is an independent vari-

able, and X2 = g(X1) with g(·) being a Borel measurable function and

var(X1) ̸= var(X2). Suppose Y can be expressed as

Y = X1 + ϵ = g(X1) + (X1 − g(X1) + ϵ) =: X2 + ϵ∗,

with X1 and ϵ being uncorrelated. Obviously, X2 and ϵ∗ are correlated.
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Then X1 is an exogenous variable, X2 is an endogenous variable, and clearly

var(ϵ∗) > var(ϵ) regardless whether var(X1) > var(X2) or var(X1) <

var(X2).

Using the above illustrative example, it is easy to see that the lag-1

variable in an AR(1) model is an exogenous variable when the model is

correctly specified. However, the primary interest of nonlinear time series

models (2.1) - (2.4) is to model tail risk dynamics, hence we cannot directly

extend the use of endogenous and exogenous variables in our new modeling

framework. Therefore, motivated by the above illustrative example, we

define two new tail risk indices next.

Definition 1. Under the model identifiability condition, i.e.,

var(γ2 exp(−γ3Qt−1)) > var(δ2 exp(−δ3Qt−1)), (2.5)

α1,t−1 is referred as the tail endopathic risk index (for simplicity, call it

endopathic risk) of Qt−1, and relative to endopathic risk, α2,t−1 is referred

as the tail exopathic risk index (for simplicity, call it exopathic risk) of Qt−1.

Note that endopathic and exopathic risks coexist dynamically; however,

endogenous and exogenous variables may not. In addition, endopathic risks

are caused by internal errors, while exopathic risks are caused by external in-

formation (e.g., market sentiments). Both internal (error) information and
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external (error) information may not be measurable, and they are derived

by the model expressed as γ2 exp(−γ3Qt−1) and δ2 exp(−δ3Qt−1), respec-

tively. Due to the coexistence of the two risks, they can be dependent and

interact with each other, which is reflected in their definitions and models.

We further note that the identifiability condition is a probabilistic condi-

tion, i.e., a population condition, and not a statistical condition, which

follows the same idea as what endogenous and exogenous were defined. In

the real data section, we use three examples to empirically and perfectly

justify the validity of the definitions.

Remark 3. The economic modeling literature commonly decomposes risks

into two categories: endogenous (internal) and exogenous (external), see

Danielsson and Shin (2003). However, to the best of our knowledge, cur-

rently, there do not exist statistical measures for distinguishing between

these two types of risks. Also, there do not exist explicit definitions for

the two risk measures in the field of risk management that correspond to

“endogenous” and “exogenous” in economics. With the introduction of

the risk competing idea and the model structure, the AcAF model makes

defining and decoupling systemic risk into endogenous and exogenous risks

possible. In the AcAF model, we adopt the concepts of “endopathic risk”

and “exopathic risk” which are defined for time series with clustered ex-

16

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0248



2.2 Model specification

treme events, and their interpretations are motivated but different from

endogenous variable and exogenous variable. Endopathic risk corresponds

to the endogenous (internal) risk while exopathic risk corresponds to the

exogenous (external) risk. Given risks are often referred to the tail regions.

In Definition 1, we define tail endopathic risk index and tail exopathic risk

index by drawing analogies with endogenous and exogenous variables in

economics.

Remark 4. Note that the identifiability condition (2.5) is not a technical

condition and is not necessary. Without this condition, we can still esti-

mate the parameters of the AcAF model accurately, and α1t and α2t are

exchangeable. In fact, exchanging α1t and α2t does not affect the prob-

abilistic properties of the data generating process due to Y1t and Y2t are

independent and identically distributed unit Fréchet random variables. As

such, we obtain two equivalent models after fitting the data, which means

α1t can be treated as α2t, and vice versa. Mathematically speaking, making

the condition of (2.5) is just for mathematical convenience, i.e., it’s not

a technical condition. Economically speaking, this condition leads to our

financially interpretable definition of the tail endopathic risk index (endo-

pathic risk) and the tail exopathic risk index (exopathic risk), see Definition

1.
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Remark 5. Note that the tail properties of the endopathic and exopathic

risks are influenced by various factors. The performance of the time series

model (2.2)-(2.4) is highly correlated with both the first-order autoregres-

sive coefficients and the intercept terms, which must be considered in con-

junction with the error terms. Therefore, the model can exhibit varying

characteristics in different markets. In the real market, the tail risk always

exists. The endopathic risk and the exopathic risk intersect and the dom-

inant risk changes over time. The tail properties of the two risks can be

further explained by the empirical results in Section 5. The observations

reflect the qualitative analysis of the two types of markets, and demonstrate

the AcAF model’s strong ability to accurately represent the tail properties

of two risks inherent in the market.

Remark 6. In the model (2.1)-(2.4), we set αit, i = 1, 2. A natural question

will be why not make i = 1, 2, ..., k with k > 2. Of course, making k > 2

can be done theoretically and the probabilistic properties of the model can

still hold. However, k > 2 will increase statistical inference complexity

and estimation inefficiency, e.g., in optimization problems. In the economic

modeling literature, risks are often decoupled into two main risks, i.e., inter-

nal and external risks, for easy interpretability, e.g., Danielsson and Shin

(2003), Farboodi et al. (2021), Lopez and Saidenberg (2000). Certainly,
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internal (external) risk can further be decoupled into more specific risks,

which can be challenging. Following the economic modeling literature, we

set k = 2 in this paper.

We note that the autoregressive structures used in σt, α1t and α2t can

be traced back to GARCH model in Bollerslev (1986), autoregressive con-

ditional density model in Hansen (1994), and autoregressive conditional

durational model in Engle and Russell (1998). The clustering of extreme

events in time is a significant feature of the extreme value series {Qt} in

many applications, especially in financial time series. Empirical evidences

have shown that extreme observations tend to happen around the same pe-

riod in many applications. Translating this phenomenon in our model, we

can say that an extreme event observed at time t−1 causes the distribution

of Qt to have larger scale (larger σt) and heavier tail (smaller tail index),

resulting in a larger tail risk of Qt. Here, a smaller tail index implies a

larger tail risk. In Section 2.4, we present a class of factor models and show

the limiting distribution of maxima of maxima of the response variables to

be the accelerated Fréchet types.

