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Abstract: We propose a novel test statistic for testing exogeneity in the functional linear regression

model. In contrast to Hausman-type tests in finite dimensional linear regression setups, we show that

a direct extension to the functional linear regression model is not possible. Instead, we propose a test

statistic based on the sum of squared differences of projections of the two estimators used for testing the

null hypothesis of exogeneity in the functional linear regression model. We derive asymptotic normality

under the null and show consistency under general alternatives. Moreover, we establish bootstrap

consistency results for residual-based bootstrap approaches. In simulations, we investigate the finite

sample performance of the proposed exogeneity tests and illustrate the superiority of bootstrap-based

approaches. In particular, the bootstrap-based results turn out to be much more robust with respect

to the choice of the regularization parameter.

Key words and phrases: Asymptotic theory, bootstrap inference, endogeneity, Hausman test, instru-

mental variables, inverse problem.

1. Introduction

The construction of goodness-of-fit tests in functional regression models is much more com-

plicated than e.g. in the multiple linear setting. This is particularly due to the fact that,

in functional linear regression models, the L2-distance of the slope function estimator to

the true function has no proper limiting distribution. Under exogeneity, this was shown in

Cardot et al. (2007) and Ruymgaart et al. (2011) for two slope function estimators in the
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classical functional linear regression model. It turns out that this lack of a proper limiting

distribution also remains for other such estimators based on different model assumptions such

as endogeneity. This phenomenon inherent to (infinite-dimensional) functional data setups is

probably the main reasons why testing in general and goodness-of-fit testing in particular is

less developed for functional regression models. In particular, desirable and seemingly natu-

ral counterparts of standard and well-established tests from the (finite-dimensional) multiple

linear regression model are still missing in functional linear regression setups.

In functional data settings, existing goodness-of-fit tests are described in Müller and

Stadtmüller (2005), who use a suitable scalar product to transform the functions to a dif-

ferent space using the autocovariance operator to obtain a test statistic having a proper

limiting distribution. Further approaches are given in Cuesta-Albertos et al. (2019), Garćıa-

Portugués et al. (2014) and Garćıa-Portugués et al. (2020), who use random projections

together with empirical process techniques.

In practice, a crucial assumptions that is usually imposed on the regression model to

guarantee unbiased estimation, is the exogeneity of the regressor. In particular, in empirical

applications from economics, this assumption is often violated, because (some) regressors are

correlated with the error terms leading to endogeneity issues. While the estimation in endo-

geneous functional regression models is an inverse problem, ignoring potential endogeneity

generally results in biased and inconsistent estimators. However, using an estimator that is

robust to endogeneity at all times is not desirable, because such estimators are usually less

efficient and, although consistent, in finite samples the quality of the estimator strongly de-

pends on the strength and the functional form of the instrument (see e.g. Reiss (2016)) even

under exogeneity. We present a small simulation example demonstrating this in Section 5.
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Hence, confronted with potential endogeneity issues in the (functional) data, it is important

to test for exogeneity first. If the null of exogeneity is rejected, other estimators that account

for endogeneity have to be used, that e.g. rely on instrumental variables (IVs), to achieve

consistent estimation. In functional regression setups, IV estimators have been considered

by Johannes (2016) or Florens and Van Bellegem (2015), who derive asymptotic theory as

minimax rates and consistency respectively asymptotic normality of the prediction error.

In the multiple linear regression model, the Hausman test (see Hausman (1978) and

Wu (1974)) is based on the norm of the difference of two parameter estimators, where

one estimator is consistent under both exogeneity and endogeneity, while the other is only

consistent under exogeneity, but biased and inconsistent under endogeneity. While this

original Hausman test is a standard and natural approach for testing exogeneity in the

multiple linear regression model, it is not possible to transfer this testing approach directly to

the functional linear model. This is because a natural extension to the functional regression

setup would rely on the L2-distance of two different slope function estimators, which suffers

from a lack of a proper limiting distribution according to Proposition 3.1 below, which

transfers the findings obtained by Cardot et al. (2007) and Ruymgaart et al. (2011) to the

present setting. Making use of the fact, that, in contrast to the L2-distance, the projection

error typically has an asymptotic distribution (see e.g. Müller and Stadtmüller, 2005; Florens

and Van Bellegem, 2015), we propose to construct such a Hausman-type test based on

the sum of the squared differences of projections of the estimators in Johannes (2016) and

Johannes (2008) as test statistic.

The rest of the paper is organized as follows. In Section 2, we state the model as-

sumptions and discuss the estimators we use to construct the test statistic. In Section 3,
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we show that a direct extension of the Hausman test to the functional linear regression

model is not possible. Then, we define a modified Hausman-type test statistic and derive

its asymptotic distribution. At the end of this section, we also discuss possible extensions

to other related estimators and observation schemes. As the limiting distribution turns out

to depend on unknown functional nuisance parameters, which are difficult to estimate, we

propose residual-based bootstrap methods in Section 4 and prove their consistency. The

finite sample performance of all tests discussed in Sections 3 and 4 is investigated in Section

5, while the practical relevance is demonstrated with a real data example in Section 6. All

proofs are deferred to the Appendix. Additional auxiliary results and additional simulation

results can be found in supplementary material.

2. Model setup and slope function estimation

We consider the functional linear regression model

Y =

∫
[0,1]

X(t)β(t)dt+ U = ⟨β,X⟩+ U, (2.1)

where Y is a real-valued random variable, U is a real-valued error term with E(U) = 0 and

E(U2) = σ2∈ (0,∞), X is a functional random variable with values in L2([0, 1]) such that∫ 1

0
E|X(t)|2 dt < ∞. In this setup, the error variance σ2 is unknown, and β is an unknown

slope function from the Sobolev space of periodically extendable square integrable functions

denoted by Wν =
{
f ∈ L2[0, 1] : ∥f∥2ν =

∑
k∈Z γ

ν
k |⟨f, ϕk⟩|2 < ∞

}
, where (ϕk)k∈Z is the

Fourier basis of L2([0, 1]), ν ∈ R and γk = 1 + |2πk|, k ∈ Z, see e.g. Neubauer (1988), Mair

and Ruymgaart (1996) or Tsybakov (2004). In the setup of (2.1), we will speak of exogeneity

(and call X an exogenous regressor), if

H0 : E{X(t)U} = 0 for all t ∈ [0, 1]. (2.2)
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Otherwise, we will speak of endogeneity (and call X an endogenous regressor), if

H1 : E{X(t)U} ̸= 0 for at least one t ∈ [0, 1]. (2.3)

2.1 Estimation of β under endogeneity

We begin with the estimation setup for β under endogeneity. For this purpose, we assume

to additionally have a functional instrumental variable W with values in L2([0, 1]) such that∫ 1

0
E|W (t)|2 dt < ∞ and E{UW (t)} = 0 for all t ∈ [0, 1]. While, for the sake of simplicity,

it is often assumed in the literature to have that E{X(t)} = E{W (t)} = 0 holds for all

t ∈ [0, 1], this assumption turns out to be not restrictive and the general case that allows for

E{X(t)} ̸= 0 and E{W (t)} ̸= 0 can be handled along the same lines by first centering with

the sample mean. Nevertheless, in the following, we state all results for the general case. For

the estimation of the cross-covariance operator, we also assume that (X,W ) is second-order

stationary, see Johannes (2016).

