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Abstract: Function-on-scalar regression models are extensively utilized in appli-

cations involving longitudinal or functional responses. Prior literature has es-

tablished the minimax optimal bounds for both mean and quantile regression.

This paper explores expectile regression as a natural extension to mean regres-

sion, particularly for modeling potential heteroscedasticity in data. We propose

an expectile function-on-scalar regression model that focuses on asymmetrical

regression of functional responses based on scalar predictors. Employing the

structure of Reproducing Kernel Hilbert Space (RKHS), we have developed a

statistically efficient expectile estimator. This estimator comes with theoretical

backing, derived from the minimax rates of convergence in both random and fixed

design contexts. Our extensive simulations demonstrate the robust performance

of the proposed methods across various settings. Additionally, we present an

empirical analysis using quality of life data from a breast cancer clinical trial,

showcasing the practical utility of our method.

Key words and phrases: additive model, functional regression, reproducing kernel

Hilbert space, quality of life, cancer clinical trials.
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1. Introduction

Functional data analysis (FDA) has drawn significant attention from re-

searchers from various fields due to its unique ability to deal with intrin-

sically infinite-dimensional data and processes defined on continuous do-

mains. Data with such structure are widely available in medicine, biology,

public health, environmental science and AI. Well-know monographs in-

clude Ramsay and Silverman (2005), Ferraty and Vieu (2006), Ramsay and

Silverman (2007) and Zhang (2014). In this paper, we focus on the following

varying-coefficient model with functional response:

yi(s) = xT
i β(s) + εi(s),

where yi(s) is a functional response, xi are associated p-dimensional co-

variates, β(s) is p × 1 functional coefficient and εi(s) is the measurement

error.

Prior studies have yielded a vast literature on these varying-coefficient

models. Pioneering works can trace back to Breiman and Friedman (1985)

and regression on such models are systematically discussed in Hastie et al.

(1993), Hastie and Tibshirani (1993) and Cleveland and Grosse (1991).

More recently, Zhu et al. (2012) proposed a multivariate varying coeffi-

cient model and established a uniform convergence rate of the estimated
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covariance function and its associated eigenvalue and eigenfunctions. On

the other hand, driven by the need to extract more enriched information

from the conditional response distribution, researchers are no longer satis-

fied with focusing on a single value (mean) of responses. To move beyond

characterizing one single value (mean or median), one possible and intu-

itive generalization is quantiles, the inverse of the cumulative distribution

function.

According to Stigler (1984), the history of interest in regression of me-

dian can trace back to 1760, and quantile regression hasn’t been reintro-

duced until Koenker and Bassett Jr (1978). Starting from Koenker and Hal-

lock (2001) extended smoothing spline method to quantiles, the last decades

have seen extraordinary advances in quantile regression in the context of

functional data analysis. Li et al. (2007) proposed an RKHS approach to

estimate conditional quantile functions. Kato et al. (2012) studied quan-

tile regression for scalar dependent variable and functional covariate by the

plug-in method. Similar functional covariate case is also studied in Chen

and Müller (2012) and Cardot et al. (2005). On the other hand, Function-

on-scalar regression Functional responses regressed on scalar predictors have

been studied by Reiss et al. (2010), Chen et al. (2016), Goldsmith et al.

(2015) and Goldsmith and Kitago (2016).
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In this paper, we propose an expectile function-on-scalar regression

model, which represents a shift from traditional symmetric estimation meth-

ods primarily focused on modeling the central tendency of data, such as

the median or mean. Asymmetric estimation, by contrast, targets either

the higher or lower end of the response distribution. This approach is

especially beneficial in capturing data aspects not adequately represented

by central tendency measures. For example, while symmetric estimation

might evaluate the median lifespan of a demographic group, asymmetric

models excel in highlighting the life spans of individuals in less favorable

conditions—outcomes that may elude explanation solely by covariates. In

economic analysis, asymmetric estimation sheds light on financial returns

under varying conditions, thereby aiding in the formulation of either con-

servative or aggressive strategic decisions.