The σt in (2.1) can be thought as volatility, i.e., analog to what is called

in GARCH models. Writing (2.1) in the following equivalent equation:

log(Qt − µ) = log(σt) + max{1/α1t log(Y1t), 1/α2t log(Y2t)}.
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Then log(σt) becomes location parameters, while 1/α1t and 1/α2t become

a pair of scale parameters or super-volatilities to distinct them from the

regular volatility definition. We can immediately see that the smaller the

α1t, the larger the super-volatility (the risk), and the same is true for α2t.

Remark 7. To describe the dynamics of the risk factors from different

sources, we extend the one-component AcF model (Zhao et al. (2018))

into the two-component AcAF model. This advance is like advancing the

ARCH model to the GARCH model in the literature. We further think

about the risk reality in the market being driven by two main types of

risks: internal and external. As such, it may be safe to say that a model

with two component risks (internal and external) should be pursued, while a

one-component risk model is still useful given it may integrate all sources of

risks into one risk. In S5.2 of the supplementary file, we conduct simulations

to compare the performance between the AcF and the AcAF models.

Remark 8. From the theoretical perspective, due to the complexity of

nonlinear time series, even when α1t = α2t = αt, the AcAF model cannot

degenerate into the AcF model. Because max(Y
1/αt

1t , Y
1/αt

2t )
d
= (2Yt)

1/αt ,

where Y1t, Y2t, and Yt are all independent unit Fréchet random variables,

and P (max(Y
1/αt

1t , Y
1/αt

2t ) ≤ x) = exp[−{(x − 0)/(21/αt)}−αt ]. Then (Qt −

µt)/σt = max(Y
1/αt

1t , Y
1/αt

2t ) ∼ Fréchet(0, 21/αt , αt), which indicates that the
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standardized maxima of maxima follows Fréchet distribution with location

parameter 0, scale parameter 21/αt , and shape parameter αt. Then we ob-

tain that the scale parameter of Qt’s distribution is 21/αtσt, which depends

on the shape parameter αt. Hence the dynamic structure of the scale pa-

rameter in the AcAF model will be different from the dynamic structure

of the scale parameter in the AcF model. So the AcF model cannot be

regarded as a special case of the AcAF model even with α1t = α2t.

2.3 Stationarity and ergodicity

The evolution schemes (2.2)-(2.4) can be written as

log σt = β0 + β1 log σt−1 − β2 exp[−β3{µ+ σt−1 max(Y
1/α1,t−1

1,t−1 , Y
1/α2,t−1

2,t−1 )}],

(2.6)

logα1t = γ0 + γ1 logα1,t−1 + γ2 exp[−γ3{µ+ σt−1max(Y
1/α1,t−1

1,t−1 , Y
1/α2,t−1

2,t−1 )}],

(2.7)

logα2t = δ0 + δ1 logα2,t−1 + δ2 exp[−δ3{µ+ σt−1max(Y
1/α1,t−1

1,t−1 , Y
1/α2,t−1

2,t−1 )}].

(2.8)

Hence {σt, α1t, α2t} forms a homogeneous Markov chain in R3. The fol-

lowing theorem provides a sufficient condition under which the process

{σt, α1t, α2t} is stationary and ergodic.
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2.4 AcAF model under a factor model setting

Theorem 1. For the AcAF model with β0, γ0, δ0, µ ∈ R, β2, β3, γ2, γ3, δ2, δ3 >

0, and 0 ≤ β1 ̸= γ1 ̸= δ1 < 1, the latent process {σt, α1t, α2t} is stationary

and geometrically ergodic.

The proof of Theorem 1 can be found in the supplement. In the process

of proving ergodicity, the sequence Qt is driven by two random variables

Y1t and Y2t alternately, which brings new challenges to the proof due to the

additional max nonlinear operator. The technical difficulty is that there

is no one-to-one relationship between Qt and Yt like in Zhao et al. (2018).

Our proof extends the theoretical result to a dynamic model for nonlinear

time series driven by two variables. We note that this is the first formal

treatment for stationarity and ergodicity of nonlinear time series driven

by two variables under extreme value framework. Since {Qt} is a coupled

process of {σt, α1t, α2t} through (2.1), {Qt} is also stationary and ergodic.

2.4 AcAF model under a factor model setting

In this section, we show that the limiting distribution of maxima Qt under

a factor model framework coincides with the accelerated Fréchet distribu-

tion of an AcAF model. We assume both {X1,i,t}p1ti=1 and {X2,j,t}p2tj=1 follow
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2.4 AcAF model under a factor model setting

general factor models,

X1,i,t = fi(Z1t, Z2t, · · · , Zdt) + σitϵ1,i,t,

X2,j,t = f̃j(Z1t, Z2t, · · · , Zdt) + σ̃jtϵ2,j,t,

where {X1,i,t}p1ti=1 and {X2,j,t}p2tj=1 are two latent time series at time t, {Z1t, Z2t,

· · · , Zdt} consist of observed and unobserved factors, {ϵ1,i,t}p1ti=1 and {ϵ2,j,t}p2tj=1

are two i.i.d. random noises that are independent to each other and inde-

pendent with the factors {Zit}di=1, and {σit}p1ti=1, {σ̃jt}p2tj=1 ∈ Ft−1 are the

conditional volatilities of {X1,i,t}p1ti=1 and {X2,j,t}p2tj=1, respectively. The func-

tions fi, f̃j : Rd → R are Borel functions. Without misunderstanding, we

use p1 and p2 to denote p1t and p2t, respectively.