Assumption 1. There exist functions cX , cW , cWX : [−1, 1] → R, such that Cov{X(s), X(t)} =

cX(t − s), Cov{W (s),W (t)} = cW (t − s) and Cov{W (s), X(t)} = cWX(t − s) for all

s, t ∈ [0, 1], respectively, where cX is assumed to be continuous.

Under the alternative (2.3), the imposed continuity of cX immediately implies E{X(t)U} ̸=

0 on some set with positive Lebesgue measure. This condition ensures, that the test statis-

tic proposed in the following can be used to consistently test for the null hypothesis H0 in

(2.2) against general alternatives H1 in (2.3). Note that cX and cW define the kernels of the

covariance operators ΓX of X and ΓW of W , respectively, and cWX is the kernel of the cross

covariance operator ΓWX of X and W . The (joint) weak stationarity of (X,W ) ensures, that

both covariance operators as well as the cross covariance operator have the same exponen-
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tial system of eigenfunctions, which we denote by (ϕk)k∈N. While this assumption of (joint)

second order stationarity seems to be quite restrictive, it is a common assumption when

deriving consistency and especially the convergence rates of the slope function estimators,

see Johannes (2008), Johannes (2009), Johannes (2016) or Seong and Seo (2021). On the

other hand, it is well known, that the scalar product in Hilbert spaces is independent of the

chosen basis. Therefore, we hypothesize that the results derived below under the assump-

tion of second order stationarity remain also valid without this assumption, with the price

to pay that completely different arguments are required in the proofs, see e.g. Müller and

Stadtmüller (2005). Our hypothesis is backed by the additional simulations provided in the

supplementary material. Hence, in the following, let (xk, ϕk)k∈N be the eigensystem of ΓX ,

(wk, ϕk)k∈N the eigensystem of ΓW , and (ck, ϕk)k∈N the eigensystem of ΓWX . Furthermore,

let λk =
|ck|2
wk

which can be bounded by λk =
|ck|2
wk

≤ xk using the Cauchy-Schwarz inequality,

and additionally are assumed to fulfill the following regularity conditions.

Assumption 2. Throughout the paper, we assume that all eigenvalues (xk)k∈Z are strictly

positive and that ∑
k∈Z

|E(Y ⟨X,ϕk⟩)|2

x2
k

< ∞.

Furthermore, let µX =
∑

k∈Z⟨µX , ϕk⟩ϕk and µW =
∑

k∈Z⟨µW , ϕk⟩ϕk denote the expectations

of X and W , respectively, and assume that there exists some 0 < τ < ∞ such that

sup
k∈Z

∣∣∣∣λk

wk

∣∣∣∣ = sup
k∈Z

|ck|2

w2
k

≤ τ. (2.4)

The last assumption ensures, that the linear prediction of X with respect to the instru-

mental variable W is well defined. In principle, if it were available, IV estimation would be

based on the optimal instrument W̃ = ΓWXΓ
−1
W W =

∑
k∈Z

ck
wk
⟨W,ϕk⟩ϕk and the eigenvalues

(λ̃k)k∈N of the corresponding cross covariance operator ΓW̃X . However, this is usually not
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the case and the optimal instrument W̃ respectively the corresponding eigenvalues (λ̃k)k∈N of

the cross covariance operator have to be estimated. Note that W̃ could be exactly computed

from X and W , if the (cross) covariance operators were known.

In the following, let Sn = {(Xi,Wi, Yi)}i=1,...,n be independent and identically distributed

(i.i.d.) copies of (X,W, Y ) and suppose that the alternative H1 in (2.3) holds. Then, due

to Johannes (2016), the unknown slope function β can still be consistently estimated. For

this purpose, let (αn)n∈N be a sequence of regularization parameters such that αn > 0 for

all n ∈ N and limn→∞ αn = 0. To simplify notation, we will write α for the regularization

keeping in mind that it still depends on n. Since the covariance operators and therefore the

corresponding eigenvalues are unknown, they have to be estimated in a first step. Further,

let ΓWX,n,ΓX,n,ΓW,n : L2([0, 1]) → L2([0, 1]) denote the empirical versions of ΓWX ,ΓX and

ΓW , respectively, defined by

ΓWX,nf =
1

n

n∑
i=1

⟨Wi, f⟩Xi, ΓX,nf =
1

n

n∑
i=1

⟨Xi, f⟩Xi, and ΓW,nf =
1

n

n∑
i=1

⟨Wi, f⟩Wi

for f ∈ L2([0, 1]). These estimators as well as the deduced estimators

ŵk =
1

n

n∑
i=1

|⟨Wi, ϕk⟩|2, x̂k =
1

n

n∑
i=1

|⟨Xi, ϕk⟩|2,

ĉk =
1

n

n∑
i=1

⟨ϕk, Xi⟩⟨Wi, ϕk⟩, λ̂k =
|ĉk|2

ŵk

I{ŵk ≥ α}

for the eigenvalues wk, xk, ck and λk, respectively, are consistent for all k ∈ Z. Hence,

observations of the optimal linear instrument W̃ can be estimated by

W̃n,i =
∑
k∈Z

ĉk
ŵk

I{ŵk ≥ α}⟨Wi, ϕk⟩ϕk, i = 1, . . . , n,

and the corresponding cross covariance operator by

Γ̃n =
1

n

n∑
i=1

⟨W̃n,i, ·⟩Xi =
1

n

∑
k∈Z

ĉk
ŵk

I{ŵk ≥ α}
n∑

i=1

⟨·, Xi⟩⟨Wi, ϕk⟩ϕk. (2.5)
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This allows to construct the IV-based estimator β̂IV of the slope function β defined by

β̂IV =
∑
k∈Z

ĝk

λ̂k

I{λ̂k ≥ γν
kα}ϕk =

∑
k∈Z

1
n

∑n
i=1⟨Wi, ϕk⟩Yi

ĉk
I{λ̂k ≥ γν

kα}I{ŵk ≥ α}ϕk, (2.6)

where ĝk =
1
n

∑n
i=1 Yi⟨W̃n,i, ϕk⟩.

2.2 Estimation of β under exogeneity

As shown in Johannes (2016), under Assumptions 1 and 2, the estimator β̂IV is consis-

tent under exogeneity in (2.2) and under endogeneity in (2.3). In contrast, again under

Assumptions 1 and 2, the estimator

β̂ =
∑
k∈Z

1
n

∑n
i=1⟨Xi, ϕk⟩Yi

x̂k

I{λ̂k ≥ αγν
k}ϕk (2.7)

is only consistent under the exogeneity assumption (2.2) (see Johannes (2008)) and incon-

sistent under endogeneity in (2.3). Note that in comparison to the original definition of β̂

in Johannes (2008), we use the same indicator function I{λ̂k ≥ αγν
k} as in β̂IV . It turned

out, that the tests proposed below tend to perform better if the same regularization is used

in both estimators β̂IV and β̂, although it might not be the best choice for estimating β by

β̂ under assumption (2.2).