One possible approach of asymmetric estimation is quantile regression,

as explored in recent works by Wang (2016) and Zhang et al. (2021), De-

spite the natural interpretability and robustness of quantile regression, it

encounters several challenges. Quantile regression is based on minimizing

the check loss function, which is not strongly convex and lacks differentiabil-

ity at the origin. These properties necessitate additional efforts to address

problems stemming from the non-smooth nature of the check loss function.
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Furthermore, the robustness of quantiles, while advantageous, also implies

a diminished sensitivity to extreme observations and losses.

In response to these limitations, expectile regression was introduced as

an alternative by Aigner et al. (1976) and Newey and Powell (1987). This

regression technique extends beyond the scope of traditional quantile ap-

proaches, offering a nuanced view of the data distribution’s tails. Our study

leverages this methodology to explore functional responses against scalar

predictors. Specifically, our focus is on the scenario where each component

of the true parameter β0 is defined within a compact subset T of R and is

part of an RKHS H with a continuous kernel. In this work, we simplify the

discussion by assuming T = [0, 1]. We observe the response functions yi

through sampling points, meaning our dataset comprises pairs (xi, yi(Tij))

for each subject i at locations Tij, i = 1, . . . , n and j = 1, . . . ,m. Two design

approaches are considered: a random design, where Tij are uniformly and

independently sampled from T , and a fixed design, where each subject’s re-

sponse functions are observed at identical locations (T1j = . . . = Tnj := Tj).

We assume that 0 = T1 < · · · < Tm = 1. The primary objective of this

paper is to construct efficient functional estimators within this framework

and demonstrate their rate optimality.

The rest of this paper is organized as follows: In Section 2, we give
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our construction of Penalized RKHS estimator and establish the optimal

convergence rate of the error in estimating β under both fixed and random

designs. In Section 3, extensive numerical studies were presented to illus-

trate the effectiveness of the proposed estimator. Section 4 provides a data

analysis using quality of life data from a breast cancer clinical trial. Section

5 concludes the paper.

2. Methodology

2.1 Penalized RKHS estimator

In this paper, we assume that each component of β resides in the Re-

producing Kernel Hilbert Space (RKHS) H. Consequently, any vector

β = (β1, · · · ,βp)T forms another RKHS, denoted as ⊕p
i=1H or Hp. The

inner product in Hp is defined as ⟨(α1, · · · ,αp)T , (β1, · · · ,βp)T ⟩⊕p
i=1H =∑p

i=1⟨αi,βi⟩H. Accordingly, the induced norm ∥β∥Hp is given by
√∑p

i=1 ∥β
i∥2H.

Similar notations are applied to L2 spaces. We define the integral over

the product space T p as
∫
T p f(t)dt =

∫
T 1

Tf(t)dt. The notation ∥f∥22

signifies
∫
T [f(t)]

2dt for real-valued functions and
∫
T p [f(t)]

2dt for functions

valued in Rp.

By Mercer’s theorem Riesz and Nagy (1955), for each H, we can find

corresponding eigen-functions {ϕk}k≥1 ⊂ H and eigen-values {νk}k≥1 ⊂ R
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2.1 Penalized RKHS estimator

such that any function in H has the following eigen decomposition:

f =
∑
v≥1

fvϕv,

satisfying,

∥f∥22 =
∑
v≥1

f 2
v and ∥f∥2H =

∑
v≥1

f 2
v

νv
.

The eigen-structures play important roles in determining the nature of

convergence for functional linear regression problems. A detailed discussion

of eigen-structures is beyond the scope of this paper. Interested readers may

refer to Cai et al. (2006) and Hall et al. (2007) for more information.

The eigen-structures of Hp can be derived from the eigen-structures of

H. To see this, first, let us define δij as the Kronecker delta, which is 1 if

i = j and zero otherwise. Now, define

φip+j−p : T Rp

x ϕi(x)(δ1j, · · · , δpj)

∈ ∈ ,

and

ρip+j−p = νi for i ≥ 1 and 1 ≤ j ≤ p.

It’s easy to verify that {φn}n≥1 and {ρn}n≥1 are eigen-functions and eigen-

values of Hp.

