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Abstract: The particle-based rapid incremental smoother (PARIS) is a sequential

Monte Carlo technique that allows for efficient online approximations of expec-

tations of additive functionals under Feynman–Kac path distributions. Under

weak assumptions, the algorithm has linear computational complexity and lim-

ited memory requirements. It also comes with a number of nonasymptotic bounds

and convergence results. However, being based on self-normalized importance

sampling, the PARIS estimator is biased. This bias is inversely proportional to

the number of particles, but has been found to grow linearly with the time hori-

zon, under appropriate mixing conditions. In this work, we propose the Parisian

particle Gibbs (PPG) sampler, which has essentially the same complexity as that of

the PARIS, but significantly reduces the bias for a given computational complex-

ity at the cost of a modest increase in the variance. This method is a wrapper, in

the sense that it uses the PARIS algorithm in the inner loop of the particle Gibbs

algorithm to form a bias-reduced version of the targeted quantities. We substan-

tiate the PPG algorithm with theoretical results, including new bounds on the
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bias and variance, as well as deviation inequalities. We illustrate our theoretical

results using numerical experiments that support our claims.

Key words and phrases: sequential Monte Carlo, particle Gibbs, bias reduction,

smoothing of additive functionals, state space smoothing, particle filters.

1. Introduction

Feynman–Kac formulae play a key role in many models used in statistics, physics, and many

other fields; see [10, 11, 8], and the references therein. Let {(Xn,Xn)}n∈N be a sequence of

measurable spaces and define, for every n ∈ N, X0:n :=
∏n

m=0 Xm and X0:n :=
⊗n

m=0 Xm.

For a sequence {Mn}n∈N of Markov kernels Mn : Xn × Xn+1 → [0, 1], an initial distribution

η0 ∈ M1(X0), and a sequence {gn}n∈N of bounded measurable potential functions gn : Xn → R+,

a sequence {η0:n}n∈N of Feynman–Kac path measures is defined by

η0:n : X0:n ∋ A 7→ γ0:n(A)

γ0:n(X0:n)
, n ∈ N, (1.1)

where

γ0:n : X0:n ∋ A 7→
∫
1A(x0:n) η0(dx0)

n−1∏
m=0

Qm(xm, dxm+1), (1.2)

with

Qm : Xm ×Xm+1 ∋ (x,A) 7→ gm(x)Mm(x,A) (1.3)

being unnormalized kernels. By convention, η0:0 := η0. Note that each η0:n is a probability mea-

sure, whereas γ0:n is not normalized. For every n ∈ N∗, we also define the marginal distribution

ηn : Xn ∋ A 7→ η0:n(X0:n−1 × A). In the context of nonlinear filtering in general state-space

hidden Markov models(HMMs), η0:n and ηn are, the joint smoothing and filter distribution,

respectively, at time n; see [10, 7, 8].
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For most problems of practical interest, the Feynman–Kac path or marginal measures

are intractable, and so is any expectation associated with the same. As a result, considerable

research has been devoted to developing Monte Carlo, or particle, approximations of such mea-

sures. A particle filter approximates the marginal distribution flow {ηn}n∈N by a sequence of

occupation measures, associated with a swarm of particles {ξin}Ni=1, n ∈ N, where each particle

ξin is a random draw in Xn. Particle filters revolve around two operations: a selection step,

which duplicates or sorts out particles with large or small importance weights, respectively, and

a mutation step, which randomly evolves the selected particles in the state space. An alternat-

ing and iterative application of selection and mutation results in a swarm of N particles that

are both serially and spatially dependent. Feynman–Kac path models can also be interpreted

as laws associated with a certain type of Markovian backward dynamics; this interpretation

is useful, for example, for the smoothing problem in nonlinear filtering [15, 12]. Several con-

vergence results have been established for particle filters, as the number N of particles tends

to infinity; see for example, [10, 16, 11, 8]. In addition, a number of nonasymptotic results

have been obtained for these methods, including bounds on their bias and Lp error, as well as

exponential concentration inequalities and propagation of chaos estimates. Extensions to the

backward interpretation can also be found in [15, 12].

In this work, we focus on the problem of recursively computing smoothed expectations

η0:nhn =

∫
hn(x0:n) η0:n(dx0:n), n ∈ N,

where we introducethe vector notation x0:n = (x0, . . . , xn) ∈ X0:n := X0 × · · · × Xn for additive

functionals hn of the form

hn(x0:n) :=

n−1∑
m=0

h̃m(xm:m+1), x0:n ∈ X0:n. (1.4)

In nonlinear filtering problems, such expectations appear in the context of maximum-likelihood
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parameter estimation, for instance, when computing the score function (the gradient of the

log-likelihood function) or the expectation–maximization (EM) surrogate; see [4, 2, 26, 5, 27].

In [24], the authors propose an efficient particle-based rapid incremental smoother (PARIS),

with linear computational complexity in the number of particles under weak assumptions and

limited memory requirements, that samples on-the-fly from the backward dynamics induced by

the particle filter. An interesting feature is that it requires two or more backward draws per

particle to cope with the degeneracy of the sampled trajectories and remain numerically stable

in the long run, with an asymptotic variance that grows only linearly with time.

In this paper, we propose a method to reduce the bias of the PARIS estimator of η0:nhn.

The idea is to mix the PARIS with a version of the particle Gibbs algorithm with backward

sampling [3, 23, 9, 14, 13] by introducing a conditional PARIS algorithm. This leads to the

Parisian particle Gibbs (PPG) algorithm, from which we derive an upper bound on the bias that

decreases inversely proportionally to the number of particles and exponentially fast with the

iteration index (under assumptions guaranteeing that the particle Gibbs sampler is uniformly

ergodic).

The remainder of the paper is structured as follows. In 2 we discuss the Feynman–Kac

model, along with its backward interpretation, and introduce the particle Gibbs sampler. Our

presentation is inspired by [14], but differs in that it avoids the use of quotient spaces of [14] and

the extension of the distribution to the particle ancestral indices of [3]. In 3, we introduce the

PARIS algorithm and its conditional version, and show how it can be coupled with the particle

Gibbs method with backward sampling, yielding the PPG algorithm. In 4, we present the central

result of this study, namely, an upper bound on the bias of the PPG estimator as a function of

the number of particles and the iteration index of the Gibbs algorithm. In addition, we provide

an upper bound on the mean-squared error (MSE). In 5, we provide numerical experiment to
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illustrate our results. In 6, we present the most important and original proofs. Finally, the

supplementary material contain pseudocode and additional technical proofs, respectively.

Notation. Let R+ := [0,∞), R∗
+ := (0,∞), N := {0, 1, 2, . . .}, and N∗ := {1, 2, 3, . . .} denote

the sets of nonnegative and positive real numbers and the same for integers, respectively. We

denote by IN the N × N identity matrix. For any quantities {aℓ}nℓ=m, we denote vectors as

am:n := (am, . . . , an), and for any (m,n) ∈ N2 such that m ≤ n, we let Jm,nK := {m,m +

1, . . . , n}. For a given measurable space (X,X), where X is a countably generated σ-field, we

denote by F(X) the set of bounded X/B(R)-measurable functions on X. For any h ∈ F(X), we

let ∥h∥∞ := supx∈X |h(x)| and osc(h) := sup(x,x′)∈X2 |h(x) − h(x′)| denote the supremum and

oscillator norms, respectively, of h. Let M(X) be the set of σ-finite measures on (X,X), and

M1(X) ⊂ M(X) be the probability measures.

Let (Y,Y) be another measurable space. A possibly unnormalized transition kernel K on

X × Y induces two integral operators, one acting on measurable functions, and the other on

measures; specifically, for h ∈ F(X ⊗ Y) and ν ∈ M1(X), define the measurable function

Kh : X ∋ x 7→
∫

h(x, y)K(x, dy)

and the measure

νK : Y ∋ A 7→
∫

K(x,A) ν(dx),

whenever these quantities are well defined. Now, let (Z,Z) be a third measurable space and L

be another possibly unnormalized transition kernel on Y×Z; we then define, with K as above,

two different products of K and L, namely,

KL : X ×Z ∋ (x,A) 7→
∫

L(y,A)K(x, dy)

and

K � L : X × (Y � Z) ∋ (x,A) 7→
∫∫

1A(y, z)K(x,dy)L(y,dz),
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whenever these are well defined. This also defines the � product of a kernel K on X ×Y and a

measure ν on X, as well as of a kernel L on Y ×X and a measure µ on Y, as the measures

ν � K : X � Y ∋ A 7→
∫∫

1A(x, y)K(x, dy) ν(dx),

L � µ : X � Y ∋ A 7→
∫∫

1A(x, y)L(y,dx)µ(dy).

2. Particle models

In the next sections, we discuss many-body Feynman–Kac models, backward interpretations,

conditional dual processes, and the PARIS algorithm. Our presentation follows that of [14]

closely, but with a different definition of the many-body extensions. We restate (in 1) a duality

formula of [14] relating these concepts. This formula provides a foundation for the particle

Gibbs sampler described in 2.3 and subsequent developments.