3. Construction of the test statistic and asymptotic theory

A direct generaliziation of the Hausman test from the multiple linear to the function linear

regression model is not possible. This is an immediate consequence of the following negative

result, which can be obtained along the same lines as the ones in Cardot et al. (2007) or

Ruymgaart et al. (2011), see also Dorn (2021) for further details.
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Proposition 3.1. In the functional linear regression model (2.1), under both hypotheses

(2.2) and (2.3), there exists no random variable Z with non-degenerate distribution, such

that for the estimators β̂IV and β̂ defined in (2.6) and (2.7), sn∥β̂IV − β̂∥ D→ Z for some real

sequence (sn)n∈N with limn→∞sn = ∞, where || · || denotes the norm of the Hilbert space.

We use this result as motivation for a different approach to construct a Hausman-type

test for exogeneity in the functional linear regression setup in the following. Based on the

two estimators (2.6) and (2.7), since it is known that the prediction error has an asymptotic

distribution, we construct the test statistic as

Tn =
1

n

n∑
i=1

∣∣∣〈β̂IV − β̂, Xi

〉∣∣∣2 = 〈β̂IV − β̂,ΓX,n

(
β̂IV − β̂

)〉
. (3.1)

The last representation above corresponds to the idea used in Müller and Stadtmüller (2005)

to construct a goodness-of-fit test. The equivalence of both approaches can be seen by using

the singular value decomposition for the estimators and for the covariance operator.

Assumption 3. For the sequence of regularization parameters, we assume

αn = α > 0 ∀n ∈ N, α = o(1) and
1

nα2
= o(1).

For the next results, different moment conditions for X, W and U are required. To

simplify the notation, we introduce the following sets. In doing so, we assume, that all

conditions on X and W mentioned above are fulfilled and define

Fm
η =

{
(X,W )

∣∣∣ sup
k∈Z

E

∣∣∣∣⟨X,ϕk⟩√
xk

∣∣∣∣m ≤ η and sup
k∈Z

E

∣∣∣∣⟨W,ϕk⟩√
wk

∣∣∣∣m ≤ η
}
, (3.2)

Gm
η =

{
X
∣∣∣ΓX > 0 and sup

k∈Z
E

∣∣∣∣⟨X,ϕk⟩√
xk

∣∣∣∣m ≤ η
}
. (3.3)

In the following, for an operator ∆ and its sequence of eigenvalues (δk)k∈Z, let ∆
† denote its
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regularized inverse, that is ∆† =
∑

k∈Z
1
δk
I{|δk| > αγν

k}⟨·, ϕk⟩ϕk and we define

t2n = ∥(Γ̃†
X,n − Γ†

X)ΓX∥2HS =
∑
k∈Kn

(
xkwk

|ck|2
− 1

)2

, (3.4)

where ∥ · ∥HS denotes the Hilbert-Schmidt norm and Kn = {k ∈ Z | λk ≥ αγν
k}. Note, that

n
tn

> Cnα2 for some C > 0. Now, we are in a position to state an asymptotic result for the

test statistic. The proofs of the next results are deferred to the Appendix 7.

Theorem 3.2. In model (2.1), under Assumptions 1-3, let Sn = {(Xi,Wi, Yi)}i=1,...,n be

i.i.d. copies of (X,W, Y ) with (X,W ) ∈ F128
η and E|U |128 ≤ η < ∞. Furthermore, let

tn → ∞ as n → ∞, and

1

t4n

∑
k∈Kn

(
xkwk

|ck|2
− 1

)4

= o(1),
∑
k∈Z

|⟨β, ϕk⟩|
x
3/2
k wk

|ck|2
< ∞,

∑
k∈Z

x2
kwk

|ck|2
< ∞.

Then, under H0 in (2.2), we have n
tn
(Tn −Bn −Rn)

D→ N (0,V), where

Bn =
n

2tn
⟨β, µX⟩2

∑
k∈Z

(
⟨µW , ϕk⟩

ck
− ⟨µX , ϕk⟩

xk

)2

xkI{λk ≥ αγν
k},

Rn =
1

n

(
σ2 +

∑
m∈Z

|⟨β, ϕm⟩|2xm

)∑
k∈Z

(
xkwk

|ck|2
− 1

)
I{λk ≥ αγν

k},

V =

(
σ2 +

∑
m∈Z

|⟨β, ϕm⟩|2xm

)2

.

Further, if X is centered, that is, E{X(t)} = 0 for all t ∈ [0, 1], we have µX = 0 and Bn = 0.

To make use of the asymptotic normality result in Theorem 3.2 for testing purposes, the

bias terms Bn and Rn and the variance term Vn have to be estimated to implement the test.

To this end, note that σ2 can be consistently estimated by σ̂2
n = 1

n

∑n
i=1(Yi−⟨β̂IV , Xi⟩)2 due

to the law of large numbers and since 1
n

∑n
i=1⟨β − β̂IV , Xi⟩2 = oP (1) by similar calculations

as in the derivation of the asymptotic distribution of Tn.
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Corollary 3.3. Suppose all assumptions of Theorem 3.2 hold. Then, under H0, we have

n

t̂n

Tn − B̂n − R̂n√
V̂n

D→ N (0, 1),

where, using σ̂2
n defined in (??),

t̂2n =
∑
k∈Z

(
x̂kŵk

|ĉk|2
− 1

)2

I{λ̂k ≥ αγν
k}, V̂n =

(
σ̂2
n + ∥Γ1/2

X,nβ̂IV ∥2
)2

.

B̂n =
n

2t̂n
⟨β̂IV , µ̂X⟩2

∑
k∈Z

(
⟨µ̂W , ϕk⟩

ck
− ⟨µ̂X , ϕk⟩

xk

)2

x̂kI{λ̂k ≥ αγν
k},

R̂n =
1

n

(
σ̂2
n + ∥Γ1/2

X,nβ̂IV ∥2
)∑

k∈Z

(
x̂kŵk

|ĉk|2
− 1

)
I{λ̂k ≥ αγν

k}.

Using Corollary 3.3, we can construct a (one-sided) test for the null hypothesis H0 in

(2.2) against the alternative H1 in (2.3). That is, for given size γ ∈ (0, 1), we reject H0 if

n

t̂n

Tn − B̂n − R̂n√
V̂n

> u1−γ, (3.5)

where u1−γ denotes the (1− γ)-quantile of the standard normal distribution. In the special

case of µX = 0, we can neglect the additional bias termBn, which avoids the use of its plug-in

estimator B̂n such that the test simplifies and we reject H0 if n
t̂n
(Tn − R̂n)/

√
V̂n > u1−γ.

Theorem 3.4. Suppose all assumptions of Theorem 3.2 and Corollary 3.3 hold. Then,

under the alternative H1, the test constructed in (3.5) is consistent.