One fundamental characteristic of many financial time series is that

they are often heavy-tailed. To incorporate this observation, we make the

common assumption that the random noises {ϵ1,i,t}p1i=1 and {ϵ2,j,t}p2j=1 are

i.i.d. random variables in the Domain of Attraction of Fréchet distribution

(Leadbetter et al., 1983). Here and after, for two positive functions m1(x)

and m2(x), m1(x) ∼ m2(x) means m1(x)
m2(x)

→ 1, as x → ∞. Specifically, we

adopt the following definition.

Definition 2 (Domain of Attraction of Fréchet distribution). A random

variable ϵ is in the Domain of Attraction of Fréchet distribution with tail

index α if and only if xF = ∞ and 1 − Fϵ ∼ l(x)x−α, α > 0, where Fϵ is
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2.4 AcAF model under a factor model setting

the cumulative distribution function (c.d.f.) of ϵ, l(x) is a slowly-varying

function and xF = sup{x : Fϵ(x) < 1}.

Domain of Attraction of Fréchet distribution includes a broad class of

distributions such as Cauchy, Burr, Pareto and t distributions. To facilitate

algebraic derivation, we further assume that for slowly varying functions

corresponding to {ϵ1,i,t}p1i=1 and {ϵ2,j,t}p2j=1 respectively, l1t(x) → K1t and

l2t(x) → K2t as x → ∞, where K1t, K2t ∈ Ft−1 are two positive constants.

This is a rather weak assumption with all the aforementioned distributions

satisfying this condition. Since K1t and K2t can be incorporated into each

σit, without loss of generality, we set K1t and K2t are both equal to 1 in

the following. Under a dynamic model, we assume that the conditional

tail indices α1t and α2t of ϵ1,i,t and ϵ2,j,t respectively evolve through time

according to certain dynamics (e.g., (2.3) and (2.4)) and α1t, α2t ∈ Ft−1.

We also assume that

sup
1≤p1<∞

sup
1≤i≤p1

|fi(Z1t, Z2t, · · · , Zdt)| < ∞, a.s.

and that

sup
1≤p2<∞

sup
1≤j≤p2

|f̃j(Z1t, Z2t, · · · , Zdt)| < ∞, a.s.

Notice here the supremum is taken over p1 or p2 with the number of latent

factors d fixed. This is a mild assumption and it includes all the com-
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2.4 AcAF model under a factor model setting

monly encountered factor models. For example, if the factor model takes

a linear form, fi(Z1t, · · · , Zdt) =
∑d

s=1 β
(i)
s Zst, a sufficient condition for

the assumption to hold would be sup1≤p1<∞ sup1≤i≤p1 ∥β
(i)∥ < ∞, where

β(i) = (β
(i)
1 , · · · , β(i)

d )T . We further assume that there exist positive con-

stants C1 and C2 such that C1 ≤ σit, σ̃jt ≤ C2 for any p1, p2, 1 ≤ i ≤ p1 and

1 ≤ j ≤ p2.

Based on Proposition 1 in Zhao et al. (2018), given Ft−1, we have, as

p1 → ∞, p2 → ∞,

max1≤i≤p1{X1,i,t} − b1,p1,t
a1,p1,t

d→ Ψα1t and
max1≤j≤p2{X2,j,t} − b2,p2,t

a2,p2,t

d→ Ψα2t ,

where a1,p1,t = (
∑p1

i=1 σ
α1t
it )1/α1t , a2,p2,t = (

∑p2
j=1 σ̃

α2t
jt )1/α2t , b1,p1,t = b2,p2,t =

0, Ψα1t(x) = exp(−x−α1t) and Ψα2t(x) = exp(−x−α2t) denote the distribu-

tions of Fréchet type random variables with tail indices α1t > 0 and α2t > 0,

respectively.

Recall thatQt = max(Q1t, Q2t) = max (max1≤i≤p1 X1,i,t,max1≤j≤p2 X2,j,t).

The limiting distribution form of Qt needs some discussions about the size

of two tail indices and the order of p1 and p2.

Proposition 1. Given Ft−1, under the assumptions in this section, the

limiting distribution of Qt as p1, p2 → ∞ can be determined in the following

cases:
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2.4 AcAF model under a factor model setting

Case 1. α1t < α2t.

1. If p1/p2 → C > 0 or ∞, then a1,p1,t/a2,p2,t → ∞ and P
(

Qt−b1,p1,t
a1,p1,t

≤ x
)
→

Ψα1t(x).

2. If p1/p2 → 0 and a1,p1,t/a2,p2,t → at > 0, then P
(

Qt−b1,p1,t
a1,p1,t

≤ x
)
→

Ψα1t(x)Ψα2t(atx).

Case 2. α1t = α2t = αt.

1. If p1/p2 → C > 0 and a1,p1,t/a2,p2,t → at > 0, then P
(

Qt−b1,p1,t
a1,p1,t

≤ x
)
→

Ψαt(x)Ψαt(atx).

2. If p1/p2 → 0, then a1,p1,t/a2,p2,t → 0 and P
(

Qt−b2,p2,t
a2,p2,t

≤ x
)

→

Ψαt(x).

3. If p1/p2 → ∞, then a1,p1,t/a2,p2,t → ∞ and P
(

Qt−b1,p1,t
a1,p1,t

≤ x
)
→

Ψαt(x).

Case 3. α1t > α2t.

1. If p1/p2 → C ≥ 0, then a1,p1,t/a2,p2,t → 0 and P
(

Qt−b2,p2,t
a2,p2,t

≤ x
)
→

Ψα2t(x).

2 If p1/p2 → ∞ and a2,p2,t/a1,p1,t → at > 0, then P
(

Qt−b2,p2,t
a2,p2,t

≤ x
)
→

Ψα1t(atx)Ψα2t(x).
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2.4 AcAF model under a factor model setting

The proof of Proposition 1 can be found in the supplement.