We propose the following Penalized expectile RKHS estimator:

Definition 1. (Penalized expectile RKHS estimator) Given space H, regu-

lation parameter λ sampling points {Tij} and observations {xi}, {yi(Tij)},
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2.2 Methods for numerical estimation

then Penalized expectile RKHS estimator is defined by:

β̂λ = argmin
β̂∈Hp

{
1

nm

n∑
i=1

m∑
j=1

ρ
[
yi(Tij)− xT

i β̂(Tij)
]
+ λ∥β̂∥2Hp

}
.

where ρ(z) = ρeτ (z) = |τ − I(z < 0)| · z2. We omit the expectile level

later τ for simplicity.

2.2 Methods for numerical estimation

The estimator introduced in Definition 1 can be efficiently computed using

the gradient descent method. Define S = {S1, · · · , S|S|} as the set of all

sample points {Tij}, where |S| denotes the number of elements in S. It is

crucial to note that |S| ≤ mn, which takes into account potential duplica-

tions in {Tij}. According to the representation theorem Wahba (1990), the

optimal β̂ is confined to a finite-dimensional subspace of Hp, simplifying

computation. The estimator β̂i is expressed as

β̂i =

|S|∑
j=1

bijK(·, Sj),

for i = 1, . . . , p, where K is the kernel of the RKHS and bij are coefficients.

The loss function is formulated as

L(β) =
1

nm

n∑
i=1

m∑
j=1

ρ
[
yi(Tij)− xT

i β(Tij)
]
+ λ∥β∥2Hp .

which can be rewritten as

1

nm

n∑
i=1

m∑
j=1

ρ

[
yi(Tij)−

m∑
k=1

|S|∑
r=1

xik K(Tij, Sr) bkr

]
+λ

p∑
j=1

|S|∑
k=1

|S|∑
r=1

bjkbjr K(Sr, Sk).
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2.2 Methods for numerical estimation

The first term of this function consists of a sum of convex functions ρ,

while the second term is a positive definite quadratic form. The gradient

of the loss function can be efficiently computed as

∂L

∂bkr
=

1

nm

n∑
i=1

m∑
j=1

−xikK(Tij, Sr)ρ
′

[
yi(Tij)−

m∑
k=1

|S|∑
r=1

xik K(Tij, Sr) bkr

]

+ 2λ

|S|∑
t=1

bktK(Sr, St).

This ensures that the overall function exhibits strong convexity with

respect to bij, facilitating efficient computation of the estimator β. The

optimal β̂ can be effectively determined using gradient descent or Nesterov’s

accelerated gradient method Nesterov (1983).

The parameter λ plays a crucial role in regulating the complexity of

the function β by penalizing its complexity as measured by the RKHS

norm, thus preventing overfitting. While our theory provides guidelines for

choosing λ, in practical applications, we recommend determining the suit-

able λ through cross-validation, as the exact smoothness condition might

be unknown. This balanced approach between data fitting and smoothness

ensures optimal performance of the estimator.
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2.3 Optimal Rate of Convergence

2.3 Optimal Rate of Convergence

In this section, we establish guarantees for the optimality of the Penalized

expectile RKHS estimator by deriving the minimax rate of convergence for

estimating β. We begin by introducing the following assumptions:

(A1) The eigenvalues of E
(
xxT

)
are respectively bounded from below

and above by a constant c and 1/c.

(A2) Each ϵi(Tij) has a zero τ expectile and a variance of σ2
0 < +∞.

Intuitively, condition (A1) ensures that the true value of β will have

a non-negligible, yet bounded, impact on the observations, while condition

(A2) guarantees that the observations have a well-defined mean and a finite

variance. Under the random design, our results are formulated as follows.