In practice, we do not know, whether µX = 0 holds such that a naive application of the

asymptotic test without estimating Bn could result in wrong decisions. In addition, due to

the additional estimation step, asymptotic tests based on plug-in methods as above usually

exhibit a smaller power compared to other methods. Hence, as discussed in Section 4, the

bootstrap version of the test is expected to have better finite sample behavior, since it is not

required to estimate the unknown bias and variance. Moreover, we do not need to distinguish

between the cases µX = 0 and µX ̸= 0 which is a clear advantage of the bootstrap test.
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Remark 3.5. The above results can be generalized to other types of estimators as long as a

classical as well as an IV-type estimator of the same kind is available. Besides the spectral-

cut-off estimators as proposed in Johannes (2008, 2016), there is little literature where this

is the case. A quite general approach for an estimator under exogeneity is given in Cardot

et al. (2007) using a sequence of regularization functions fn : [cn,∞) → R+
0 such that fn is

decreasing on [cn, 2z1−z2], where (zj)j∈Z are the eigenvalues of the relevant covariance oper-

ator and (cn)n∈N is a decreasing sequence of positive values with cn < z1. Furthermore, it is

required that limn→∞ supz≥cn |zfn(z)−1| = o(1/
√
n) and fn is differentiable on [cn,∞). This

also covers cut-off estimators as discussed in Müller and Stadtmüller (2005) or estimators

based on Tikhonov or ridge-type regularization. It is straightforward to modify this approach

for IV estimators in the endogeneous functional linear model and to choose a similar reg-

ularization scheme such that β̃ =
∑

k∈Z ĝkf1,n(x̂k, λ̂k) and β̃IV =
∑

k∈Z ĝkf2,n(x̂k, λ̂k) with

fn,1(xk, λk) = g1(xk, λk)f̃n(λk) and fn,2(xk, λk) = g2(xk, λk)f̃n(λk) for suitable functions g1,

g2 and f̃n. For the sake of shorter notation, we assume here µX ≡ 0. Hence, in concordance

with Theorem 3.2, we need as regularity assumptions∑
k∈Z m

2
k(∑

k∈Z m
2
k

)2 = o(1),
∑
k∈Z

|⟨β, ϕk⟩|E{|f1,n(ẑk)− f2,n(ẑk)|}xk < ∞,

and
∑
k∈Z

xkE{f1,n(ẑk)− f2,n(ẑk)}2 < ∞

with mk = {λkg
2
2(xk, λk) − 2λkg1(xk, λk)g2(xk, λk) + xkg

2
1(xk, λk)}2f̃ 4

n(λk), zk = (xk, λk),

ẑk = (x̂k, λ̂k). If, additionally, Assumption 1, the first part of Assumption 2 and the moment

conditions in Theorem 3.2 hold, we also have

n

t̃n

(
1

n

n∑
i=1

∣∣∣〈β̃IV − β̃, Xi

〉∣∣∣2 −Rn

)
D→ N (0,V),
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with V as in Theorem 3.2 and

t̃n =
∑
k∈Z

{λkg
2
2(xk, λk)− 2λkg1(xk, λk)g2(xk, λk) + xkg

2
1(xk, λk)}2f̃ 4

n(λk),

Rn =
1

n
V1/2

∑
k∈Z

{λkg
2
2(xk, λk)− 2λkg1(xk, λk)g2(xk, λk) + xkg

2
1(xk, λk)}f̃ 2

n(λk).

Again, it is straightforward to derive empirical versions and even bootstrap results as proposed

in Section 4. Furthermore, with similar approaches, one could derive goodness-of-fit tests

based e.g. on the estimator in Cardot et al. (2007). The centered test statistic converges to

a normally distributed random variable with rate n
sn
, where sn =

∑
k∈Z x

4
kf

4
n(xk).

Remark 3.6. Another topic of interest is to consider different observation schemes. In

practice, the functional variable would be observed in a perhaps highly frequent, but time-

discrete way with additional observation errors in each time point. Such observation schemes

have widely been discussed in the context of estimating the mean and covariance kernel and

only recently for estimating in the functional linear model, see e.g. Zhou et al. (2022) or

Hörmann and Jammoul (2023). Zhou et al. (2022) propose an estimator which is consistent

in the exogeneous functional linear model by first estimating the covariance kernel of the

functional variable using kernel smoothing. The slope function is then estimated by least

squares based on its series expansion with respect to the principle components of the estimated

covariance operator. As discussed earlier, the idea proposed in this article for testing for

exogeneity could be used as long as two estimators are available, where the first is consistent

under exogeneity as well as endogeneity and the second is only consistent under exogeneity.

We presume that if such an estimator would be constructed and has a similar structure as

e.g. the one in Zhou et al. (2022), it should be possible to derive an asymptotic distribution

of the test statistic and again to construct a test for exogeneity with a similar behavior as
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Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0154



the one discussed in this article.

Hörmann and Jammoul (2023) show, that if the functional variable is discretely observed

and one is only interested in prediction, but not the slope function itself, it is still efficient

to work in the corresponding factor model. Since the test statistic is based on predictions,

it could also be an alternative to use the classical methods for testing for exogeneity. But

this would run into problems, if the number of observation points of the functional variable

is large compared to the sample size.

Remark 3.7. Finally, as in the multiple linear regression model, one could think of a multiple

functional linear model as in Chiou et al. (2016) and the situation that not all, but only

some functional regressors are endogeneous. By reorganizing the model, one can think of one

functional variable X̃ observed on a larger interval instead of several functions observed on

[0, 1]. This means, that there are some intervals where E{X̃(t)U} ̸= 0 for some t in those

intervals. Since our approach can easily be generalized to other compact intervals than [0, 1],

this situation is already covered by our method.

4. Bootstrap inference

In this section, we propose (fixed-design) residual-based bootstrap procedures to estimate

the distribution of n
tn
(Tn −Bn −Rn) under the null hypothesis H0 of exogeneity in (2.2).

To this end, we first compute the residuals Ûi, i = 1, . . . , n, from the data by defining Ûi =

Yi−⟨β̂IV , Xi⟩. For computing the residuals, we use the IV-based estimator β̂IV (and not β̂),

because it is consistent under both the nullH0 and under the alternativeH1. Nevertheless, as

the bootstrap errors U∗
i , i = 1, . . . , n will be drawn independently from the residuals, using

the classical estimator β̂ would also result in a proper bootstrap scheme to approximate
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the distribution of the test statistic under the null, since the uncorrelatedness of error and

regressor in the bootstrap sample is guaranteed by the (fixed-design) bootstrap procedure

itself. However, under the null, the construction of residuals Ûi that approximate the true

errors Ui, usually results in better finite sample performance of the bootstrap approximation

of distribution of the test statistic under the null. In the following, different versions of

residual-based bootstraps are considered that all will follow these steps:

Step 1.) Given i.i.d. copies Sn = {(Xi,Wi, Yi)}i=1,...,n of (X,W, Y ), we generate a bootstrap

sample (Xi,Wi, Y
∗
i ), i = 1, . . . , n, by computing Y ∗

i = ⟨β̂IV , Xi⟩ + U∗
i , where the

bootstrap errors U∗
i are generated from the residuals Û1, . . . , Ûn in such a way that,

conditional on the data Sn, the uncorrelatedness of U∗
i and (Xi,Wi) is assured.

Step 2.) According to (3.1), a bootstrap test statistic T ∗
n is calculated from (Xi,Wi, Y

∗
i ),

i = 1, . . . , n.