Under a particular setup, we assume p1 = p2 = p and denote fi(Z1t, Z2t, · · · ,

Zdt) = f̃i(Z1t, Z2t, · · · , Zdt) as the underlying return values of the ith stock,

X1,i,t (or X2,i,t) as the unobserved value of the ith stock when the endo-

pathic shock is stronger (weaker) than the exopathic shock. Under this

setting, we can rewrite the observed time series Qt as

Qt = max(X1t, X2t) = max
(
max
1≤i≤p

X1,i,t, max
1≤i≤p

X2,i,t

)
= max

[
max
1≤i≤p

{
fi(Z1t, Z2t, · · · , Zdt) + σitϵ1,i,t

}
, max
1≤i≤p

{
fi(Z1t, Z2t, · · · , Zdt) + σitϵ2,i,t

}]
= max

1≤i≤p

[
max

{
fi(Z1t, Z2t, · · · , Zdt) + σitϵ1,i,t, fi(Z1t, Z2t, · · · , Zdt) + σitϵ2,i,t

}]
= max

1≤i≤p

{
fi(Z1t, Z2t, · · · , Zdt) + σit max(ϵ1,i,t, ϵ2,i,t)

}
.

Corollary 1 gives the general asymptotic conditional distribution of

maxima Qt when p goes to infinity.

Corollary 1. Denote aj,p,t =
(∑p

i=1 σ
αjt

it

)1/αjt, and bj,p,t = 0 for j = 1, 2.

Given Ft−1, the limiting distribution of Qt as p → ∞ can be determined in

the following cases:

1. If α1t < α2t, then a1,p,t/a2,p,t → ∞, and P
(

Qt−b1,p,t
a1,p,t

≤ x
)
→ Ψα1t(x).

2. If α1t = α2t = αt, then a1,p,t = a2,p,t, and P
(

Qt−b1,p,t
a1,p,t

≤ x
)

→

Ψαt(x)Ψαt(x).
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3. If α1t > α2t, then a1,p,t/a2,p,t → 0, and P
(

Qt−b2,p,t
a2,p,t

≤ x
)
→ Ψα2t(x).

Both Proposition 1 and Corollary 1 show that under the framework of

the general factor model and some mild conditions, the conditional distribu-

tion of maxima Qt can be well approximated by an accelerate Fréchet distri-

bution. In terms of stochastic representation, the observed maxima valueQt

can be rewritten as Qt ≈ σt max(Y
1/α1t

1t , Y
1/α2t

2t ), where Y1t and Y2t are two

independent unit Fréchet random variables and σt depends on the size of α1t

and α2t. More specifically, if α1t < α2t, then σt = limp→∞ a1,p,t; if α1t > α2t,

then σt = limp→∞ a2,p,t; if α1t = α2t, then σt = limp→∞ a1,p,t = limp→∞ a2,p,t.

To be more flexible and accurate in finite samples, a location parameter µt

can be included. That is,

Qt ≈ µt + σtmax(Y
1/α1t

1t , Y
1/α2t

2t ),

where {µt, σt, α1t, α2t} are time-varying parameters. Setting µt = µ for

parsimonious modeling, we obtain the dynamic structure of {Qt} specified

in (2.1).

3. Parameter estimation

We denote all the parameters in the model by

θ = (β0, β1, β2, β3, γ0, γ1, γ2, γ3, δ0, δ1, δ2, δ3, µ)
T ,
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and denote the parameter space by

Θs = {θ|β0, γ0, δ0, µ ∈ R, 0 ≤ β1, γ1, δ1 ≤ 1, β2, β3, γ2, γ3, δ2, δ3 > 0}.

In the following, we assume that all allowable parameters are in Θs and the

true parameter is θ0 = (β0
0 , β

0
1 , β

0
2 , β

0
3 , γ

0
0 , γ

0
1 , γ

0
2 , γ

0
3 , δ

0
0, δ

0
1, δ

0
2, δ

0
3, µ0)

T .

The conditional probability density function (p.d.f.) ofQt given (µ, σt, α1t, α2t)
T

is

ft(θ) = {α1tσ
α1t
t (Qt − µ)−α1t−1 + α2tσ

α2t
t (Qt − µ)−α2t−1}

× exp{−σα1t
t (Qt − µ)−α1t − σα2t

t (Qt − µ)−α2t}.
(3.1)

By conditional independence, the log-likelihood function with observa-

tions {Qt}nt=1 is

Ln(θ) =
1

n

n∑
t=1

lt(θ) =
1

n

n∑
t=1

[
log

{
α1tσ

α1t
t (Qt − µ)−α1t−1 + α2tσ

α2t
t (Qt − µ)−α2t−1

}
− σα1t

t (Qt − µ)−α1t − σα2t
t (Qt − µ)−α2t

]
,

(3.2)

where {σt, α1t, α2t}nt=1 can be obtained recursively through (2.2)-(2.4), with

an initial value (σ1, α11, α21)
T .

Denote the log-likelihood function based on an arbitrary initial value

(σ̃1, α̃11, α̃21)
T as L̃n(θ). Theorems 2 and 3 show that there always exists a

sequence θ̂n, which is a local maximizer of L̃n(θ), such that θ̂n is consistent

and asymptotically normal, regardless of the initial value (σ̃1, α̃11, α̃21)
T .
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Theorem 2 (Consistency). Assume Θ is a compact set of Θs. Suppose the

observations {Qt}nt=1 are generated by a stationary and ergodic model with

true parameter θ0 and θ0 is in the interior of Θ, then there exists a sequence

θ̂n of local maximizer of L̃n(θ) such that θ̂n →p θ0 and ||θ̂n − θ0|| ≤ τn,

where τn = Op(n
−r), 0 < r < 1/2. Hence θ̂n is consistent.

Theorem 2 shows that there exists a sequence θ̂n which contains not

only consistent cMLE to θ0 but also local maximizer of L̃n(θ). Next, we

derive the asymptotic distributions of our estimators θ̂n in the following

Theorem 3.

Theorem 3 (Asymptotic normality). Under the conditions in Theorem

2, we have
√
n(θ̂n − θ0)

d→ N(0,M−1
0 ), where θ̂n is given in Theorem

2 and M0 is the Fisher Information matrix evaluated at θ0. Further,

the sample variance-covariance matrix of plug-in estimated score functions

{ ∂
∂θ
lt(θ̂n)}nt=1 is a consistent estimator of M0.