Theorem 1. Fix τ ∈ (0, 1). Assume that each component of the true pa-

rameter β0 resides in a compact subset Bk of an RKHS H, with eigenvalues

νk of H satisfying νk ≈ k−2r for some r > 1
2
. Given that (A1) and (A2)

hold, then under a random design:

lim
a→0

lim
m,n→∞

inf
β̂

sup
β∈Bp

k

P

(∥∥β̂ − β0

∥∥2
2
> a
[
(nm)−

2r
2r+1 +

1

n

])
= 1.

where the infimum is taken over all possible estimators β0 based on the

observations. The expression νk ≈ k−2r implies that there exist constants

0 < c0 < c1 such that c0k
−2r ≤ νk ≤ c1k

−2r .
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2.3 Optimal Rate of Convergence

Theorem 2. Fix τ ∈ (0, 1). Suppose each component of the true parameter

β0 resides in a compact subset Bk of an RKHS H with eigenvalues {νk} of

H satisfies νk ≈ k−2r for some r > 1
2
. If (A1) and (A2) hold, then under

random design:

lim
a→+∞

lim
m,n→∞

sup
β∈Bp

k

P

(∥∥∥β̂ − β0

∥∥∥2
2
> a
[
(nm)−2r/(2r+1) +

1

n

])
= 0,

when β̂ is the Penalized expectile RKHS estimator with λ ≈ (nm)−2r/(2r+1).

The combination of these theorems demonstrates that the Penalized

RKHS estimator is rate-optimal in this setting. The convergence rate de-

pends on the RHKS itself (characterized by the parameter r) and the rel-

ative scale between m and n. When m = O
(
n1/2r

)
, the term 1/n can be

absorbed into (nm)−2r/(2r+1), and when m = ω
(
n1/2r

)
, the total error will

be dominated by 1/n instead. This phase transition phenomenon is com-

mon in varying-coefficient functional regressions (Zhang et al. (2021), Cai

and Weng (2016)).

Under the fixed design, we limit our discussion to the Sobolev spaces.

The Sobolev space Wr
2([0, 1]) with order r is defined as

Wr
2([0, 1]) =

{
f : [0, 1] → R | f (r) ∈ L2

}
.

It is well known Aronszajn (1950) that the Sobolev space Wr
2([0, 1]) forms
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2.3 Optimal Rate of Convergence

a reproducing kernel Hilbert space when endowed with the norm

∥f∥2Wr
2 ([0,1])

=

∫ 1

0

[f(t)]2 + [f (r)(t)]2 dt.

Similar to the random design case, the combination of the theorems be-

low establishes that the Penalized RKHS estimator achieves rate-optimality

in the fixed design setting (see Theorems 3 and 4 below).

Theorem 3. Fix τ ∈ (0, 1). Suppose each component of the true parameter

β0 resides in a compact subset Bk of a Sobolev space H = Wr
2 . Then, under

fixed design:

lim
a→0

lim
m,n→∞

inf
β̂

sup
β∈Bp

k

P

(∥∥∥β̂ − β0

∥∥∥2
2
> a

(
m−2r + n−1

))
= 1,

where the infimum is taken over all possible estimators β̂ based on the ob-

servations.

Theorem 4. Fix τ ∈ (0, 1). Suppose each component of the true parameter

β0 resides in a compact subset Bk of a Sobolev space H = Wr
2 . If (A1) and

(A2) hold and sample points S = {T1, . . . , Tm} satisfy Ti+1 − Ti ≈ 1
m
, then

under fixed design:

lim
a→+∞

lim
m,n→∞

sup
β0∈B

p
k

P

(∥∥∥β̂ − β0

∥∥∥2
2
> a

(
m−2r + n−1

))
= 0,

when β̂ is the Penalized expectile RKHS estimator with λ ≲ m−2r + n−1.
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The optimal convergence rate under fixed design is interpretable. The

m−2r term can be attributed to the unavoidable error caused by discretiza-

tion, and the n−1 term to the stochastic error.

3. Simulated Numerical Analysis

In Section 2.2, we established the optimal rate of convergence for our pro-

posed penalized expectile RKHS estimator. This section delves into eval-

uating the numerical performance of these estimators through extensive

simulation studies. We employ the following function-on-scalar regression

model to generate data for these simulations:

yi (Tj) =
4∑

k=1

xikβk (Tj) + viεi (Tj) , i = 1, · · · , n; j = 1, · · · ,m.