2.1 Many-body Feynman–Kac models

In the following, we assume that all random variables are defined on a common probability space

(Ω,F ,P). The distribution flow {ηm}m∈N is intractable, in general, but can be approximated

by using random samples ξm = (ξ1m, . . . , ξNn ), for m ∈ N, of particles, where N ∈ N∗ is a fixed

Monte Carlo sample size and each particle ξim is an Xm-valued random variable. Such a particle

approximation is based on the recursion ηm+1 = Φm(ηm), for m ∈ N, where Φm denotes the

mapping

Φm : M1(Xm) ∋ η 7→ ηQm

ηgm
, (2.1)

taking on values in M1(Xm+1). In order to describe recursively the evolution of the particle

population, let m ∈ N and assume that the particles ξm form a consistent approximation of ηm,

in the sense that µ(ξm)h, where µ(ξm) := N−1∑N
i=1 δξim (with δx denoting the Dirac measure
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2.1 Many-body Feynman–Kac models

located at x) is the occupation measure formed by ξm, serves as a proxy for ηmh for any ηm-

integrable test function h. (Under general conditions, µ(ξm)h converges in probability to ηm as

N →∞; see [10, 8], and the references therein.) Then, in order to generate an updated particle

sample approximating ηm+1, new particles ξm+1 = (ξ1m+1, . . . , ξ
N
m+1) are drawn conditionally

independently given ξm according to

ξim+1 ∼ Φm(µ(ξm)) =

N∑
ℓ=1

gm(ξℓm)∑N
ℓ′=1 gm(ξℓ′m)

Mm(ξℓm, ·), i ∈ J1, NK.

Because this process of particle updating involves sampling from the mixture distribution

Φm(µ(ξm)), it can be decomposed into two substeps: selection and mutation. The selection

step randomly chooses the ℓth mixture stratum with probability gm(ξℓm)/
∑N

ℓ′=1 gm(ξℓ
′

m), and

the mutation draws a new particle ξim+1 from the selected stratum Mm(ξℓm, ·). In [14], the term

many-body Feynman–Kac models is related to the law of process {ξm}m∈N. For all m ∈ N, let

Xm := XN
m and Xm := X�N

m ; then, {ξm}m∈N is an inhomogeneous Markov chain on {Xm}m∈N,

with transition kernels

Mm : Xm ×Xm+1 ∋ (xm, A) 7→ Φm(µ(xm))�N (A)

and initial distribution η0 = η�N
0 . Now, denote X0:n :=

∏n
m=0 Xm and X 0:n :=

⊗n
m=0 Xm.

(Here, and in the following, we use a bold symbol to stress that a quantity is related to the

many-body process.) The many-body Feynman–Kac path model refers to the flows {γm}m∈N

and {ηm}m∈N of the unnormalized and normalized probability distributions, respectively, on

{X 0:m}m∈N generated by (1.1) and (1.2) for the Markov kernels {Mm}m∈N, the initial distri-

bution η0, the potential functions

gm : Xm ∋ xm 7→ µ(xm)gm =
1

N

N∑
i=1

gm(xi
m), m ∈ N,

and the corresponding unnormalized transition kernels

Qm : Xm ×Xm+1 ∋ (xm, A) 7→ gm(xm)Mm(xm, A), m ∈ N.
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2.2 Backward interpretation of Feynman–Kac path flows

Finally, note that in the previous construction, the Markov property of the many-body Feynman–

Kac model relies on the fact that each potential gm is a function of a single state xm only, as

is the case in the standard Feynman–Kac model framework [10], and that the evolution of the

particles follows the model dynamics given in (2.1) (so-called bootstrap particle filtering). In

order to extend this to more general models (such as models where the potentials are allowed

to depend on two consecutive states [22] or, even more generally, where no structure at all

is assumed for the unnormalized kernels (1.3) [18]) and particle dynamics (such as the auxil-

iary particle filtering framework introduced in [25]), we need to form a Markovian many-body

process with tractable dynamics by furnishing each particle with an importance weight and

an index that records the particle’s ancestor in the previous generation. However, to avoid

this technicality and to allow for a more clear-cut presentation of the methods and theoretical

analysis in the coming sections, we stay within the framework of the standard Feynman–Kac

models and bootstrap-type particle filters, even though extensions to more general settings may

be possible.

2.2 Backward interpretation of Feynman–Kac path flows

Suppose that each kernel Qn, for n ∈ N, defined in (1.3), has a transition density qn with respect

to some dominating measure λn+1 ∈ M(Xn+1). Then, for n ∈ N and η ∈ M1(Xn), we define the

backward kernel

←−
Qn,η : Xn+1 ×Xn ∋ (xn+1, A) 7→

∫
1A(xn)qn(xn, xn+1) η(dxn)∫

qn(x′
n, xn+1) η(dx′

n)
. (2.2)

Now, for n ∈ N∗, denoting

Bn : Xn ×X0:n−1 ∋ (xn, A) 7→
∫
· · ·
∫
1A(x0:n−1)

n−1∏
m=0

←−
Qm,ηm(xm+1, dxm), (2.3)
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2.2 Backward interpretation of Feynman–Kac path flows

we may state the following—now classical—backward decomposition of the Feynman–Kac path

measures, a result that plays a pivotal role in the following.

Proposition 1. For every n ∈ N∗, it holds that γ0:n = γn � Bn and η0:n = ηn � Bn.

Although the decomposition in 1 is well known (see, e.g., [12, 14]), we provide a proof in

6.1 for completeness. Using backward decomposition, we can obtain a particle approximation

of a given Feynman–Kac path measure η0:n by first sampling, in an initial forward pass, particle

clouds {ξm}nm=0 from η0 �M0 � · · ·�Mn−1. Then, in a subsequent backward pass, we sample

N conditionally independent paths {ξ̃i0:n}Ni=1 from Bn(ξ0, . . . , ξn, ·), where

Bn : X0:n ×X0:n ∋ (x0:n, A) 7→
∫
· · ·
∫
1A(x0:n)

(
n−1∏
m=0

←−
Qm,µ(xm)(xm+1,dxm)

)
µ(xn)(dxn)

(2.4)

is a Markov kernel describing the time-reversed dynamics induced by the particle approximations

generated in the forward pass. (Here, and in the following, we use blackboard notation to denote

kernels related to many-body path spaces.) Finally, µ({ξ̃i0:n}Ni=1)h is returned as an estimator

of η0:nh for any η0:n-integrable test function h. This algorithm is referred to as the forward-

filtering backward-simulation (FFBSi) algorithm in the literature, and was introduced in [19]; see

also [6, 15]. More precisely, given the forward particles {ξm}nm=0, each path ξ̃i0:n is generated

by first drawing ξ̃in uniformly from among the particles ξn in the previous generation, and then

drawing, recursively,

ξ̃im ∼
←−
Qm,µ(ξm)(ξ̃

i
m+1, ·) =

N∑
j=1

qm(ξjm, ξ̃im+1)∑N
ℓ=1 qm(ξℓm, ξ̃im+1)

δ
ξ
j
m
; (2.5)

that is, given ξ̃im+1, ξ̃
i
m is picked at random from among ξm based on weights proportional to

{qm(ξjm, ξ̃im+1)}Nj=1. Note that in this basic formulation of the FFBSi algorithm, each backward-

sampling operation (2.5) requires the computation of the normalising constant
∑N

ℓ=1 qm(ξℓm, ξ̃im+1),
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2.3 Conditional dual processes and particle Gibbs

which implies an overall quadratic complexity of the algorithm. Still, this heavy computational

burden can be eased by using an effective accept–reject technique, as discussed in 2.4.

2.3 Conditional dual processes and particle Gibbs

The dual process associated with a given Feynman–Kac model (1.1–1.2) and a given trajectory

{zn}n∈N, where zn ∈ Xn for every n ∈ N, is defined as the canonical Markov chain with kernels

Mn⟨zn+1⟩ : Xn ×Xn+1 ∋

(xn, A) 7→ 1

N

N−1∑
i=0

(
Φn(µ(xn))

�i � δzn+1 � Φn(µ(xn))
�(N−i−1)

)
(A), (2.6)

for n ∈ N, and initial distribution

η0⟨z0⟩ :=
1

N

N−1∑
i=0

(
η�i
0 � δz0 � η

�(N−i−1)
0

)
. (2.7)

As is clear from (2.6–2.7), given {zn}n∈N, a realization {ξn}n∈N of the dual process is generated

as follows. At time zero, the process is initialized by inserting z0 at a randomly selected position

in the vector ξ0, while drawing independently the remaining elements in the same vector from

η0. After this, the process proceeds in a Markovian manner by, given ξn, inserting zn+1 at a

randomly selected position in ξn+1, while drawing independently the remaining elements from

Φn(µ(ξn)).