Although the consistency of θ̂n and their asymptotic distributions are

shown in Theorem 2 and Theorem 3 respectively, the uniqueness of cMLE

remains open due to the complexity brought by µ. Proposition 2 provides

a segmentary answer to the uniqueness of cMLE.

Proposition 2 (Asymptotic uniqueness). Denote Vn = {θ ∈ Θ|µ ≤ cQn,1+
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(1 − c)µ0} where Qn,1 = min1≤t≤n Qt, under the conditions in Theorem 2,

for any fixed 0 < c < 1. There exists a sequence of θ̂n = argmaxθ∈Vn L̃n(θ)

such that, θ̂n →p θ0, ||θ̂n−θ0|| ≤ τn where τn = Op(n
−r) with 0 < r < 1/2,

and

P (θ̂n is the unique global maximizer of L̃n(θ) over Vn) → 1.

The proofs of Theorems 2 and 3 and Proposition 2 can be found in

the supplement. Since the sequence Qt is driven by two different Fréchet

types of latent processes alternately, the benchmark structure and proofs

in Zhao et al. (2018) need to be substantially modified, which is nontrivial.

In addition, we add some probability equations to analyze the consistency

and asymptotic normality of nonlinear time series driven by two variables.

4. Simulation study

In this section, we study the finite sample performance of the cMLE under

the AcAF model. More simulation studies on “Performance of the cMLE

under Xit in the max domain of attraction”, “Comparison with the au-

toregressive conditional Fréchet model”, and “Convergence of maxima of

maxima in factor model” are given in S5.1, S5.2, and S5.3, respectively, of

the supplementary file.

We generate data from the AcAF model with the following parameters
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(β0, β1, β2, β3, γ0, γ1, γ2, γ3, δ0, δ1, δ2, δ3, µ)
T = (−0.244, 0.787, 0.066, 8.111, 0.230,

0.755, 0.417, 7.114,−0.035, 0.907, 0.425, 4.861,−0.227)T . This set of param-

eters is obtained from the real data analysis of the S&P 500 daily negative

log-returns using the AcAF model. Under this setting, the typical range of

α1t is [3.26, 10.17], the typical range of α2t is [2.68, 26.94], and the typical

range of σt is [0.25, 0.31].

We investigate the performance of cMLE with sample sizesN = 1000, 2000,

5000, 10000. For each sample size, we conduct 100 experiments. The re-

sults for parameter estimation are in Table 1, including the average of the

estimates and the standard deviation from the 100 experiments. From Ta-

ble 1, we can see that both the bias and variance of the cMLE decrease as

the sample size N increases, demonstrating the consistency of the cMLE

under correct model specification. We find that the performance of cMLE

is already satisfactory when N = 5000.

5. Real data applications

In this section, we present three real data applications of the AcAF model,

one on the cross-sectional maxima of negative log-returns of stocks in S&P

500, one on the intra-day maxima of negative log-returns from high-frequency

stock trading, and the other on the intra-day maxima of negative log-returns
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Table 1: Numerical results for performance of the cMLE under the AcAF

model with sample sizes 1000, 2000, 5000 and 10000. Mean and S.D. are

the sample mean and standard deviation of the cMLE’s obtained from 100

simulations.

N = 1000 N = 2000 N = 5000 N = 10000

Parameter True value Mean S.D. Mean S.D. Mean S.D. Mean S.D.

γ0 0.230 0.269 0.167 0.248 0.154 0.234 0.119 0.213 0.091

γ1 0.755 0.738 0.140 0.749 0.106 0.759 0.070 0.766 0.060

γ2 0.417 0.440 0.208 0.438 0.157 0.427 0.088 0.428 0.075

γ3 7.114 7.507 2.805 7.589 2.706 7.385 1.939 7.083 1.737

δ0 −0.035 −0.011 0.058 −0.009 0.053 −0.010 0.052 −0.017 0.047

δ1 0.907 0.886 0.060 0.890 0.052 0.896 0.036 0.897 0.032

δ2 0.425 0.475 0.183 0.446 0.133 0.436 0.083 0.435 0.068

δ3 4.861 5.759 2.287 5.498 1.776 5.330 1.346 5.134 1.061

β0 −0.244 −0.227 0.090 −0.236 0.063 −0.234 0.042 −0.235 0.032

β1 0.787 0.767 0.065 0.781 0.043 0.782 0.022 0.784 0.015

β2 0.066 0.083 0.052 0.072 0.029 0.065 0.015 0.064 0.010

β3 8.111 7.348 3.555 8.097 2.845 8.216 1.968 8.107 1.586

µ −0.227 −0.267 0.098 −0.249 0.083 −0.252 0.056 −0.247 0.039
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from high-frequency Bitcoin trading. We note that we model observations

from a univariate time series rather than from a bivariate time series even

if our model contains four nonlinear time series (in disguise), and decou-

ple the systemic (market) risk into the endopathic and exopathic risks si-

multaneously. Notice also that the maxima here is equivalent to taking

maxima across all stocks’ negative log-returns or high-frequency negative

log-returns, so we will use these two concepts “maxima” and “maxima of

maxima” interchangeably. In all three cases, the AcAF model shows its su-

periority over the traditional autoregressive tail index models for modeling

the endopathic and exopathic competing tail risks in the financial market.

5.1 Cross-sectional maxima of the daily negative log-returns of

stocks in S&P 500

In this section, we consider the cross-sectional maxima of the daily negative

log-returns (i.e., daily losses) of component stocks in the S&P 500 Index.

S&P 500 Index is an American stock market index based on the market

capitalizations of 505 large companies, which is among the most commonly

followed equity indices and the best representations of the U.S. stock mar-

ket. To better manage the risk, mutual funds and banks must understand

the cross-sectional tail risk of S&P 500. Our data contains the daily clos-
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ing prices of 505 components of S&P 500 and is downloaded from Yahoo

Finance with the time range January 1, 2005, to August 31, 2020.