Step 3.) Repeat Steps 1.) and 2.) B times, where B is large, to get bootstrap realizations

T ∗,1
n , . . . , T ∗,B

n of the test statistic and denote by q∗1−γ = T
∗,(⌊B(1−γ)⌋)
n the corresponding

empirical (1− γ)-quantile.

As the bootstrap errors are generated such that uncorrelatedness of U∗
i and (Xi,Wi)

conditionally on the original sample is ensured, the bootstrap automatically adopts the

exogeneity assumption. For the naive (Efron-type) residual-based bootstrap, this is trivially

the case, because the bootstrap errors are drawn independently with replacement from the

residuals, and for the wild bootstrap, since suitable bootstrap multiplier variables Vi will

also be drawn independently from Xi and Wi.
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(b) Slope functions used in the tests

Figure 1: Estimators and slope functions used in the test.

Theorem 4.1. Under the assumptions of Theorem 3.2, let Sn be a set of i.i.d. copies of

(X,W, Y ), where (X,W ) ∈ F128
η and E|U |128 ≤ η < ∞ and let (tn)n∈N from (3.4) be such

that tn → ∞ as n → ∞. Additionally, suppose that

1

t4n

∑
k∈Kn

(
xkwk

|ck|2
− 1

)4

= o(1),
∑
k∈Kn

(
x2
kE|⟨β − β̂IV , ϕk⟩|4

)1/4 x4
kw

4
k

|ck|8
= O(1),

∑
k∈Z

xkw
1/2
k

|ck|
< ∞, and

1

tn

∑
k∈Kn

x
3/2
k wk

|ck|2
= O(1)

hold. Then, under both the null H0 and the alternative H1, we have

sup
y∈R

∣∣∣∣P { n

tn
(T ∗

n −B∗
n −R∗

n) ≤ y | Sn

}
− PH0

{
n

tn
(Tn −Bn −Rn) ≤ y

}∣∣∣∣ P−→ 0,

where B∗
n and R∗

n denote the bootstrap versions of Bn and Rn defined in Theorem 3.2 and

PH0 is the distribution of n
tn
(Tn −Bn −Rn) under H0.

Based on this result, as Tn, T
∗
n ≥ 0 and both have asymptotically the same bias and

variance, we can construct a one-sided bootstrap test of size γ ∈ (0, 1) for the null H0 in

(2.2), by rejecting H0 if Tn > q∗1−γ, where q
∗
1−γ is the (1− γ) bootstrap quantile from Step 3.
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5. Monte Carlo Simulations

In this section, we investigate the finite sample behavior of the asymptotic test proposed in

Section 3 and its bootstrap versions from Section 4 under several degrees of endogeneity and

for different slope functions. We generate data from the model

X(t) = cos(t)A+ sin(t)B, W (t) = cos(t)C + sin(t)D +H

and Y = 1
p+1

∑p
l=0X(l/p) · β(l/p) + U , for p = 50. To control all correlations in the model,

we generate i.i.d. copies of

(
A
B
C
D
ε

)
∼ N5


(

0
0
0
0
0

)
,

 3 0 ν
√
6 0 ρ

√
3

0 3 0 ν
√
6 0

ν
√
6 0 2 0 0

0 ν
√
6 0 2 0

ρ
√
3 0 0 0 1




such that corr(A,C) = ν = corr(B,D), corr(A, ε) = ρ and U = 7
5
ε. The random variable H

is uniformly distributed on (−1/2, 1/2) and independent of (A,B,C,D, ε)′. The parameter

ρ controls the severity of endogeneity with ρ = 0 representing the exogenous case under

H0, while ν controls the strength of the instrument W . It is straightforward to show, that

(X,W ) is second-order stationary, which meets Assumption 1. Additional results for non-

stationary (X,W ) indicating a good performance can be also found in the supplementary

material. Before investigating the performance of the proposed tests for different slope

functions, we begin with a short motivation why it is reasonable to test for endogeneity

instead of just always using the instrumental variable estimator. Consider the slope function

β(t) = sin(2πt) and a sample size of n = 100 in the exogeneous functional linear model. As

shown in Figure 1a, even in this simple situation the instrumental variable estimator has

problems in estimating the true slope function. There, the black line represents the true slope

function. The estimator β̂ is given by the shortly dashed line while the dotted, dot dashed
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and long dashed lines represent β̂IV for an instrument with correlation ν = 0.6, 0.4, 0.2 with

X, respectively. All regularization parameters are chosen data driven by cross validation. It

can be observed, that the estimation by β̂IV gets worse with decreasing correlation. In the

following simulation study, we will use three different slope functions β1, β2 and β3 defined

by

β1(t) = sin(4πt) +
1

2
sin (8πt) +

1

7
sin (20πt) ,

β2(t) =
2

π
arcsin(cos(2πt)), (5.1)

β3(t) =
∑
j∈Z

∫
R
rj(s)

1

h
kj((t− s)/h) ds,

where rk(t) = I[j+ 1
4
,j+ 3

4
)(t), kj(t) = 1

C
exp

(
− 1

1−(t−2j)2

)
I(−1+2j,2j+1)(t) and C =

∫
R k0(s) ds

which are illustrated in Figure 1b. For all simulations, we generate 1000 Monte Carlo

realizations and use B = 500 bootstrap replications. Besides an Efron-type residual-based

bootstrap, which draws the bootstrap errors U∗
i , i = 1, . . . , n independently with replacement

from the residuals Û1, . . . , Ûn, we consider also several versions of a residual-based wild

bootstrap, where U∗
i = ViÛi, i = 1, . . . , n, and the Vi’s are i.i.d. with E[V1] = 0 and

E[V 2
1 ] = 1 independent of (Xi,Wi, Yi)i=1,...,n. We consider three different choices (a) - (c) for

the distribution of the Vi’s, which are commonly used in the literature, see e.g. Mammen

(1993),

(a) P

(
V1 = −

√
5− 1

2

)
=

√
5 + 1

2
√
5

, P

(
V1 =

√
5 + 1

2

)
=

√
5− 1

2
√
5

, (5.2)

(b) P (V1 = 1) = 0.5 = P (V1 = −1), (c) V1 ∼ N (0, 1). (5.3)

The results for the asymptotic test for different choices of α are shown for the slope parameter

function β1 in Figure 2a, while the behavior for β2 and β3 with respect to the choice of α

is very similar. Simulation results for all slope functions and fixed α are presented in Table
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(b) naive residual bootstrap

Figure 2: For the true slope parameter function β1, empirical size and power of the tests for

several choices of α is shown. The solid line shows the target level γ = 0.05.
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1. From Figure 2a, we see that the best results are obtained for α between 0.05 and 0.055.

For smaller α, the test does not hold the prescribed level, while for larger α the power is

comparably small up to biased tests for α larger than 0.07. Even for a good choice of α, the

asymptotic test has only moderate power, also for larger sample sizes. This is a well known

effect with asymptotic tests using plug-in estimators.