For each i in the range 1, · · · , n, the variables xi2, xi3, and xi4 are in-

dependently and identically distributed (i.i.d) as standard normal, uniform

distribution over [0, 1], and Bernoulli distribution with parameter 0.5, re-

spectively. The variable xi1 is set to 1 for all i, serving as the intercept.

In the simulation studies, we investigate how various factors influence the

performance of the proposed estimator.

1. number of samples: n ∈ {50, 100, 200};

2. number of nodes on each sample: m ∈ {20, 40, 80};
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3. expectile level: τ ∈ {0.1, 0.5, 0.9};

4. design (fixed vs random, even vs quadratic, distribution of s): Fixed

even distribution: Tj = j−1
m−1

, j = 1, · · · ,m; fixed quadratic dis-

tribution:
√
Tj = j−1

m−1
, j = 1, · · · ,m; random even distribution:

Tj ∼ Uniform(0, 1), j = 1, · · · ,m; random quadratic distribution:√
Tj ∼ Uniform(0, 1), j = 1, · · · ,m.

5. noise distribution: Independent normal: εi (Tj) are independentN(0, 1);

dependent normal: εi (Tj) areN(0, 1) and Cov(εi (Tj) , εi (Tj)) = exp(−|Tj−

Tj|); independent lognormal: log εi (Tj) are independent N(0, 1); de-

pendent lognormal: log εi (Tj) areN(0, 1) and Cov(log εi (Tj) , log εi (Tj)) =

exp(−|Tj − Tj|);

6. heteroscedasticity in noise: No heteroscedasticity: vi = 1 = xi1; With

heteroscedasticity: vi =
√

2/5(1 + xi4) =
√

2/5(xi1 + xi4). The con-

stant are choosen such that E (v2i (s)) = 1;

7. Kernel: Hyperbolic kernel, defined asK(x, x′) = cosh(min(x,x′)) cosh(1−max(x,x′))
sinh(1.0)

,

as described in Berlinet and Thomas-Agnan (2011) as the kernel of

standard Sobolev space with r = 1. The second is the kernel of the

Laplace radial basis function,defined as K(x, x′) = exp
(
− |x−x′|

2

)
.
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For the choice of shape of β, we set β1(s) = 2sin(2πs),β2(s) = −2sin(4πs),β3(s) =

−3s(1− s),β4(s) = 4s2sin(2πs).

Let ϵτ be τ expectile of ϵ, without heteroscedasticity:

βτ
1 = β1 + ϵτ ,β

τ
2 = β2,β

τ
3 = β3,β

τ
4 = β4;

With heteroscedasticity:

βτ
1 = β1 +

√
2/5ϵτ ,β

τ
2 = β2,β

τ
3 = β3,β

τ
4 = β4 +

√
2/5ϵτ .

To evaluate the performance of the proposed estimator, the mean squared

error (MSE) of the coefficients was used:

4∑
k=1

∫ 1

x=0

(β̂
τ

k(s)− βτ
k)

2(s)ds.

The following estimator was used to evaluate the above MSE on sampled

data points: √√√√∑n
j=1

∑3
k=1(β̂k − βk)

2(sn)∑n
j=1

∑3
k=1(βk)

2(sn)
.

Given the extensive number of factor combinations in our study (amount-

ing to 2633 = 1728), it is impractical to detail all the simulation results

in this section. Instead, we highlight a few representative cases to demon-

strate the impact of each factor. We initially focus on a moderately complex

scenario featuring an even design, independent noise without heteroscedas-

ticity, a medium sample size (n=100), and a moderate number of nodes
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(m=40). Table 1 presents the median MSE for various values of τ , noise

distributions, and sampling designs, based on 50 repeats for each setting.

The primary conclusions drawn from Table 1 are as follows: 1) the proposed

method exhibits reasonable effectiveness across all examined scenarios; 2)

in this specific context, the performance is better with random design; 3)

the scenario involving log-normal error distribution and τ = 0.9 underper-

formed relative to others, likely due to the lower density of the log-normal

distribution at higher expectiles.