In order to describe compactly the law of the conditional dual process, we define the

Markov kernel

Cn : X0:n ×X 0:n ∋ (z0:n, A) 7→ η0⟨z0⟩�M0⟨z1⟩� · · ·�Mn−1⟨zn⟩(A).

The following result elegantly combines the underlying model (1.1–1.2), the many-body Feynman–

Kac model, the backward decomposition, and the conditional dual process.
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2.3 Conditional dual processes and particle Gibbs

Theorem 1 ([14]). For all n ∈ N, it holds that

Bn � γ0:n = γ0:n � Cn. (2.8)

In [14], each state ξn of the many-body process maps an outcome ω of the sample space

Ω onto an unordered set of N elements in Xn. However, we have chosen to let each ξn take

values in the standard product space XN
n , for two reasons. First, the construction of [14] requires

sophisticated measure-theoretic arguments to endow such unordered sets with suitable σ-fields

and appropriate measures. Second, we see no need to ignore the index order of the particles, as

long as the Markovian dynamics (2.6–2.7) of the conditional dual process are symmetrized over

the particle cloud. Therefore, in 6.2, we include our own proof of duality (2.8) for completeness.

Note that the measure (2.8) on X0:n � X 0:n is unnormalized, but because the kernels Bn and

Cn are both Markov, normalizing the identity with γ0:n(X0:n) = γ0:n(X0:n) immediately yields

Bn � η0:n = η0:n � Cn. (2.9)

Because the two sides of (2.9) provide the full conditionals, it is natural to take a data-

augmentation approach, and sample the target (2.9) using a two-stage deterministic-scan Gibbs

sampler [3, 9]. Specifically, assume we generate a state (ξ0:n[ℓ], ζ0:n[ℓ]) comprising a dual

process with an associated path on the basis of ℓ ∈ N iterations of the sampler. Then,

we generate the next state (ξ0:n[ℓ + 1], ζ0:n[ℓ + 1]) in a Markovian fashion by first sampling

ξ0:n[ℓ + 1] ∼ Cn(ζ0:n[ℓ], ·), and then sampling ζ0:n[ℓ + 1] ∼ Bn(ξ0:n[ℓ + 1], ·). After arbitrary

initialization (and the discard of possible burn-in), this procedure produces a Markov trajectory

{(ξ0:n[ℓ], ζ0:n[ℓ])}ℓ∈N, and under weak additional technical conditions, this Markov chain admits

(2.9) as its unique invariant distribution. In such a case, the Markov chain is ergodic [17, Chap-

ter 5], and the marginal distribution of the conditioning path ζ0:n[ℓ] converges to the target

distribution η0:n. Therefore, for every h ∈ F(X0:n), it holds that limL→∞ L−1∑L
ℓ=1 h(ζ0:n[ℓ]) =
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2.4 The PARIS algorithm

η0:nh, P-a.s.. This algorithm is given in the discussion in [29] of the original particle Gibbs paper

[3]; however, the justification of [29], involving an extension of the law targeted by the particle

Gibbs sampler to the ancestral indices of particles, differs somewhat from the one presented

here.

2.4 The PARIS algorithm

In the following, we assume that we are given a sequence {hn}n∈N of additive state functionals

of type (1.4). Interestingly, as noted in [5, 12], the backward decomposition allows, when

applied to additive state functionals, a forward recursion for the expectations {η0:nhn}n∈N.

More specifically, using the forward decomposition hn+1(x0:n+1) = hn(x0:n)+ h̃n(xn, xn+1) and

the backward kernel Bn+1 defined in (2.3), we may write, for xn+1 ∈ Xn+1,

Bn+1hn+1(xn+1) =

∫ ←−
Qn,ηn(xn+1, dxn)

∫ (
hn(x0:n) + h̃n(xn, xn+1)

)
Bn(xn,dx0:n−1)

=
←−
Qn,ηn(Bnhn + h̃n)(xn+1), (2.10)

which, by 1, implies that

η0:n+1hn+1 = ηn+1
←−
Qn,ηn(Bnhn + h̃n). (2.11)

The marginal flow {ηn}n∈N can be expressed recursively using the mappings {Φn}n∈N. Thus,

(2.11) provides, in principle, a basis for an online computation of {η0:nhn}n∈N. Because the

marginals are generally intractable, following [12], we plug particle approximations µ(ξn+1)

and
←−
Qn,µ(ξn) (see (2.5)) of ηn+1 and

←−
Qn,µ(ηn), respectively, into the recursion (2.11). More

precisely, we proceed recursively, and assume that at time n, we have a sample {(ξin, βi
n)}Ni=1

of particles with associated statistics, where each statistic βi
n serves as an approximation of

Bnhn(ξ
i
n). Then evolving the particle cloud according to ξn+1 ∼Mn(ξn, ·) and updating the

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0215



2.4 The PARIS algorithm

statistics using (2.10), with
←−
Qn,ηn replaced by

←−
Qn,µ(ξn), yields the particle-wise recursion

βi
n+1 =

N∑
ℓ=1

qn(ξ
ℓ
n, ξ

i
n+1)∑N

ℓ′=1 qn(ξ
ℓ′
n , ξin+1)

(
βℓ
n + h̃n(ξ

ℓ
n, ξ

i
n+1)

)
, i ∈ J1, NK, (2.12)

and, finally, the estimator

µ(βn)(id) =
1

N

N∑
i=1

βi
n (2.13)

of η0:nhn, where we set βn := (β1
n, . . . , β

N
n ), for i ∈ J1, NK, and id is the identity mapping. The

procedure is initialized by simply letting βi
0 = 0, for all i ∈ J1, NK. Note that (2.13) provides

a particle interpretation of the backward decomposition in 1. This algorithm is a special case

of the forward-filtering backward-smoothing (FFBSm) algorithm (see [2, 19, 15, 28]) for additive

functionals satisfying (1.4). It allows for online processing of the sequence {η0:nhn}n∈N, but also

has the appealing property that only the current particles ξn and statistics βn need to be stored

in memory. However, because each update (2.12) requires a summation of N terms, the scheme

has an overall quadratic complexity in the number of particles, leading to a computational

bottleneck in applications to complex models that require large particle sample sizes N .

To avoid the computational burden of this forward-only implementation of FFBSm, the

PARIS algorithm [24] updates the statistics βn by replacing each sum (2.12) with the Monte

Carlo estimate

βi
n+1 =

1

M

M∑
j=1

(
β̃i,j
n + h̃n(ξ̃

i,j
n , ξin+1)

)
, i ∈ J1, NK, (2.14)

where {(ξ̃i,jn , β̃i,j
n )}Mj=1 are drawn randomly from among {(ξin, βi

n)}Ni=1 with replacement, by

assigning (ξ̃i,jn , β̃i,j
n ) the value of (ξℓn, β

ℓ
n) with probability qn(ξ

ℓ
n, ξ

i
n+1)/

∑N
ℓ′=1 qn(ξ

ℓ′
n , ξin+1), and

the Monte Carlo sample size M ∈ N∗ is much smaller than N (say, less than five). Formally,

{(ξ̃i,jn , β̃i,j
n )}Mj=1 ∼

(
N∑
ℓ=1

qn(ξ
ℓ
n, ξ

i
n+1)∑N

ℓ′=1 qn(ξ
ℓ′
n , ξin+1)

δ(ξℓn,βℓ
n)

)�M

, i ∈ J1, NK.

The resulting procedure, summarized in 1, allows for online processing with constant memory

requirements, because it only needs to store the current particle cloud and the estimated aux-
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iliary statistics at each iteration. Moreover, when the Markov transition densities of the model

can be uniformly bounded, that is, there exists, for every n ∈ N, an upper bound σ̄n > 0 such

that for all (xn, xn+1) ∈ Xn × Xn+1, mn(xn, xn+1) ≤ σ̄n (a weak assumption satisfied for most

models of interest), then we can generate a sample (ξ̃i,jn , βi,j
n ) by drawing, with replacement

and until acceptance, candidates (ξ̃i,∗n , β̃i,∗
n ) from {(ξin, βi

n)}Ni=1 based on the normalized parti-

cle weights {gn(ξℓn)/
∑

ℓ′ gn(ξ
ℓ′
n )}Nℓ=1 (obtained as a by-product in the generation of ξn+1), and

accepting the same with probability mn(ξ̃
i,∗
n , ξin+1)/σ̄n. Because this sampling procedure by-

passes the calculation of the normalizing constant
∑N

ℓ′=1 qn(ξ
ℓ′
n , ξin+1) of the targeted categorical

distribution, it yields an overall O(MN) complexity of the algorithm; see [15] for details.

Increasing M improves the accuracy of the algorithm at the cost of additional computa-

tional complexity.