The way out is typically a bootstrap-based test. The results for the residual-based

bootstrap proposed in Section 4 and again β1 are shown in Figure 2b. It turns out, that the

regularization parameter can be chosen considerably smaller than for the asymptotic test

and the procedure is much more robust with respect to the choice of α. Nearly all tests

hold the size of γ = 0.05 for larger sample sizes and the power increases with sample size for

most choices of α up to a value close to 1 already for n = 200. Again we can get an idea of

choosing a good α depending on the sample size which varies from α = 0.01 for n = 25, 50 to

α = 0.0001 for n = 75, 100, 200 and 300. Apparently, all bootstrap procedures discussed in

Section 4 perform comparably well, which can be seen in Figure 3 for a choice of α = 0.0001.

Comparing the performance of the bootstrap test for different slope functions, we find

that the bootstrap test holds the size γ = 0.05 for all models, while we see in Table 1 that

the power is similarly good for all settings with only slight disadvantages for the smoothed

indicator function β3. Finally, we inspect the effect of the degree of endogeneity and the

strength of the instrument on the performance of the test. In the left panel of Figure 4, we

see that the power of the bootstrap test increases with increasing degree ρ of endogeneity

being already acceptable for ρ = 0.3. The middle and right panels of Figure 4 show, that the

performance of the test highly depends on the strength of the instrument. If the instrument

is weak, i.e. the correlation with the errors is low, the power is also low and the test does not
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Figure 3: Empirical size and power of the different bootstrap tests proposed in (5.2)-(5.3)

for the true slope function β1 and for several choices of α. The solid line shows the target

level γ = 0.05.

hold the size. It turns out, that for the setting with slope function β1, ρ = 0.4 and α = 0.0001,

the bootstrap test performs best for a strength of the instrument around ν = 0.7.

We have seen, that several parameters substantially influence the performance of the

test. While some of them are determined by the model itself such as the slope function or

the correlation of regressors and errors, others have to be chosen at least partly by the user.

Since there are typically only few reasonable instruments available, the user has only limited

possibilities to improve the performance via choosing a stronger instrument. The case is

different for the regularization parameter. To get a better overview, α is kept fixed with

growing n in the simulations although this does not meet our assumptions in theory. As

an effect, we observe in some cases an empirical power, which does not increase for growing

sample size (see e.g. Fig. 2a for n = 175). Since the optimal regularization parameter is

only a theoretical value, a data driven choice is generally desirable. As for other estimation
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n 25 50 75 100 125 150 175 200 225 250 275 300

β1

ρ = 0.4 0.125 0.369 0.583 0.741 0.866 0.91 0.932 0.965 0.976 0.986 0.993 0.996

ρ = 0 0.023 0.032 0.043 0.051 0.044 0.053 0.043 0.048 0.052 0.042 0.05 0.037

β2

ρ = 0.4 0.14 0.406 0.63 0.76 0.88 0.932 0.944 0.975 0.981 0.991 0.995 0.996

ρ = 0 0.023 0.033 0.04 0.051 0.055 0.053 0.039 0.047 0.054 0.044 0.051 0.0311

β3

ρ = 0.4 0.14 0.424 0.634 0.786 0.865 0.909 0.953 0.976 0.984 0.992 0.996 0.997

ρ = 0 0.022 0.035 0.036 0.047 0.044 0.069 0.057 0.062 0.054 0.042 0.068 0.053

Table 1: Empirical power and size of the naive residual based bootstrap test for the slope

functions defined in (5.1) using ρ = 0.4, ν = 0.6 and α = 0.0001.

techniques, least squares cross validation would be a natural approach, that is, to choose α

by minimizing

CV (α) =
1

n

n∑
i=1

(Yi − ⟨β̂−i, Xi⟩)2 +
1

n

n∑
i=1

(Yi − ⟨β̂IV,−i, Xi⟩)2,

where β̂−i and β̂IV,−i, i = 1, . . . , n, denote the classical and the instrumental variable estima-

tor from the sample Sn with (Xi,Wi, Yi) removed. The simulation results for the bootstrap

test with slope function β1 and α chosen by cross validation for different significance levels

γ are presented in Table 2. The test using cross validation for the choice of α is slightly

conservative. This might be due to the fact, that the optimal parameter for estimation is not

always the ideal parameter for testing. This means, that choosing the regularization param-

eter for testing is even more challenging than choosing it for estimation. On the other hand,

the power of the test is quite high even for moderate sample sizes like n = 150 and the test

holds the size. Therefore, cross validation seems to be a reasonable method for a data-driven

choice of the regularization parameter in the bootstrap testing approach. It is possible to
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Figure 4: Simulation results for the naive bootstrap test. Above: Power for different degrees

ρ of endogeneity, Below: Size and power for different strengths ν of the instrument.

still increase the power by using a slightly higher regularization parameter in the calculation

of the bootstrap test statistics than for the original one. But, as we discovered in simulation

studies the optimal order of the bootstrap regularization parameter highly depends on the

underlying model without the possibility of choosing it data driven. For the asymptotic test
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n 25 50 75 100 125 150 175 200 225 250 275 300

γ = 0.025

ρ = 0.4 0.043 0.224 0.442 0.661 0.805 0.871 0.917 0.96 0.977 0.984 0.993 0.997

ρ = 0 0.012 0.008 0.009 0.018 0.014 0.013 0.015 0.012 0.018 0.011 0.009 0.015

γ = 0.05

ρ = 0.4 0.108 0.363 0.586 0.768 0.891 0.911 0.957 0.974 0.983 0.993 0.997 0.999

ρ = 0 0.017 0.021 0.03 0.037 0.028 0.027 0.027 0.03 0.039 0.026 0.034 0.028

γ = 0.1

ρ = 0.4 0.247 0.535 0.75 0.859 0.938 0.959 0.975 0.987 0.992 0.999 1 1

ρ = 0 0.06 0.053 0.08 0.075 0.071 0.069 0.062 0.064 0.073 0.067 0.071 0.072

Table 2: Empirical power and sizes of the naive residual based bootstrap test for the slope

function β1 using ρ = 0.4, ν = 0.6 and α chosen by cross validation considering significance

levels γ = 0.025, 0.05 and 0.1.

the a cross validation approach is also possible and cures the observed effect of nonincreasing

power for increasing sample size. But having in mind the latter discussion about optimal

bandwidth choice for testig versus estimation and the sensibility to bandwidth choice of the

asymptotic test discussed above combined with the addidional challenge of estimating bias

and variance terms, we refrain from discussiong this test further.

6. Real Data Example

Florens and Van Bellegem (2015) analyze the impact of fertility on economic growth in the

United Kingdom. There, fertility rates as functions of the mothers’ age are considered for

the years 1966 to 2012. Each curve is observed for the ages 15 to 44 and 45 and older.

For each year, the corresponding GDP growth rate is given as real variable. Due to several

publications, the fertility rate is considered to be an endogenous regressor for the growth

24

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0154



1970 1990 2010

−
10

−
5

0
5

Year

G
D

P
 G

ro
w

th

15 25 35 45

0
50

10
0

20
0

Age

M
ul

tip
le

 B
irt

h 
R

at
e

15 25 35 45

5
10

15
20

25
30

Age

M
ul

tip
le

 B
irt

h 
R

at
e

15 25 35 45

−
1.

0
0.

0
0.

5
1.