Table 1: Median MSE under different τ , noise distribution and sampling

design with even design, independent noise with no heteroscedasticity and

medium sample size (n = 100)

τ Noise Distribution Fixed Design (MSE std) Random Design (MSE std)

0.1 normal 0.0118± 0.0039 0.0071± 0.0020

0.5 normal 0.0071± 0.0015 0.0034± 0.0016

0.9 normal 0.0118± 0.0033 0.0064± 0.0020

0.1 lognormal 0.0073± 0.0019 0.0035± 0.0018

0.5 lognormal 0.0089± 0.0037 0.0067± 0.0035

0.9 lognormal 0.0457± 0.0263 0.0381± 0.0298
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To manage the complexity arising from over several hundred factor

combinations in our simulation study, we utilized regression analysis to

efficiently condense and analyze the data. This approach allowed us to

systematically evaluate the impact of various factors on the MSE of the

proposed estimator within a single, comprehensive model. Focusing on a

harder scenario with a lognormal error distribution and τ = 0.1, we used log-

transformed MSE as our response variable, with binary predictors including

design type, sample size, number of nodes, and the presence of correlation

and heteroscedasticity in noise. The experiments are repeated 50 times for

each setting. The model, with an explanatory power of 75% (R2), revealed

significant insights into factor impacts, detailed in Table 2.

In this regression model, all factors were significant except for het-

eroscedasticity and the choice of kernel. Notably, positive coefficients indi-

cate poorer performance of the proposed estimator under the corresponding

scenario, while negative coefficients suggest better performance. As ex-

pected, larger values of m (number of nodes) and n (sample size) improved

estimator performance, with random even design also yielding better re-

sults. Additionally, the presence of correlations in noise distribution posed

challenges to the estimation process.

Table 3 provides a comparative analysis of the median MSE for dif-
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Table 2: Regression coefficients to illustrate the effect of each factor on the

MSE of the proposed estimators

coef p-value [0.025 0.975]

Intercept −3.9322 0.000 −4.110 −3.755

Random design −0.7985 0.000 −0.911 −0.686

Quadratic design 0.7893 0.000 0.677 0.901

n = 100 −0.3632 0.000 −0.501 −0.226

n = 200 −0.6583 0.000 −0.796 −0.521

m = 40 −0.6681 0.000 −0.806 −0.531

m = 80 −0.8150 0.000 −0.952 −0.678

Correlation 0.7909 0.000 0.679 0.903

Heteroscedasticity −0.0831 0.146 −0.195 0.029

Hyperbolic Kernel 0.0884 0.122 −0.024 0.201

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0206



ferent m and n values, conducted under an even design using hyperbolic

kernel without heteroscedasticity or noise correlations. In fixed design set-

tings, the number of nodes (m) was more influential than the sample size

(n). In contrast, in random design scenarios, where all sampling points are

pooled for estimation, the effects of m and n were more balanced. Table

4 offers similar comparisons but includes noise correlations. The results

align with the noncorrelated scenarios, yet the performance generally dete-

riorates, particularly for n = 50, due to the effective reduction in sample

size caused by correlations.
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Table 3: Median MSE under even design without correlations.

n m Fixed Design (MSE ± std) Random Design (MSE ± std)

50 20 0.0319± 0.0073 0.0061± 0.0028

50 40 0.0094± 0.0026 0.0048± 0.0022

50 80 0.0048± 0.0014 0.0043± 0.0015

100 20 0.0304± 0.0051 0.0037± 0.0016

100 40 0.0073± 0.0019 0.0035± 0.0018

100 80 0.0031± 0.0008 0.0027± 0.0011

200 20 0.0281± 0.0035 0.0034± 0.0017

200 40 0.0030± 0.0009 0.0026± 0.0008

200 80 0.0029± 0.0006 0.0022± 0.0010
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Table 4: Median MSE under even design with correlations.

n m Fixed Design (MSE ± std) Random Design (MSE ± std)