We present the modeling results for S&P 500 in detail. For each trad-

ing day t, we calculate the daily negative log-returns of each component

stock in S&P 500 and then calculate the daily cross-sectional maxima

Qt = max1≤i≤505 rit, where rit is the daily negative log-return for stock

i. The time series {Qt} contains 3934 observations and is shown in the

bottom panel of Figure 1.

The estimation results of our model are summarized in Table 2. From

the results we can see: the estimated autoregressive parameter values of γ̂1

and δ̂1 for the tail indices {α1t} and {α2t} are both close to 1, which suggests

a strong persistence of the tail risk processes. The estimated tail indices

{α̂1t} and {α̂2t} are plotted in Figure 1. The range of estimated tail index

for endopathic risk is roughly within [3.26, 10.17], while the one for exo-

pathic risk is [2.68, 29.94]. Obviously, when the extreme events appear, two

tail indices both tend to decrease, reflecting an increase in risk. Moreover,

we can see that exopathic risks are more volatile than endopathic risks,

especially when extreme events occur. Under normal market conditions,

endopathic risks dominate the stock market price fluctuations, while under

turbulent market conditions, exopathic risks dominate. This phenomenon
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shows that α1t and α2t are useful measures of the endopathic and exopathic

tail risks, respectively, and our model has a strong ability to capture infor-

mation of financial crisis, i.e., exopathic risks dominate endopathic risks.

Like what is found in Zhao et al. (2018), the endopathic and exopathic

tail indices of S&P 500 experienced sudden downside movement around the

end of 2007, which reached their lowest level for the past several years,

and the exopathic tail risk index dropped sharply, breaking through the

endopathic risk, taking a dominant role. As is said in Zhao et al. (2018), this

unusual movement can be viewed as a warning signal of the 2008 financial

crisis. Based on Figure 1, we see that the patterns of endopathic risks and

exopathic risks can better describe and predict a potential crisis.

A Fréchet type random variable has its k-th moment if and only if

α > k. It is also noted that all α̂1t and α̂2t’s are larger than 2, hence

the conditional mean and variance of the cross-sectional maxima always

exist, which agrees with the existing literature, e.g., Hansen (1994), and is

contrary to some literature findings of the tail index being less than 2 due

to a single type of Fréchet distribution specification.

Extending the one-component AcF model (Zhao et al. (2018)) into the

two-component AcAF model increases the number of model parameters. In

the literature, particularly in models with embedded or hierarchical struc-
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tures, it is commonly believed that increasing the number of parameters

leads to improved performance based on the commonly used performance

criteria such as likelihood values, mean squared error (MSE), or prediction

mean squared error (PMSE). At first glance, the AcAF model contains more

parameters, which, on one hand, leads to better likelihood values. On the

other hand, as stated in Remark 7, the key idea of the AcAF model is to

find hidden risk factors, i.e., the endopathic and exopathic risks. Our AcAF

model’s significant contributions are to describe the dynamics of the risk

factors. We further note that the new extreme value theory for maxima

of maxima guarantees the validity of our proposed model, which can be

supported by the findings presented in Table 2 and Figure 1.

There are significant differences between the parameter estimators cor-

responding to the endopathic and exopathic risks respectively. Note that,

for ergodicity, our model setting requires γ1 ̸= δ1 (see Theorem 1). Consider

the test for the difference between γ1 and δ1: H0 : γ1 = δ1 v.s. H1 : γ1 ̸= δ1.

The test statistic is γ̂1−δ̂1
SD(γ̂1−δ̂1)

= γ̂1−δ̂1√
var(γ̂1)+var(δ̂1)−2cov(γ̂1,δ̂1)

. By Table 2 and

the covariance obtained from the variance-covariance matrix calculated by

Theorem 3, the value of the test statistic is 0.755−0.907√
0.0822+0.0062−2(−0.00012)

=

−1.816. This shows that although it is difficult to reject H0 at the 5%

significance level, we can reject H0 at the 10% significance level. Hence we
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Table 2: Estimated parameters and standard deviations for S&P500 from

January 1, 2005 to August 31, 2020.

γ0 γ1 γ2 γ3 δ0 δ1 δ2 δ3

Estimates 0.230 0.755 0.417 7.114 −0.035 0.907 0.425 4.861

S.D. 0.149 0.082 0.148 5.007 0.064 0.006 0.003 1.445

β0 β1 β2 β3 µ

Estimates −0.244 0.787 0.066 8.111 −0.227

S.D. 0.058 0.027 0.021 2.473 0.075

have enough statistical evidence to support γ1 ̸= δ1.

The estimated scale parameter {σ̂t} by our model is shown in Figure 2.

For comparison, we also fit a GARCH(1,1) model for each component stock

in S&P 500 and plot the daily average volatility given by the GARCH model

across the 505 stocks in Figure 2. These two series move very closely with

each other, with an overall correlation of 0.65. It suggests that our model’s

dynamic scale parameter σt is an accurate measure of market volatility.

Our results are consistent with the ideas in Danielsson and Shin (2003),

indicating the stock market is subject to both types of risk. The greatest

damage which the stock market are subjected to is done from the risk of

the endopathic kind, especially in normal market conditions.
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Figure 1: Estimated tail indices {α̂1t} and {α̂2t}, and cross-sectional max-

imum daily negative log-returns {Qt} of S&P500 Index from January 3,

2005 to August 31, 2020. The sample variances of γ2 exp(−γ3Qt) and

δ2 exp(−δ3Qt) are 0.00591 and 0.00484, respectively.

5.2 Intra-day maxima of 5-min negative log-returns of GE stock

In this section, we consider modeling intra-day maxima of 5-minute negative

log-returns of GE stock. We collect the historical 1-minute intra-day GE

stock price from January 1, 2008, to June 7, 2013. Then we convert this

time series into GE stock prices with time intervals of 5-minute. The 5-

minute negative log-returns {ri,t}pi=1 are obtained and intra-day maxima Qt

are calculated. The total length of series {Qt} is 1356.