As shown in [24], there is a qualitative difference between the cases M = 1 and M ≥ 2,

and the latter is required to keep the PARIS numerically stable. More precisely, in the latter

case, it can be shown that the PARIS estimator µ(βn) satisfies, as N tends to infinity while M

is held fixed, a central limit theorem (CLT) at the rate
√
N , with an n-normalized asymptotic

variance of order O(1− 1/(M − 1)). As is clear from this bound, using a large M only wastes

computational work, and setting M to two or three typically works well in practice.

3. The PPGsampler

We now introduce the PPG algorithm. For all n ∈ N∗, let Yn := X0:n × R and Yn := X0:n �

B(R). Moreover, let Y0 := X0 × {0} and Y0 := X0 � {{0}, ∅}. An element of Yn is always

denoted by yn = (x0:n|n, bn). The PPG sampler includes, as a key ingredient, a conditional

PARIS step, that recursively updates a set of Yn-valued random variables υi
n := (ξi0:n|n, β

i
n),

for i ∈ J1, NK. Let (υn)n∈N denote the corresponding many-body process, with each υn :=
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((ξ10:n|n, β
1
n), . . . , (ξ

N
0:n|n, β

N
n )) taking on values in the space Yn := YN

n , which we furnish with

a σ-field Yn := Y�N
n . The space Y0 and the corresponding σ-field Y0 are defined accordingly.

For every n ∈ N, we write ξ0:n|n = (ξ10:n|n, . . . , ξ
N
0:n|n) for the collection of paths in υn, and

ξn|n = (ξ1n, . . . , ξ
N
n ) for the collection of end points of the same.

In the following, we let n ∈ N be a fixed time horizon, and describe in detail how the PPG

approximates η0:nhn iteratively. In short, at each iteration ℓ, and given an input conditional

path ζ0:n[ℓ], the PPG produces a many-body system υn[ℓ + 1] by using a series of conditional

PARIS operations. Then, an updated path ζ0:n[ℓ+1], which serves as input at the next iteration,

is generated by picking one of the paths ξ0:n|n[ℓ+ 1] in υn[ℓ+ 1] at random. At each iteration,

the produced statistics βn (in υn) provide an approximation of η0:nhn, according to (2.13).

More precisely, given a path ζ0:n[ℓ], the conditional PARIS operations are executed as

follows. In the initial step, ξ0|0[ℓ+1] are drawn from η0⟨ζ0[ℓ]⟩ defined in (2.7), and υi
0[ℓ+1]←

(ξi0|0[ℓ+ 1], 0), for all i ∈ J1, NK; then, recursively, for m ∈ J0, nK, assuming access to υm[ℓ+ 1],

we

(1) generate an updated particle cloud ξm+1[ℓ+ 1] ∼Mm⟨ζm+1[ℓ]⟩(ξm|m[ℓ+ 1], ·),

(2) pick at random, for each i ∈ J1, NK, an ancestor path with associated statistics (ξ̃i,10:m[ℓ+

1], β̃i,1
m [ℓ+ 1]) from among υm[ℓ+ 1] by drawing

(ξ̃i,10:m[ℓ+ 1], β̃i,1
m [ℓ+ 1]) ∼

N∑
s=1

qm(ξsm|m[ℓ+ 1], ξim+1[ℓ+ 1])∑N
s′=1 qm(ξs

′
m|m[ℓ+ 1], ξim+1[ℓ+ 1])

δυs
m[ℓ+1],

(3) pick at random, for each i ∈ J1, NK, with replacement, M − 1 ancestor particles and

associated statistics {(ξ̃i,jm [ℓ + 1], β̃i,j
m [ℓ + 1])}Mj=2 at random from {(ξsm|m[ℓ + 1], βs

m[ℓ +
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1])}Ns=1 according to

{(ξ̃i,jm [ℓ+ 1], β̃i,j
m [ℓ+ 1])}Mj=2

∼

(
N∑

s=1

qm(ξsm|m[ℓ+ 1], ξim+1[ℓ+ 1])∑N
s′=1 qm(ξs

′
m|m[ℓ+ 1], ξim+1[ℓ+ 1])

δ(ξs
m|m[ℓ+1],βs

m[ℓ+1])

)�(M−1)

,

(4) set, for all i ∈ J1, NK, ξi0:m+1|m+1[ℓ + 1] ← (ξ̃i,10:m[ℓ + 1], ξim+1[ℓ + 1]) and υi
m+1[ℓ + 1] ←

(ξi0:m+1|m+1[ℓ+ 1], βi
m+1[ℓ+ 1]), where

βi
m+1[ℓ+ 1]←M−1

M∑
j=1

(
β̃i,j
m [ℓ+ 1] + h̃m(ξ̃i,jm [ℓ+ 1], ξim+1[ℓ+ 1])

)
.

This conditional PARIS procedure is summarized in pseudocode in 2 in S2.

In addition to recursively propagating the statistics {βm[ℓ + 1]}nm=0 to form the final

estimator, this scheme also recursively propagates the trajectories {ξ0:m|m[ℓ+1]}nm=0 used as a

pool of candidates for the updated conditional path ζ0:n[ℓ+ 1]. Once we have the set υn[ℓ+ 1]

of trajectories and associated statistics formed using n recursive conditional PARIS updates, we

draw an updated path ζ0:n[ℓ + 1] from µ(ξ0:n|n[ℓ + 1]) (i.e., uniformly among the elements of

ξ0:n|n[ℓ+1]). As a result, the updated conditional path ζ0:n[ℓ+1] and the statistics βn[ℓ+1] are

statistically intertwined conditionally on the conditional dual particle process underpinning the

algorithm. The main reason for this is to avoid computational waste. By letting the updated

conditional path ζ0:n[ℓ + 1] be formed by reusing the backward samples from those generated

to form the statistics βn[ℓ + 1] included in the estimator, our procedure optimizes available

computational resources. The full PPG is summarized in pseudocode in 3 in S2.

The following Markov kernels play an instrumental role in the following. For a given path

{zm}m∈N, the conditional PARIS update in 2 defines an inhomogeneous Markov chain on the

spaces {(Ym,Ym)}m∈N with kernels

Ym ×Ym+1 ∋ (ym, A) 7→
∫
Mm⟨zm+1⟩(xm|m,dxm+1)Sm(ym,xm+1, A), m ∈ N,
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where

Sm : Ym × Xm+1 ×Ym+1 ∋ (ym,xm+1, A) (3.1)

7→
∫
· · ·
∫
1A

({(
(x̃i,1

0:m, xi
m+1),

1

M

M∑
j=1

(
b̃i,jm + h̃m(x̃i,j

m , xi
m+1)

))}N

i=1

)

×
N∏
i=1

 N∑
ℓ=1

qm(xℓ
m|m, xi

m+1)∑N
ℓ′=1 qm(xℓ′

m|m, xi
m+1)

δyℓ
m
(d(x̃i,1

0:m, b̃i,1m ))

×

(
N∑
ℓ=1

qm(xℓ
m|m, xi

m+1)∑N
ℓ′=1 qm(xℓ′

m|m, xi
m+1)

δ(xℓ
m|m,bℓm)

)�(M−1)

(d(x̃i,2
m , b̃i,2m , . . . , x̃i,M

m , b̃i,Mm ))

 .

In addition, we introduce the joint law

Sn : X0:n ×Yn ∋ (x0:n, A)

7→
∫
· · ·
∫
1A(yn)S0(Jx0,x1, dy1)

n−1∏
m=1

Sm(ym,xm+1, dym+1), (3.2)

where we define J := IN �(0, 1)⊺.

The kernel Sn can be viewed as a superincumbent sampling kernel that describes the

distribution of the output υn generated by a sequence of PARIS iterations when the many-

body process {ξm}nm=0 associated with the underlying particle filter is given. This allows us

to describe the PPG alternatively as follows: given ζ0:n[ℓ], draw ξ0:n[ℓ + 1] ∼ Cn(ζ0:n[ℓ], ·);

then, draw υn[ℓ + 1] ∼ Sn(ξ0:n[ℓ + 1], ·) and pick a trajectory ζ0:n[ℓ + 1] from ξ0:n|n[ℓ + 1] at

random. The following proposition, establishes that the conditional distribution of ζ0:n[ℓ + 1]

given ξ0:n[ℓ+ 1] coincides, as expected, with the particle-induced backward dynamics Bn.

Proposition 2. For all n ∈ N∗, N ∈ N∗, x0:n ∈ X0:n, and h ∈ F(X0:n),

∫
Sn(x0:n, dyn)µ(x0:n|n)h = Bnh(x0:n).

Finally, we define the Markov kernel induced by the PPG, as well as the extended probability

distribution targeted by the same. For this purpose, we introduce the extended measurable space
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(En,En), with

En := Yn × X0:n, En := Yn � X0:n.

The PPG described in 3 defines a Markov chain on (En,En) with the Markov transition kernel

Kn : En × En ∋ (yn, z0:n, A)

7→
∫∫∫

1A(ỹn, z̃0:n)Cn(z0:n, dx̃0:n) Sn(x̃0:n, dỹn)µ(x̃0:n|n)(dz̃0:n).