50 20 0.0556± 0.0266 0.0276± 0.0292

50 40 0.0353± 0.0366 0.0175± 0.0282

50 80 0.0234± 0.0247 0.0171± 0.0292

100 20 0.0393± 0.0094 0.0122± 0.0091

100 40 0.0154± 0.0082 0.0120± 0.0091

100 80 0.0080± 0.0087 0.0117± 0.0102

200 20 0.0335± 0.0077 0.0083± 0.0061

200 40 0.0063± 0.0035 0.0062± 0.0046

200 80 0.0062± 0.0040 0.0055± 0.0037

4. Data Analysis

In this section, we apply the proposed method to the QoL data from a

breast cancer clinical trial. MA.5 (Levine et al. (1998)) was a random-

ized trial comparing a combination chemotherapy regimen CEF (cyclophos-

phamide, epirubicin, and fluorouracil) with the standard of care, CMF (cy-

clophosphamide, methotrexate, and fluorouracil), in premenopausal women
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with node-positive breast cancer, conducted by the Canadian Cancer Trials

Group (CCTG). The trial demonstrated the superiority of CEF over CMF

in both disease-free and overall survival, and was one of the early clinical

trials to incorporate quality of life data collection into its design. The Breast

Cancer Questionnaire (Levine et al. (1988)) was administered at baseline,

then monthly for the first six months, and subsequently every three months

for up to two years. In the primary publication of MA.5, the mean BCQ

summary score trajectories were presented by treatment arm, revealing a

clear interaction between time and treatment. However, no formal statisti-

cal analysis was conducted. The MA.5 QoL data have been analyzed using

quantile regression and a generalized partially linear model (Zheng et al.

(2017), Lv et al. (2019)), with a focus on missing data. In this analysis, we

explore the use of expectile function-on-scalar regression in this setting.

During the clinical trial, 716 premenopausal women with early-stage

breast cancer participated, with 356 randomized to receive CEF treatment

and 360 to CMF treatment. The QoL of patients was assessed using the

self-administered BCQ, comprising 30 questions scored from one to seven,

where the lowest score indicates the worst possible outcome and the highest,

the best possible outcome. The BCQ measures various dimensions of QoL

and was administered to each patient on the first day of each treatment
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cycle, and then every three months after completing six treatment cycles,

until the end of the second year. The maximum number of visits was 14,

with a minimum of one for those who participated in this study. Figure

1 presents a scatterplot of the average BCQ score change from baseline to

year 2 for each individual. The solid blue line represents the mean change

for the CEF group, and the dashed red line, the CMF group. The left panel

includes all trial participants, while the right panel only those followed until

year two post-randomization. The increasing trend in BCQ scores is partly

due to data missing from disease progression or death of patients on trial.

Figure 1: Average BCQ score change from baseline to Year 2 for all subjects

(left). Average BCQ score change from baseline to Year 2 for subjects will

complete followup till Year 2 (right). The blue solid line represents the

mean change for the CEF group and the red dash line represents the CMF

group.
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For a specific subscale of QoL, such as the emotional subscale of BCQ,

before the analysis, the score of the subscale is first calculated by the mean

of the answers from patients to the questions defining the subscale. In

this analysis, we use the mean score of all 30 questions as the response.

The scores of a QoL subscale are restricted by the minimum and maximum

scores of the questions defining the subscale.

For the BCQ emotional subscale score, 713 individuals (99.6%) have

score at their first visit, but only 711 (99.3%), 708 (98.9%), 703 (98.2%), 699

(97.6%), 690 (96.4%), 668 (93.3%), 634 (88.5%), 607 (84.8%), 558 (77.9%),

500 (69.8%), 392 (54.7%), 214 (29.9%), and 5 (0.7%) individuals have BCQ

emotional subscale score at the following measurements, respectively.

To address the issue of monotonic missingness in our dataset, we em-

ployed two distinct analytical approaches: 1) an analysis utilizing the unim-

puted raw data; 2) an analysis restricted to patients with complete two-year

follow-up data. It is important to note that our proposed method does not

necessitate identical sampling points across data points. However, as we will

demonstrate, disregarding the missing data mechanism in this context may

significantly bias the estimators at later months, predominantly influenced

by patients who remain alive.