We fit the AcAF model to the intra-day maxima 5-minute negative

log-returns series. Estimated parameters and their standard deviations are
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Figure 2: Estimated scale parameter series {σ̂t} of S&P500 Index by AcAF

model, and estimated average volatility series by GARCH model from Jan-

uary 3, 2005 to August 31, 2020. Both series are standardized to be zero

mean and unit variance for comparison.

shown in Table 3. The estimated autoregressive parameters β̂1 for {σt} and

δ̂1 for {α2t} are close to 1, showing strong persistence of the scale {σt} and

exopathic tail risk index {α2t} series; while the autoregressive parameter γ̂1

for {α1t} is 0.303, indicating a less persistence of endopathic tail risk index

{α1t} series.

The estimated tail indices {α̂1t} and {α̂2t} are plotted in Figure 3.

The range of the estimated tail index for endopathic risk is roughly within

[1.74, 5], while the one for exopathic risk is [1.26, 16.15]. Obviously, when

the extreme events appear, two tail indices both tend to decrease, reflect-
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Table 3: Estimated parameters and standard deviations for intra-day max-

ima of 5-minute negative log-returns of GE stock from January 1, 2008 to

June 7, 2013.

γ0 γ1 γ2 γ3 δ0 δ1 δ2 δ3

Estimates 0.378 0.303 0.829 81.88 −0.160 0.842 0.670 41.49

S.D. 0.384 0.306 0.331 65.51 0.106 0.024 0.016 15.32

β0 β1 β2 β3 µ

Estimates −0.240 0.939 0.063 83.30 −0.007

S.D. 0.029 0.006 0.016 24.31 0.003

ing an increase in risk. Moreover, we can see that exopathic risks are more

volatile than endopathic risks, especially when extreme values occur. Un-

der normal market conditions, endopathic risks dominate the stock market

price fluctuations, while under turbulent market conditions, exopathic risks

dominate. This phenomenon is interesting and consistent with the market

trading behavior, i.e., the market risks are more dominated by endopathic

risks, while the exopathic risks caused by the sentiments of investors can be

a driving force of large market variations in high-frequency trading. Figure

3 also shows that on April 14, 2008, the endopathic tail risk index and ex-

opathic tail risk index plummeted, reaching their lowest values since 2008.
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This can be regarded as an early warning of the financial crisis that began

from September 2008. The estimated scale parameter {σ̂t} is showed in

Figure 5.

From Table 3, we can see that the estimated standard deviations asso-

ciated with γ̂0, γ̂1, γ̂3 and δ̂0 are relatively large, and in Figure 3, compared

to the estimated {α̂2t}, the estimated {α̂1t} behaves like a constant except

during the 2007-2009 financial crisis period. Following Remark 1, we set

α1t as static (i.e., in (2.3) we have logα1t = γ′), which is a simplified model.

Performance of cMLE of the simplified model for intra-day maxima of 5-min

negative log-returns of GE stock is shown in Table 4. We can see that all

parameters in the simplified model are significant except δ0. The estimated

{α̂2t} together with the constant series {α1t} are plotted in Figure 4. We

can see that the estimated {α̂2t}s in Figures 3 and 4 are very similar, and

we calculated their correlation to be 0.9369. From both plots, we see that

during normal trading days, the systemic risks faced by large companies

such as GE are mainly from internal (endopathic) risks, and during clus-

tered extreme events, e.g., financial crisis, the systemic risks were driven by

the exopathic risks.

We note that both the maxima of cross-sectional negative log-returns

of stocks from S&P 500 and the maxima of intra-day negative log-returns of
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Table 4: Estimated parameters and standard deviations of the simplified

model for intra-day maxima of 5-minute negative log-returns of GE stock

from January 1, 2008 to June 7, 2013.

γ′ δ0 δ1 δ2 δ3 β0 β1 β2 β3 µ

Estimates 1.074 −0.007 0.632 1.141 99.27 −0.261 0.936 −0.098 83.08 −0.004

S.D. 0.191 0.280 0.175 0.200 39.94 0.028 0.006 0.019 20.98 0.001

Figure 3: Estimated tail indices {α̂1t} and {α̂2t}, and intra-day maximum

of 5-minute negative log-returns {Qt} (normalized) for GE stock from Jan-

uary 1, 2008 to June 7, 2013. The sample variances of γ2 exp(−γ3Qt) and

δ2 exp(−δ3Qt) are 0.03182 and 0.0143, respectively.
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Figure 4: Estimated tail indices {α̂1t} and {α̂2t}, and intra-day maximum

of 5-minute negative log-returns {Qt} (normalized) of the simplified model

for GE stock from January 1, 2008 to June 7, 2013.

Figure 5: Estimated scale parameter {σ̂t} of 5-minute GE stock from Jan-

uary 1, 2008 to June 7, 2013.
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high-frequency stock trading lead to similar observations of the 2007-2009

financial crisis. This phenomenon reveals that the AcAF model is robust

in describing and predicting market downturn periods.

5.3 Intra-day maxima of 5-min negative log-returns for BTC/USD

exchange rate

In this section, we consider modeling intra-day maxima of 5-minute negative

log-returns of Bitcoin trading. We convert 1-minute BTC/USD exchange

rates to 5-minute frequency time series and obtain daily maxima of negative

log-returns Qt. The exchange rate series we employ is available on Kaggle

and includes observations from October 8, 2015, to April 9, 2020. The

length of the series {Qt} is 1609.

We fit the model to the intra-day maxima 5-minute negative log-returns

series. Estimated parameters and their standard deviations are shown in

Table 5. The estimated autoregressive parameters β̂1 for {σt} and δ̂1 for

{α2t} are close to 1, showing strong persistence of the scale {σt} and ex-

opathic tail risk index {α2t} series; while the autoregressive parameter γ̂1

for {α1t} is 0.416, indicating a less persistence of endopathic tail risk index

{α1t} series.