Note that the values of Kn defined above do not depend on yn, but only on (z0:n, A). For any

given initial distribution ξ ∈ M1(X0:n), let Pξ be the distribution of the canonical Markov chain

induced by the kernel Kn and the initial distribution ξ. In the special case where ξ = δz0:n , for

some given path z0:n ∈ X0:n, we use the short-hand notation Pδz0:n
= Pz0:n . In addition, denote

by

Kn : X0:n ×X0:n ∋ (z0:n, A) 7→
∫∫∫

1A(z̃0:n)Cn(z0:n, dx̃0:n) Sn(x̃0:n,dỹn)µ(x̃0:n|n)(dz̃0:n)

the path-marginalized version of Kn. By 2, it holds that Kn = CnBn, which shows that Kn

coincides with the Markov transition kernel of the backward-sampling-based particle Gibbs

sampler discussed in 2.3.

Finally, in order to prepare for the statement of our theoretical results on the PPG, we need

to introduce the following Feynman–Kac path model with a frozen path. More precisely, for a

given path z0:n ∈ X0:n, define, for every m ∈ J0, n− 1K, the unnormalized kernel

Qm⟨zm+1⟩ : Xm ×Xm+1 ∋ (xm, A) 7→
(
1− 1

N

)
Qm(xm, A) +

1

N
gm(xm) δzm+1(A)

and the initial distribution η0⟨z0⟩ : X0 ∋ A 7→ (1 − 1/N)η0(A) + δz0(A)/N . Given these

quantities, define, for m ∈ J0, nK, γm⟨z0:m⟩ := η0⟨z0⟩Q0⟨z1⟩ · · ·Qm−1⟨zm⟩ , and its normalized

counterpart ηm⟨z0:m⟩ := γm⟨z0:m⟩/γm⟨z0:m⟩1X0:m . Finally, we introduce, for m ∈ J0, nK, the

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0215



kernels

Bm⟨z0:m−1⟩ : Xm ×X0:m−1 ∋ (xm, A) 7→
∫
· · ·
∫
1A(x0:n−1)

n−1∏
m=0

←−
Qm,ηm⟨z0:m⟩(xm+1, dxm)

and the path model η0:m⟨z0:m⟩ := Bm⟨z0:m−1⟩� ηm⟨z0:m⟩.

4. Main results

4.1 Theoretical results

In this section, we establish our main result, namely, the exponentially contracting bias bound

stated in 2. This result is proved under the following strong mixing assumptions, which are

standard in the literature (see [10, 16, 11, 14]):

A 4.1 (strong mixing). For every n ∈ N, there exist
¯
τn, τ̄n,

¯
σn, and σ̄n in R∗

+ such that

(i)
¯
τn ≤ gn(xn) ≤ τ̄n for every xn ∈ Xn,

(ii)
¯
σn ≤ mn(xn, xn+1) ≤ σ̄n for every (xn, xn+1) ∈ Xn:n+1.

Under 4.1, define, for every n ∈ N,

ρn := max
m∈J0,nK

τ̄mσ̄m

¯
τm

¯
σm

(4.1)

and, for every n ∈ N and N ∈ N∗ such that N > Nn := (1 + 5ρ2nn/2) ∨ 2n(1 + 2ρ2n),

κN,n := 1− 1− (1 + 5nρ2n/2)/N

1 + 4n(1 + 2ρ2n)/N
. (4.2)

Note that κN,n ∈ (0, 1), for all N and n, as above.

Theorem 2. Assume 4.1. Then, for every n ∈ N, there exist cbiasn , cmse
n , and ccovn in R∗

+ such
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4.1 Theoretical results

that for every M ∈ N∗, ξ ∈ M1(X0:n), ℓ ∈ N∗, s ∈ N∗, and N ∈ N∗ such that N > Nn,

|Eξ [µ(βn[ℓ])(id)]− η0:nhn| ≤ cbiasn

(
n−1∑
m=0

∥h̃m∥∞

)
N−1κℓ

N,n, (4.3)

Eξ

[
(µ(βn[ℓ])(id)− η0:nhn)

2] ≤ cmse
n

(
n−1∑
m=0

∥h̃m∥∞

)2

N−1, (4.4)

|Eξ [(µ(βn[ℓ])(id)− η0:nhn) (µ(βn[ℓ+ s])(id) − η0:nhn)]|

≤ ccovn

(
n−1∑
m=0

∥h̃m∥∞

)2

N−3/2κs
N,n. (4.5)

The constants cbiasn , cmse
n , and ccovn are given explicitly in the proof. Because we focus on the

dependence on N and the index ℓ, we make no attempt to optimize the dependence of these

constants on n in our proofs; nevertheless, we believe that it is possible to prove, under the

stated assumptions, that this dependence is linear. The proof of the bound in 2 is based on

four key ingredients. The first is the following unbiasedness property of the PARIS under the

many-body Feynman–Kac path model.

Theorem 3. For every n ∈ N, N ∈ N∗, and ℓ ∈ N∗,

Eη0:n [µ(βn[ℓ])(id)] =

∫
η0:nCnSn(dbn)µ(bn)(id) =

∫
η0:nSn(dbn)µ(bn)(id) = η0:nhn.

The proof of 3 is found in 6.3. The second is the uniform geometric ergodicity of the

particle Gibbs with backward sampling established in [13].

Theorem 4. Assume 4.1. Then, for every n ∈ N, (µ, ν) ∈ M1(X0:n)
2, ℓ ∈ N∗, and N ∈ N∗

such that N > Nn, ∥µKℓ
n − νKℓ

n∥TV ≤ κN,nnN
ℓ, where κN,n is defined in (4.2).

As a third ingredient, we require the following uniform exponential concentration inequality

of the conditional PARIS with respect to the frozen-path Feynman–Kac model defined in the

previous section.
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4.1 Theoretical results

Theorem 5. For every n ∈ N, there exist cn > 0 and dn > 0 such that for every M ∈ N∗,

z0:n ∈ X0:n, N ∈ N∗, and ε > 0,

∫
CnSn(z0:n, dbn)1 {|µ(bn)(id)− η0:n⟨z0:n⟩hn| ≥ ε} ≤ cn exp

(
− dnNε2

2(
∑n−1

m=0 ∥h̃m∥∞)2

)
.

The proof of 5 is found in S3.2, and is based on arguments similar to those used in the

proofs of [24, Theorem 1] and [15, Theorem 5] in the framework of the conditional dual process.

5 implies, in turn, the following conditional variance bound.

Proposition 3. For every n ∈ N, M ∈ N∗, z0:n ∈ X0:n, and N ∈ N∗,

∫
CnSn(z0:n,dbn) |µ(bn)(id)− η0:n⟨z0:n⟩hn|2 ≤

cn
dn

(
n−1∑
m=0

∥h̃m∥∞

)2

N−1.

Using 3, we deduce, in turn, the following bias bound, the proof is postponed to S3.4.

Proposition 4. For every n ∈ N, there exists c̄biasn > 0 such that for every M ∈ N∗, z0:n ∈ X0:n,

and N ∈ N∗,

∣∣∣∣∫ CnSn(z0:n,dbn)µ(bn)(id)− η0:n⟨z0:n⟩hn

∣∣∣∣ ≤ c̄biasn

(
n−1∑
m=0

∥h̃m∥∞

)
N−1.

A fourth and last ingredient in the proof of 2 is the following bound on the discrepancy

between the additive expectations under the original and frozen-path Feynman–Kac models.

This bound is established using novel results in [18]. More precisely, because for every m ∈ N,

(x, z) ∈ X2
m, N ∈ N∗, and h ∈ F(Xm+1), using 4.1,

|Qm⟨z⟩h(x)−Qmh(x)| ≤ 1

N
∥gm∥∞∥h∥∞ ≤

1

N
τ̄m∥h∥∞,

applying [18, Theorem 4.3] yields the following.

Proposition 5. Assume 4.1. Then, there exists c > 0 such that for every n ∈ N, N ∈ N, and

z0:n ∈ X0:n,

|η0:n⟨z0:n⟩hn − η0:nhn| ≤ cN−1
n−1∑
m=0

∥h̃m∥∞.
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4.1 Theoretical results

In addition, we assume supn∈N ∥h̃n∥∞ <∞ yields an O(n/N) bound in 5.

Finally, by combining these ingredients, we are now ready to present a proof of 2.

Proof of 2. Write, using the tower property,

Eξ [µ(βn [ℓ])(id)] = Eξ

[
Eζ0:n[ℓ] [µ(βn [0])(id)]

]
=

∫
ξKℓ

nCnSn(dbn)µ(bn)(id).