We analyzed each dataset using two models: 1) The first model con-
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siders treatment assignment as the sole covariate. 2) The second model

incorporates additional prognostic biomarkers, including age, surgical type

(1 for total mastectomy, 0 for partial mastectomy), and the presence of

positive auxiliary nodes (1 for more than 10, 0 for 10 or fewer). Figures

2 and 3 depict the estimated intercepts at τ = 0.5, and the estimated co-

efficient trajectories at τ = 0.1, 0.5, 0.9 for both the treatment-only model

and the model with four predictors, respectively, using raw data. Figures 4

and 5 provide analogous information but are based solely on patients with

a complete two-year follow-up.

Analysis of the raw data reveals that the average BCQ score treat-

ment effect of CEF (versus CMF) at the mean (τ = 0.5) level is initially

negative, which could be attributed to higher acute toxicity in the CEF

group. However, this effect stabilizes and turns positive over time. At

τ = 0.1, the estimated coefficient trajectories are similar; at τ = 0.9, there

is a predominantly increasing pattern, with the magnitude of the positive

treatment effect being more pronounced in the long term. In the model

incorporating four predictors, the trend for CEF mirrors that observed in

the treatment-only model, consistent with expectations from a randomized

study. Notably, the impact of age appears to decrease over time. Figures

3 and 4, which include only patients with a full two-year follow-up, exhibit
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patterns similar to Figures 1 and 2. This similarity likely arises because

these patients contribute more data, thus heavily influencing the estima-

tion process.

(a) Intercept with τ = 0.5 (b) Coefficient with τ = 0.5

(c) Coefficient with τ = 0.1 (d) Coefficient with τ = 0.9

Figure 2: Estimated regression coefficient at different τs for the treatment-

only model using raw data
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(a) Intercept with τ = 0.5 (b) Coefficient with τ = 0.5

(c) Coefficient with τ = 0.1 (d) Coefficient with τ = 0.9

Figure 3: Estimated regression coefficient at different τs with 4 predictors

using raw data
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(a) Intercept with τ = 0.5 (b) Coefficient with τ = 0.5

(c) Coefficient with τ = 0.1 (d) Coefficient with τ = 0.9

Figure 4: Estimated regression coefficient at different τs for the treatment-

only model using alive patients only
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(a) Intercept with τ = 0.5 (b) Coefficient with τ = 0.5

(c) Coefficient with τ = 0.1 (d) Coefficient with τ = 0.9

Figure 5: Estimated regression coefficient at different τs with 4 predictors

using alive patients only

5. Conclusion

In this study, a function-on-scalar expectile regression was investigated,

focusing on a varying-coefficient model with a functional response. We in-
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troduced a penalized expectile RKHS estimator and established its optimal

rate of convergence under both random and fixed design settings, assum-

ing relatively mild conditions. The estimator’s efficiency and robustness

were thoroughly assessed through extensive simulation studies, encompass-

ing diverse design scenarios and data generation processes. Overall, our

findings indicate that larger sample sizes, higher sampling frequencies, and

an even design typically enhance estimator performance, while the presence

of correlated noise negatively impact the estimation.

The development of our methodology was motivated by the need to

analyze longitudinal health-related quality of life data from a breast cancer

clinical trial. This trial, characterized by a fixed and uneven design with

more frequent observations in early stages (a common approach in clinical

trials), served as a practical test case. Applying our method, we found

results consistent with the trial’s main analysis, suggesting that while the

experimental drug may slightly reduce quality of life during treatment due

to toxicities, it could offer comparable long-term quality of life outcomes

compared to the control group. Unlike standard methods that compare

mean BCQ scores at a specific time point, our estimator allowed for an

assessment of the treatment’s impact throughout the sampling period at

various τ levels. This approach proves particularly valuable in accounting
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for the high variability typically seen in the effects of cancer treatments.

Supplementary Material

This supplemental material contains the technical proofs for Theorems 1–4.
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