The estimated tail indices {α̂1t} and {α̂2t} are plotted in Figure 6. The
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range of estimated tail index for endopathic risk is [2.97, 206.97], while the

one for exopathic risk is [5.47, 13.06]. Obviously, when the extreme events

appear, two tail indices both tend to decrease, reflecting an increase in risk.

Moreover, we can see that endopathic risks are more volatile than exopathic

risks, especially when extreme events occur. Exopathic risks dominate the

cryptocurrency market price fluctuations under normal market conditions,

while under turbulent market conditions, endopathic risks dominate, which

is coincident with empirical findings in the literature that policy changes

and investor sentiments (exopathic risk) often cause Bitcoin market to suf-

fer very large variations, e.g., Corbet et al. (2014), Dong et al. (2022). The

internal transaction risk of the Bitcoin market leads to a large range of price

changes, and external shocks have a relatively small impact on Bitcoin trad-

ing. However, for the stock market, the risks brought by its internal trading

are relatively stable, and the stock price changes are more susceptible to

the impact of external shocks.

The estimated scale parameter {σ̂t} is showed in Figure 7. Comparing

Figures 5 and 7, we see that the scale parameters in maxima of maxima in

Bitcoin returns are 5-10 times larger than those in GE stock price changes,

which shows a clear pattern that Bitcoin returns are much more volatile

than GE returns in terms of high-frequency trading. The competing pat-
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Figure 6: Estimated tail indices {α̂1t} and {α̂2t}, and intra-day maxima of

5-minute negative log-returns {Qt} (normalized) from October 8, 2015 to

April 9, 2020 for BTC/USD data. The sample variances of γ2 exp(−γ3Qt)

and δ2 exp(−δ3Qt) are 0.22677 and 0.00051, respectively.

Figure 7: Estimated scale parameter {σ̂t} from October 8, 2015 to April 9,

2020 for BTC/USD data.
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Table 5: Estimated parameters and standard deviations for intra-day max-

ima of 5-minute negative log-returns of BTC/USD from October 8, 2015 to

April 9, 2020.

γ0 γ1 γ2 γ3 δ0 δ1 δ2 δ3

Estimates 0.598 0.416 2.004 68.57 0.100 0.920 0.118 35.195

S.D. 0.158 0.055 0.173 12.21 0.054 0.004 0.001 17.81

β0 β1 β2 β3 µ

Estimates −0.470 0.829 0.035 63.50 −0.054

S.D. 0.008 0.029 0.008 15.16 0.009

terns of the endopathic risks and the exopathic risks from the stock markets

are different from those in the Bitcoin markets, i.e., they have reversed re-

lationship.

6. Conclusion

This paper advances the banchmark AcF model to a new autoregressive

conditional accelerated Fréchet (AcAF) model for decoupling systemic fi-

nancial risk into endopathic and exopathic competing risks. Comparatively,

this advance is like advancing the ARCH model to the GARCH model in

the literature. We model the worst market returns using maxima of maxima
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in financial time series, which provides a new angle to identify systemic risk

patterns and their impacts in financial markets. The probabilistic proper-

ties of stationarity and ergodicity of the AcAF model are investigated. We

implement the cMLE for the AcAF model, and the estimators’ consistency

and asymptotic properties are established. The proof extends the theo-

retical result to a dynamic model for nonlinear time series driven by two

variables. Simulation study shows the AcAF model’s superior performance

to the existing dynamic GEV models for heterogeneous data and the ef-

ficiency of the proposed estimators. The real data examples illustrate its

potential broad use in financial risk management and systemic risk moni-

toring. It provides a clear risk pattern of market risks and the causes of the

financial crisis.

The AcAF model can be extended to many other aspects. One potential

extension is to assume a dynamic structure for the location parameter µ.

Another future direction is to extend two risk sources to multiple sources of

risk with the construction of a flexible multivariate dynamic tail risk model.

The AcAF model can be applied to diversified areas as long as decou-

pling systemic risks into competing endopathic risks and exopathic risks

is concerned. These areas include systemic risks in social, political, eco-

nomic, financial, market, regional, global, environmental, transportation,
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epidemiological, material, chemical, and physical systems.

Supplementary material

Supplementary material for “Decoupling Systemic Risk into Endopathic

and Exopathic Competing Risks Through Autoregressive Conditional Ac-

celerated Fréchet Model” contains proofs of Theorem 1, Proposition 1, The-

orems 2 and 3, and Proposition 2, along with the auxiliary lemmas, and the

expressions of the first order and the second order partial derivatives of the

likelihood function in the paper, as well as three more simulation studies.
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gressive conditional Fréchet model. Journal of Econometrics 207 (2),

325–351.

Jingyu Ji

School of Statistics, Capital University of Economics and Business, Beijing,

China

E-mail: jingyuji@cueb.edu.cn

Deyuan Li (Corresponding author)

School of Management, Fudan University, Shanghai, China

E-mail: deyuanli@fudan.edu.cn

Zhengjun Zhang (Corresponding author)

School of Economics and Management, and MOE Social Science Laboratory

56

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0248



REFERENCES

of Digital Economic Forecasts and Policy Simulation, University of Chinese

Academy of Sciences, Beijing, China;

Center for Forecasting Sciences, Chinese Academy of Sciences, Beijing,

China;

Department of Statistics, University of Wisconsin, Madison, WI, USA

E-mail: zhangzhengjun@ucas.ac.cn

57

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0248


	Introduction
	Autoregressive conditional accelerated Fréchet model
	Background and motivation
	Model specification
	Stationarity and ergodicity
	AcAF model under a factor model setting

	Parameter estimation
	Simulation study
	Real data applications
	Cross-sectional maxima of the daily negative log-returns of stocks in S&P 500
	Intra-day maxima of 5-min negative log-returns of GE stock
	Intra-day maxima of 5-min negative log-returns for BTC/USD exchange rate

	Conclusion