0

Age

 

Figure 5: From left to right: GDP growth (annual %), Fertility Rates (live births per 1000

women), Multiple births rates (maternities with multiple births per 1000 maternities), β̂

(dashed) and β̂IV (dot dashed). Source: World Bank and Uk Office of National Statistics.

rate, see e.g. Braakmann and Wildman (2016), but this has never been tested in a functional

context. Florens and Van Bellegem (2015) use multiple birth rates as instrumental variable

interpreted as piecewise constant functions on the range of ages [15, 20), [20, 25), [25, 30)

[30, 35), [35, 40) [40, 45) and older than 45. They analyze the data with the instrumental

variable estimator proposed there. We use the same data, but for the augmented range of

years 1966 to 2020. For the year 1981, the availability of birth rates is limited due to a

registrars strike. Therefore, following Florens and Van Bellegem (2015), the year 1981 is

excluded from the analysis. This results in n = 54 observations. For the test we have chosen

α = 0.033 by cross validation as described in Section 5. By using the Efron-type bootstrap

approach with B = 10000 replications, we get a p-value of 0.095. This indicates, that we

cannot reject the null hypothesis of exogeneity for a significance level of γ = 0.05, but would

reject for γ = 0.1. As a consequence, based on the test decision with γ = 0.05, one could

use the classical estimator for the slope function instead of the less efficient instrumental

variable estimator, whereas the instrumental variable estimator should be used insteas for

γ = 0.1. The right panel in Figure 5 shows β̂ as dashed line and β̂IV as dot dashed line with
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α chosen by cross validation for each estimator seperately. Both estimators are quite close

together and exhibit very similar characteristics. By inspecting them closer one observes

that the IV estimator has a steeper increase at the beginning but a moderater effect at the

higher ages compared to the classical estimator. This might be an effect of endogeneity, but

in view of the test decision for γ = 0.05 it may also be caused by the small sample effect for

β̂IV under exogeneity described at the beginning of Section 5.

The whole evaluation took 76.94 sec. on a desktop PC with an Intel(R) Core(TM) i5-

2500 CPU. A detailed runtime analysis for different sample sizes and bootstrap repetitions

can be found in the supplementary material S1.2.

7. Concluding remarks

The underlying work is the first approach of testing for endogeneity in a functional regres-

sion setup. For this purpose, the classical Hausman test designed to test for endogeneity in

multiple linear regression models has to be suitably modified. This modification is required,

because the L2-distance of two slope function estimators in functional linear regression mod-

els are shown to have no proper limiting distribution. We prove asymptotic normality for

the proposed modified Hausman-type test statistic, which allows for the construction of

asymptotic tests for exogeneity. As the asymptotic test has several drawbacks such as many

nuisance parameters, which are cumbersome to estimate, an additional bias term, which

diverges when multiplied with the rate of convergence, and a high sensitivity to the choice of

the regularization parameter, we propose suitable bootstrap versions of the test to approx-

imate the null distribution. This avoids the additional estimation of nuisance parameters

and turns out to be much more robust to the choice of the regularization parameter in sim-
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ulations. This behavior is demonstrated in a detailed simulation study. Topics of ongoing

work are the choice of the instrument, a data driven choice of the regularization parameter

and the transfer to other regression models.

Supplementary Material

The “Supplement to Testing exogeneity in the functional linear regression model” contains

additional simulation results and details of the proofs of Propositions A.5, C.1 and C.2.
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A. Auxiliary Results for the Proof of Theorem 3.2

We assume for the sake of simplicity E[X(t)] = E[W (t)] = 0 for all t ∈ [0, 1] and remember

from Section 3 the decomposition of the test statistic with

Rn,1 =
1

n2

∑
k∈Z

(x̂k − xk)
∣∣∣ n∑
i=1

Di,kI{λk ≥ αγν
k}
(
σUi +

∑
m∈Z,
|m|̸=|k|

Si,m

)∣∣∣2,
Rn,2 =

1

n2

∑
k∈Z

xkI{λk ≥ αγν
k}

n∑
i=1

|Di,k|2
∣∣∣σUi +

∑
m∈Z,
|m|̸=|k|

Si,m

∣∣∣2,
Rn,3 =

1

n2

∑
k∈Z

xkI{λk ≥ αγν
k}

n∑
i,j=1,
i̸=j

Di,k

(
σUi +

∑
m∈Z,
|m|̸=|k|

Si,m

)
Dj,k

(
σUj +

∑
m∈Z,
|m|̸=|k|

Sj,m

)
,

Rn,4 =
1

n3

∑
k,l∈Z,
|k|̸=|l|

n∑
j=1

⟨ϕk, Xj⟩⟨Xj, ϕl⟩I{λk ≥ αγν
k}I{λl ≥ αγν

l }
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×
n∑

i=1

Di,k

(
σUi +

∑
m∈Z,
|m|̸=|k|

Si,m

)
Di,l

(
σUi +

∑
m∈Z,
|m|̸=|l|

Si,m

)
,

Rn,5 =
1

n3

∑
k,l∈Z,
k ̸=l

n∑
j=1

⟨ϕk, Xj⟩
n∑

i1,i2=1,
i1 ̸=i2

Di1,k

(
σUi1 +

∑
m∈Z,
|m|̸=|k|

Si1,m

)
Di2,l

(
σUi2 +

∑
m∈Z,
|m|̸=|l|

Si2,m

)
(A.1)

and define

Di,k,n =
⟨Wi, ϕk⟩

ĉk
I{ŵk ≥ α} − ⟨Xi, ϕk⟩

x̂k

, Di,k =
⟨Wi, ϕk⟩

ck
− 1

xk

⟨Xi, ϕk⟩, Si,m = ⟨β, ϕm⟩⟨ϕm, Xi⟩.

The first result establishes the asymptotic distribution of the test statistic.

Theorem A.1. Under the assumptions of Theorem 3.2, under the null hypothesis, and for

(X,W ) ∈ F4
η and E{X(t)} = E{W (t)} = 0 for all t ∈ [0, 1], we have n

tn
Rn,3

D−→ N (0,V).

The remaining results are required to show that the remainder terms are negligible.

Proposition A.2. Under the assumptions of Theorem 3.2, and if (X,W ) ∈ F128
η and

E|U |128 ≤ η < ∞, we have 1
n

∑n
j=1 |⟨Tn,1, Xj⟩|2 = oP

(
1
n

)
.

Proposition A.3. Under the assumptions of Theorem 3.2 and if (X,W ) ∈ F64
η and E|U |64 ≤

η < ∞, we have 1
n

∑n
j=1 |⟨Tn,2, Xj⟩|2 = oP

(
tn
n

)
.

Proposition A.4. Under the assumptions of Theorem 3.2, and if (X,W ) ∈ F8
η and E|U |8 ≤

η < ∞, we have 1
n

∑n
j=1 |⟨Tn,3, Xj⟩|2 = oP

(
tn
n

)
.