Thus, by the unbiasedness property in 3,

|Eξ [µ(βn [ℓ])(id)]− η0:nhn|

=

∣∣∣∣∫ ξKℓ
nCnSn(dbn)µ(bn)(id)−

∫
η0:nCnSn(dbn)µ(bn)(id)

∣∣∣∣
≤
∥∥ξKℓ

n − η0:n
∥∥
TV

osc

(∫
CnSn(·,dbn)µ(bn)(id)

)
,

where, by 4, ∥ξKℓ
n − η0:n∥TV ≤ κℓ

N,n. Moreover, to derive an upper bound on the oscillation,

we consider the decomposition

osc

(∫
CnSn(·,dbn)µ(bn)(id)

)
≤ 2

(∥∥∥∥∫ CnSn(·,dbn)µ(bn)(id)− η0:n⟨·⟩hn

∥∥∥∥
∞

+ ∥η0:n⟨·⟩hn − η0:nhn∥∞

)
,

where the two terms on the right-hand side can be bounded using 5 and 4, respectively. This

completes the proof of (4.3). We now consider the proof of (4.4). Writing

Eξ

[
(µ(βn[ℓ])(id)− η0:nhn)

2] = ∫ ξKℓ
n(dz0:n)CnSn(z0:n,dbn) (µ(bn)(id)− η0:nhn)

2 ,

we establish (4.4) using 3 and 5. Finally, WE consider (4.5). Using the Markov property, we

obtain

Eξ [(µ(βn[ℓ])(id)− η0:nhn) (µ(βn[ℓ+ s])(id) − η0:nhn)]

= Eξ

[
(µ(βn[ℓ])(id)− η0:nhn)

(
Eζ0:n[ℓ][µ(βn[s])(id)] − η0:nhn

)]
,

from which we may deduce (4.5) using (4.3) and (4.4).
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4.2 The roll-out PPG estimator

4.2 The roll-out PPG estimator

In light of the previous results, it is natural to consider an estimator formed by an average

across successive conditional PPG estimators {µ(βn[ℓ])}ℓ∈N. To mitigate the bias, we remove a

“burn-in” period, with length k0 chosen proportionally to the mixing time of the particle Gibbs

chain {ζ0:n[ℓ]}ℓ∈N∗ . This yields the estimator

Π(k0,k),N (hn) = (k − k0)
−1

k∑
ℓ=k0+1

µ(βn[ℓ])(id). (4.6)

The total number of particles underlying this estimator is C = (N − 1)k. We denote by

υ = (k − k0)/k the ratio of the number of particles used in the estimator to the total number

of sampled particles.

As a final main result, we provide bounds on the bias and the MSE of the estimator (4.6).

The proof is postponed to S3.5.

Theorem 6. Assume 4.1. Then, for every n ∈ N, M ∈ N∗, ξ ∈ M1(X0:n), ℓ ∈ N∗, s ∈ N∗, and

N ∈ N∗ such that N > Nn,

∣∣Eξ[Π(k0,k),N (hn)]− η0:nhn

∣∣ ≤ cbiasn

(
n−1∑
m=0

∥h̃m∥∞

)
κk0
N,n

N(k − k0)(1− κN,n)
, (4.7)

Eξ

[(
Π(k0,k),N (hn)− η0:nhn

)2]
≤

(
n−1∑
m=0

∥h̃m∥∞

)2

cmse
n + 2ccovn N−1/2(1− κN,n)

−1

N(k − k0)
(4.8)

Setting the burn-in k0 in the roll-out estimator is nontrivial. However, because the es-

timator converges for any choice of k0, including the trivial choice k0 = 1, we can view this

algorithmic parameter as an opportunity for the user to optimize the implementation of the

algorithm. For given (N, k), the choice of k0 involves a classical trade-off between bias and vari-

ance; indeed, for fixed (N, k), the bias upper bound (4.7) decreases with k0 proportionally to

κk0
N,n/(k−k0) whereas the MSE upper bound (4.8) increases with k0 proportionally to 1/(k−k0).
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These bounds suggest that we should take k0 = ⌈k(1 − ℓ−1)⌉ if we are willing to bound the

MSE increase of the roll-out estimator by a factor ℓ with respect to the PARIS. However, the

bias reduction is not easily quantified, because it depends mainly on the mixing rate κN,n of

the PPG chain, and we only have access to upper bounds on this rate that are, in general, too

conservative.

5. Numerical results

In this section, we evaluate numerically the proposed PPG sampler in the context of general

state-space HMMs. Given measurable spaces (X,X) and (Z,Z), an HMM is a bivariate (possibly

inhomogeneous) Markov chain {(Xm, Zm)}m∈N taking values in the product space (X×Z,X�Z).

In such a model, the process {Xn}n∈N, referred to as the state sequence, is assumed to be

itself a (possibly inhomogeneous) Markov chain, specified by some initial distribution χ and

some sequence {Mn}n∈N of Markov kernels. The state sequence is latent and only partially

observed through the observation process {Zm}m∈N. Conditionally on the state sequence, the

observations are assumed to be independent; furthermore, the conditional marginal distribution

of each Zm is assumed to depend only on the corresponding state Xm and to have a density

gm(Xm, ·) with respect to some dominating measure. HMMs are used in numerous scientific and

engineering disciplines; see [1, 7, 8]. Inference in HMMs typically involves computing conditional

distributions of unobserved states, given observations. Of particular interest are the sequence of

filter distributions, where the filter at time m ∈ N, denoted as ηm, is defined as the conditional

distribution of Xm, given Z0:m := (Z0, . . . , Zm), and the joint-smoothing distributions, where

the joint-smoothing distribution at time m, denoted as η0:m, is defined as the joint conditional

distribution of the states X0:m = (X0, . . . , Xm), given the observations Z0:m. Consequently, ηm

is the marginal of η0:m with respect to the last state Xm. Given a sequence {zm}m∈N of fixed
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observations, {η0:m}m∈N forms a Feynman–Kac model (see 1), with Markov kernels {Mm}m∈N

and potential functions gm := g(·, zm), for m ∈ N, on X.

We now evaluate the proposed algorithm numerically for two HMMs: (i) a linear Gaussian

state-space model (for which the filter and the joint-smoothing distribution flows are available

in a closed form), and (ii) the stochastic volatility model proposed in [20]. The PPG algorithm

used in this section is given in 3 (in S2).

Linear Gaussian state-space model (LGSSM). We first consider an LGSSM

Xm+1 = AXm +Qϵm+1, Zm = BXm +Rζm, m ∈ N, (5.1)

where {ϵm}m∈N∗ and {ζm}m∈N are sequences of independent standard normally distributed

random variables. The matrices A, Q, B, and R are assumed to be known 5× 5 matrices (see

section S1.1 for the precise values). In this framework, we aim to compute the expectation of

the one-lag state covariance hn(x0:n) :=
∑n−1

m=0 xmx⊺
m+1 under the joint-smoothing distribution

η0:n for observations generated by simulation under the given parameters with n = 103. In the

LGSSM case, the disturbance smoother (see [7, Algorithm 5.2.15]) provides the exact values of

η0:nhn, which allows us to assess numerically the bias of the PARIS and PPG estimators.

In this setting, we calculate the bias for batch sizes N ∈ {10, 25, 50, 100, 500} and an

increasing number k of iterations by averaging the PPG estimator over 104 independent runs. 1a

shows the bias of the PPG estimates of the first diagonal entry of the one-lag covariance. For

each batch size N , we estimate and display the regression function k 7→ eak+b to illustrate the

exponential decrease of the PPG bias, which is consistent with 2.

2a displays, for a given budget C = 5× 103, the bias of the estimates of η0:nhn using the

PARIS and the PPG for different batch sizes N and different numbers k = C/N of iterations

and burn-in periods k0 = ⌊k/2⌋. The red line corresponds to zero (no bias), and the empirical
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Figure 1: Output of the PPG roll-out estimator for the LGSSM (left panel)

and the StoVol model (right panel). The curves describe the evolution of

the bias with increasing k for different batch sizes N .

means are given by black-dashed lines. An extended comparison comprising different choices of

k0 and different budgets C is provided in S1. In order to estimate the bias for each algorithmic

configuration, we average 103 independent replications of the corresponding estimator. More-

over, to assess the precision of the resulting bias estimator, we repeat this procedure 102 times,

and present the bias estimates in a box plot. This enables us to form an idea of whether the

PPG provides a statistically significant improvement in terms of bias. In this example, whatever

the choice of the batch size is, the PPG bias is significantly reduced compared with the bias of

the PARIS estimator. We further observe that a larger k leads to smaller bias.
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Figure 2: PARIS and PPG bias dispersions for the LGSSM and StoVol model

as a function of the mini-batch size N for fixed computational budgets

C = Nk of 5×103 (LGSSM) and 103 (StoVol model) and with k0 = ⌊2−1k⌋

burn-in steps.

Stochastic volatility (StoVol). As a second example, consider the stochastic

volatility model

Xm+1 = ϕXm + σϵϵm+1, Zm = β exp(Xm/2)ζm, m ∈ N, (5.2)

where {ϵm}m∈N∗ and {ζm}m∈N are as in the previous example, and the model parameters ϕ, β,

and σϵ are set to 0.975, 0.63, and 0.16, respectively. The reference value is calculated by running

the PARIS with 5 × 104 particles. In this setting, we repeated the experiments of the previous

example for the same additive functional and number n = 103 of observations, produced by

simulation under the parameters above. The computational budget was set to C = 103. As in
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the LGSSM example, the bias decay with respect to the iteration index k is displayed in 1b, and

the comparison with the PARIS is shown in 2b. The comments from the previous example apply

to this StoVol model context as well. More in-depth numerical assessments of the proposed

PPG estimator are found in S1.2. In particular, in S1.2, we compare our estimator with the

Rhee–Glynn-type estimator with ancestor sampling proposed by [21], showing that the variance

of the latter is significantly larger than that of the PPG for a given computational effort.

6. Proofs

6.1 Proof of 1

Using the identity

η0Q0 · · ·Qn−11Xn =

n−1∏
m=0

ηmQm1Xm+1

and that each kernel Qm has a transition density, write, for h ∈ F(X0:n),

η0:nh =

∫
· · ·
∫

h(x0:n) η0(dx0)

n−1∏
m=0

(
ηm[qm(·, xm+1)]λm+1(dxm+1)

ηmQm1Xm+1

)(
qm(xm, xm+1)

ηm[qm(·, xm+1)]

)

=

∫
· · ·
∫

h(x0:n) ηn(dxn)

n−1∏
m=0

ηm(dxm) qm(xm, xm+1)

ηm[qm(·, xm+1)]
(6.1)

=
(←−
Q0,η0 � · · ·�

←−
Qn−1,ηn−1 � ηn

)
h,

which establishes the proof.

6.2 Proof of 1

Lemma 1. For all n ∈ N, xn ∈ Xn, and h ∈ F(Xn+1 � Xn+1),

∫∫
h(xn+1, zn+1)Qn(xn, dxn+1)µ(xn+1)(dzn+1)

=

∫∫
h(xn+1, zn+1)µ(xn)Qn(dzn+1)Mn⟨zn+1⟩(xn, dxn+1). (6.2)
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6.2 Proof of 1

In addition, for all h ∈ F(X 0 � X0),

∫∫
h(x0, z0)η0(dx0)µ(x0)(dz0) =

∫∫
h(x0, z0)η0⟨z0⟩(dx0) η0(dz0). (6.3)

Proof. Because µ(xn)Qn(dzn+1) = gn(xn)Φn(µ(xn))(dzn+1), we may rewrite the right-hand

side of (6.2) as

∫∫
h(xn+1, zn+1)µ(xn)Qn(dzn+1)Mn⟨zn+1⟩(xn, dxn+1)

= gn(xn)
1

N

N−1∑
i=0

∫∫
h(xn+1, zn+1)Φn(µ(xn))(dzn+1)

×
(
Φn(µ(xn))

�i � δzn+1 � Φn(µ(xn))
�(N−i−1)

)
(dxn+1)

= gn(xn)
1

N

N∑
i=1

∫
· · ·
∫

h((x1
n+1, . . . , x

i−1
n+1, zn+1, x

i+1
n+1, . . . , x

N
n+1), zn+1)

× Φn(µ(xn))(dzn+1)
∏
ℓ̸=i

Φn(µ(xn))(dx
ℓ
n+1)

= gn(xn)
1

N

N∑
i=1

∫
h(xn+1, x

i
n+1)Mn(xn, dxn+1).

On the other hand, note that the left-hand side of (6.2) can be expressed as

∫∫
h(xn+1, zn+1)Qn(xn,dxn+1)µ(xn+1)(dzn+1)

= gn(xn)
1

N

N∑
i=1

∫
h(xn+1, x

i
n+1)Mn(xn,dxn+1), (6.4)

which establishes the identity. The identity (6.3) is established along similar lines.

We establish 1 by induction. Thus, assume that the claim holds for n, and show that for

all h ∈ F(X 0:n+1 � X0:n+1),

∫∫
h(x0:n+1, z0:n+1)γ0:n+1(dx0:n+1)Bn+1(x0:n+1, dz0:n+1)

=

∫∫
h(x0:n+1, z0:n+1) γ0:n+1(dz0:n+1)Cn+1(z0:n+1,dx0:n+1). (6.5)
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6.2 Proof of 1

To prove this, we process, using definition (2.4), the left-hand side of (6.5) according to

∫∫
h(x0:n+1, z0:n+1)γ0:n+1(dx0:n+1)Bn+1(x0:n+1, dz0:n+1)

=

∫∫
γ0:n(dx0:n)Bn(x0:n, dz0:n)

×
∫∫

h̄(x0:n+1, z0:n+1)Qn(xn, dxn+1)µ(xn+1)(dzn+1),

(6.6)

where we define the function

h̄(x0:n+1, z0:n+1) :=
qn(zn, zn+1)h(x0:n+1, z0:n+1)

µ(xn)[qn(·, zn+1)]
.

Now, applying 1 to the inner integral and using

µ(xn)Qn(dzn+1) = µ(xn)[qn(·, zn+1)]λn+1(dzn+1)

yields, for every x0:n and z0:n,

∫∫
h̄(x0:n+1, z0:n+1)Qn(xn,dxn+1)µ(xn+1)(dzn+1)

=

∫∫
h̄(x0:n+1, z0:n+1)µ(xn)Qn(dzn+1)Mn⟨zn+1⟩(xn,dxn+1)

=

∫∫
h(x0:n+1, z0:n+1)Qn(zn, dzn+1)Mn⟨zn+1⟩(xn,dxn+1).

Inserting the previous identity into (6.6) and using the induction hypothesis yields

∫∫
h(x0:n+1, z0:n+1)γ0:n+1(dx0:n+1)Bn+1(x0:n+1, dz0:n+1)

=

∫∫
γ0:n(dz0:n)Cn(z0:n, dx0:n)

×
∫∫

h(x0:n+1, z0:n+1)Qn(zn, dzn+1)Mn⟨zn+1⟩(xn, dxn+1)

=

∫∫
h(x0:n+1, z0:n+1) γ0:n+1(dz0:n+1)Cn+1(z0:n+1, dx0:n+1),

which establishes (6.5).
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6.3 Proof of 3

6.3 Proof of 3

First, define, for m ∈ N,

Pm : Ym ×Ym+1 ∋ (ym, A) 7→
∫
Mm(xm|m, dxm+1)Sm(ym,xm+1, A). (6.7)

For any given initial distribution ψ0 ∈ M1(Y0), let PPψ0
be the distribution of the canonical

Markov chain induced by the Markov kernels {Pm}m∈N and the initial distribution ψ0. With a

slight abuse of notation we write, for η0 ∈ M1(X 0), PPη0
instead of PPψ0[η0]

, where we define the

extension ψ0[η0](A) =
∫
1A(Jx0)η0(dx0), for A ∈ Y0. We preface the proof of 3 with some

technical lemmas and a proposition.

Lemma 2. For all n ∈ N and (fn+1, f̃n+1) ∈ F(Xn+1)
2,

γn+1(fn+1Bn+1hn+1 + f̃n+1) = γn{Qnfn+1Bnhn +Qn(h̃nfn+1 + f̃n+1)}.

Proof. Pick arbitrary φ ∈ F(Xn:n+1) and, from definition (2.3) and that Qn has a transition

density, write

∫∫
φ(xn:n+1) γn(dxn)Qn(xn, dxn+1)

=

∫∫
φ(xn:n+1)γn[qn(·, xn+1)]λn+1(dxn+1)

γn(dxn)qn(xn, xn+1)

γn[qn(·, xn+1)]

=

∫∫
φ(xn:n+1) γn+1(dxn+1)

←−
Qn,ηn(xn+1, dxn). (6.8)

Now, by (2.10), it holds that

Bn+1hn+1(xn+1) =

∫ ←−
Qn,ηn(xn+1, dxn)

(
h̃n(xn:n+1) +

∫
hn(x0:n)Bn(xn, dx0:n−1)

)
;

therefore, by applying (6.8) with

φ(xn:n+1) := fn+1(xn+1)

(
h̃n(xn:n+1) +

∫
hn(x0:n)Bn(xn,dx0:n−1)

)
,
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6.3 Proof of 3

we obtain that

γn+1(fn+1Bn+1hn+1) =

∫∫
φ(xn:n+1) γn+1(dxn+1)

←−
Qn,ηn(xn+1, dxn)

=

∫∫
φ(xn:n+1) γn(dxn)Qn(xn, dxn+1)

= γn(Qnfn+1Bnhn +Qnh̃nfn+1).

Now, the proof is concluded by noting that because γn+1 = γnQn, γn+1f̃n+1 = γnQnf̃n+1.

Lemma 3. For every n ∈ N∗, hn ∈ F(Yn), and η0 ∈ M1(X 0), it holds that

EPη0
[hn(υn) | ξ0|0, . . . , ξn|n] = Snhn(ξ0|0, . . . , ξn|n), PPη0

-a.s.

Proof. Pick arbitrary vn ∈ F(X0:n). We show that

EPη0
[vn(ξ0|0, . . . , ξn|n)hn(υn)] = EPη0

[vn(ξ0|0, . . . , ξn|n)Snhn(ξ0|0, . . . , ξn|n)], (6.9)

from which the claim follows. Using definition (6.7), the left-hand side of the previous identity

may be rewritten as

∫
· · ·
∫
ψ0[η0](dy0)

n−1∏
m=0

Pm(ym,dym+1)hn(yn)vn(x0|0, . . . ,xn|n)

=

∫
· · ·
∫
η0(dx0|0)

n−1∏
m=0

Mm(xm|m, dxm+1)S0(Jx0|0,x1, dy1)

×
n−1∏
m=0

Sm(ym,xm+1,dym+1)hn(yn)vn(x0|0, . . . ,xn|n)

=

∫
· · ·
∫
η0(dx0)

n−1∏
m=0

Mm(xm, dxm+1)S0(Jx0,x1, dy1)

×
n−1∏
m=0

Sm(ym,xm+1, dym+1)hn(yn)vn(x0, . . . ,xn).

Thus, we conclude the proof by using the definition (3.2) of Sn, together with Fubini’s theorem.
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6.3 Proof of 3

Lemma 4. For every n ∈ N∗ and hn ∈ F(Yn), it holds that

Eη0

[(
n−1∏
m=0

gm(ξm|m)

)
hn(υn)

]
=

∫
γ0:nSn(dyn)hn(yn).

Proof. The claim of the lemma is a direct implication of 3; indeed, by applying the tower

property and the latter, we obtain

EPη0

[(
n−1∏
m=0

gm(ξm|m)

)
hn(υn)

]

= EPη0

[(
n−1∏
m=0

gm(ξm|m)

)
Snhn(ξ0|0, . . . , ξn|n)

]

=

∫
· · ·
∫
η0(dx0)

n−1∏
m=0

gm(xm)Mm(xm, dxm+1) Snhn(x0:n)

=

∫
γ0:nSn(dyn)hn(yn).

Proposition 6. For all n ∈ N∗, (N,M) ∈ (N∗)2, and (fn, f̃n) ∈ F(Xn)
2,

∫
γ0:nSn(dyn)

(
1

N

N∑
i=1

{binfn(xi
n|n) + f̃n(x

i
n|n)}

)
= γn(fnBnhn + f̃n).

Proof. Applying 4 yields

∫
γ0:nSn(dyn)

(
1

N

N∑
i=1

{binfn(xi
n|n) + f̃n(x

i
n|n)}

)

= EPη0

[(
n−1∏
m=0

gm(ξm|m)

)
1

N

N∑
i=1

{βi
nfn(ξ

i
n|n) + f̃n(ξ

i
n|n)}

]
. (6.10)

In the following, we repeatedly use the following filtrations. Let F̃n := σ({υm}nm=0) be the

σ-field generated by the output of the PARIS (1) during the first n iterations. In addition, let

Fn := F̃n−1 ∨ σ(ξn|n).
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6.3 Proof of 3

We proceed by induction. Thus, assume that the statement of the proposition holds for a

given n ∈ N∗, and consider, for arbitrarily chosen (fn+1, f̃n+1) ∈ F(Xn+1)
2,

EPη0

[(
n∏

m=0

gm(ξm|m)

)
1

N

N∑
i=1

{βi
n+1fn+1(ξ

i
n+1|n+1) + f̃n+1(ξ

i
n+1|n+1)} | F̃n

]

=

(
n∏

m=0

gm(ξm|m)

)
EPη0

[β1
n+1fn+1(ξ

1
n+1|n+1) + f̃n+1(ξ

1
n+1|n+1) | F̃n] ,

where we use that the variables {βi
n+1fn+1(ξ

i
n+1|n+1) + f̃n+1(ξ

i
n+1|n+1)}Ni=1 are conditionally

independent and identically distributed (i.i.d.) given F̃n. Note that, by symmetry,

EPη0

[
β1
n+1 | Fn+1

]
=

∫
Sn(υn, ξn+1|n+1, dyn+1) b

1
n+1

=

∫
· · ·
∫ ( M∏

j=1

N∑
ℓ=1

qn(ξ
ℓ
n|n, ξ

1
n+1|n+1)∑N

ℓ′=1 qn(ξ
ℓ′
n|n, ξ

1
n+1|n+1)

δ(ξℓ
n|n,βℓ

n)(dx̃
1,j
n , db̃1,jn )

)

× 1

M

M∑
j=1

(
b̃1,jn + h̃n(x̃

1,j
n , ξ1n+1|n+1)

)

=

N∑
ℓ=1

qn(ξ
ℓ
n|n, ξ

1
n+1|n+1)∑N

ℓ′=1 qn(ξ
ℓ′
n|n, ξ

1
n+1|n+1)

(
βℓ
n + h̃n(ξ

ℓ
n|n, ξ

1
n+1|n+1)

)
. (6.11)

Thus, using the tower property,

EPη0

[
β1
n+1fn+1(ξ

1
n+1|n+1) | F̃n

]
=

∫
Φn(µ(ξn|n))(dxn+1) fn+1(xn+1)

N∑
ℓ=1

qn(ξ
ℓ
n|n, xn+1)∑N

ℓ′=1 qn(ξ
ℓ′
n|n, xn+1)

(
βℓ
n + h̃n(ξ

ℓ
n|n, xn+1)

)
,

and, consequently, using definition (2.1),

(
n∏

m=0

gm(ξm|m)

)
EPη0

[
β1
n+1fn+1(ξ

1
n+1|n+1) | F̃n

]
=

(
n−1∏
m=0

gm(ξm|m)

)∫
1

N

N∑
i=1

qn(ξ
i
n|n, xn+1)

× fn+1(xn+1)

N∑
ℓ=1

qn(ξ
ℓ
n|n, xn+1)∑N

ℓ′=1 qn(ξ
ℓ′
n|n, xn+1)

(
βℓ
n + h̃n(ξ

ℓ
n|n, xn+1)

)
λn+1(dxn+1)

=

(
n−1∏
m=0

gm(ξm|m)

)
1

N

N∑
ℓ=1

(
βℓ
nQnfn+1(ξ

ℓ
n|n) +Qn(h̃nfn+1)(ξ

ℓ
n|n)

)
.
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6.3 Proof of 3

Thus, applying the induction hypothesis,

EPη0

[(
n∏

m=0

gm(ξm|m)

)
1

N

N∑
i=1

βi
n+1fn+1(ξ

i
n+1|n+1)

]

= EPη0

[(
n−1∏
m=0

gm(ξm|m)

)
1

N

N∑
ℓ=1

(
βℓ
nQnfn+1(ξ

ℓ
n|n) +Qn(h̃nfn+1)(ξ

ℓ
n|n)

)]

= γn
(
Qnfn+1Bnhn +Qn(h̃nfn+1)

)
. (6.12)

In the same manner, it can be shown that

EPη0

[(
n∏

m=0

gm(ξm|m)

)
1

N

N∑
i=1

f̃n+1(ξ
i
n+1|n+1)

]
= γnQnf̃n+1. (6.13)

Now, by (6.12–6.13) and 2,

EPη0

[(
n∏

m=0

gm(ξm|m)

)
1

N

N∑
i=1

{βi
n+1fn+1(ξ

i
n+1|n+1) + f̃n+1(ξ

i
n+1|n+1)}

]

= γn
(
Qnfn+1Bnhn +Qn(h̃nfn+1 +Qnf̃n+1)

)
= γn+1(fn+1Bn+1hn+1 + f̃n+1),

which shows that the claim of the proposition holds at time n+ 1.

It remains to check the base case n = 0, which holds trivially, because β0 = 0 and B0h0 = 0

by convention, and the initial particles ξ0|0 are drawn from η0. This completes the proof.

Proof of 3. The identity
∫
η0:n(dx0:n) Sn(x0:n, dbn)µ(bn)(id) = η0:nhn follows immediately by

letting fn ≡ 1 and f̃n ≡ 0 in 6, and using that γ0:n(X0:n) = γ0:n(X0:n). Moreover, applying 1

yields

∫
η0:nCnSn(dbn)µ(bn)(id) =

∫∫
η0:n(dz0:n)Cn(z0:n,dx0:n)

∫
Sn(x0:n, dbn)µ(bn)(id)

=

∫∫
η0:n(dx0:n)Bn(x0:n, dz0:n)

∫
Sn(x0:n, dbn)µ(bn)(id)

=

∫
η0:nSn(dbn)µ(bn)(id).

Finally, the first identity holds because Kn leaves η0:n invariant.
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Supplementary Material

The supplementary material contains proofs for the technical propositions, lemmas and theorems

as well as additional numerical investigations of different aspects of the PPG algorithm.
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