Proposition A.5. Under the assumptions of Theorem 3.2, and if E|U |4 ≤ η < ∞ and

(X,W ) ∈ F4
η , we have

Rn,1 = oP

(
1

n

)
, Rn,4 = oP

(
1

n3/2

)
, Rn,5 = oP

(
1

n

)
, Rn,2 = Rn + oP

(
tn
n

)
,Rn = o

(
1√
n

)
.
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B. Auxiliary results

The results in this section are used at several places in the proofs. They follow from Lemma

A.1 in Johannes (2016).

Lemma B.1. Let X and W have finite second moments and let m ∈ N. Then, we have∑
k∈Z x

2m
k < ∞ and

∑
k∈Z x

2m
k wk < ∞. If additionally X ∈ G2m

η und β ∈ L2([0, 1]), we have

E

∣∣∣∣∣∑
k∈Z

⟨β, ϕk⟩⟨ϕk, X⟩

∣∣∣∣∣
2m

< ∞.

Lemma B.2. Let p ∈ N be fixed and suppose (X,W ) ∈ F8p
η and E|U |8p ≤ η < ∞. Then,

there is a positive constant C = Cp < ∞ such that, for all k ∈ Z, we have

E|I{λ̂k ≥ αγν
k} (Di,k,n −Di,k) |p ≤

C

np/2

(
wp

kx
p/2
k

|ck|2p
+

1

x
p/2
k

)
(1 + o(1)) and (B.1)

E
∣∣∣I{λ̂k ≥ αγν

k}Di,k,n

∣∣∣p ≤ Cp

{
w

p/2
k

|ck|p
+

1

x
p/2
k

+
C

np/2

(
wp

kx
p/2
k

|ck|2p
+

1

x
p/2
k

)
(1 + o(1))

}
. (B.2)

C. Proof of Theorem A.1

The proof follows by using a central limit theorem for martingale difference sequences with

respect to (Fn,j)n∈N,0≤j≤n, where Fn,j = σ (X1,W1, Y1, . . . , Xj,Wj, Yj) and Fn,0 = σ (∅,Ω),

see Hall and Heyde (1980), Theorem 3.2 and Corollary 3.1, for

n

tn
Rn,3 =

n∑
j=2

1

tnn

∑
k∈Z

Uj,kDj,k

j−1∑
i=1

Ui,kDi,kxkI{λk ≥ αγν
k} =

n∑
j=2

Yn,j,

where

Yn,j =
1

tnn

∑
k∈Z

Uj,kDj,kZn,j,k, and Zn,j,k =

j−1∑
i=1

Ui,kDi,kxkI{λk ≥ αγν
k}.

In a first step, we consider the conditional variance of the martingale difference scheme.

Proposition C.1. Under the assumptions of Theorem 3.2, under the null hypothesis and

for (X,W ) ∈ F4
η , we have Vn =

∑n
j=2 E

(
Y 2
n,j | Fn,j−1

) P−→ V as n → ∞.
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Proof. Using that Uj,kDj,kUj,lDj,l is independent of (Fn,j−1)j=1,...,n, we can decompose

Vn =
1

t2nn
2

n∑
j=2

E
(∣∣∣∑

k∈Z

Uj,kDj,kZn,j,k

∣∣∣2 | Fn,j−1

)
=

1

t2nn

∑
k∈Z

xk

(
xkwk

|ck|2
− 1

)
I{λk ≥ αγν

k}E|U1,k|2
(

n−1∑
i=1

|Ui,kDi,k|2 +
n−1∑
i,p=1,
i̸=p

Ui,kDi,kUp,kDp,k

)

= Vn,1 +Vn,2.

We define Hn = V
t2nn

∑
k∈Z xk

(
xkwk

|ck|2
− 1
)
I{λk ≥ αγν

k}
∑n−1

i=1 E|Di,k|2 and show Vn,1 = Hn +

oP (1) by proving the corresponding L2-convergence and afterwards that Hn converges in

probability to V. For i ∈ {1, . . . , n} and k ∈ Z, we have

|Ui,kDi,k|2E|U1,k|2 −VE|Di,k|2 = V1/2
[
|Ui,kDi,k|2 −V1/2E|Di,k|2

]
− |Ui,kDi,k|2|⟨β, ϕk⟩|2xk.

and, observing that σ2 +
∑

m∈Z |⟨β, ϕm⟩|2xm ≤ C1 for some constant C1 > 0, we get

E (Vn,1 − Hn)
2 ≤ Vn,1 + Vn,2 + Vn,3, where

Vn,1 =
C

t4nn
2

∑
k∈Z

x2
k

(
xkwk

|ck|2
− 1

)2

I{λk ≥ αγν
k}

{
n−1∑
i=1

E
(
|Ui,kDi,k|2 −V1/2E|Di,k|2

)2
+

n−1∑
i,p=1,
i̸=p

E
[
|Ui,kDi,k|2 −V1/2E|D1,k|2

]
E
[
(|Up,kDp,k|2 −V1/2E|D1,k|2

]}
,

Vn,2 =
C

t4nn
2

∑
k,l∈Z,
|k|̸=|l|

xk

(
xkwk

|ck|2
− 1

)
I{λk ≥ αγν

k}xl

(
xlwl

|cl|2
− 1

)
I{λl ≥ αγν

l }

[
n−1∑
i=1

E
{(

|Ui,kDi,k|2 −V1/2E|Di,k|2
)(

|Ui,lDi,l|2 −V1/2E|Di,l|2
)}

+
n−1∑
i,p=1,
i̸=p

E
(
|Ui,kDi,k|2 −V1/2E|Di,k|2

)
E
(
|Ui,lDi,l|2 −V1/2E|Di,l|2

)]
,

Vn,3 =
2

t4nn
2
E

{∑
k∈Z

x2
k

(
xkwk

|ck|2
− 1

)
|⟨β, ϕk⟩|2I{λk ≥ αγν

k}
n−1∑
i=1

|Ui,kDi,k|2
}2

.

30

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0154



We have

E|Uj,kDj,k|2 =

(
σ2 +

∑
m∈Z,
|m|̸=|k|

|⟨β, ϕm⟩|2xm

)(
wk

|ck|2
− 1

xk

)
, (C.1)

because |Uj,k|2 and |Dj,k|2 are uncorrelated for all k ∈ Z and all j ∈ {1, . . . , n}. Hence, with

Lemma B.1 and (C.6), for all i ∈ {1, . . . , n} and k ∈ Kn, we have

E
(
|Ui,kDi,k|2 −V1/2E|Di,k|2

)2 ≤ C
{
E|D1,k|4 −

(
E|D1,k|2

)2} ≤ CE|D1,k|4 ≤
C

α2
, (C.2)

E
(
|Ui,kDi,k|2 −V1/2E|Di,k|2

)
= −E|D1,k|2|⟨β, ϕk⟩|2xk = −

(
xkwk

|ck|2
− 1

)
|⟨β, ϕk⟩|2. (C.3)

For the mixed terms with k, l ∈ Z, |k| ̸= |l| and i ∈ {1, . . . , n} and wk

|ck|2
− 1

xk
≥ 0, for all

k ∈ Z, we get

E
{(

|Ui,kDi,k|2 −V1/2E|Di,k|2
)(

|Ui,lDi,l|2 −V1/2E|Di,l|2
)}

≤ E
(
|U1,kD1,kU1,lD1,l|2

)
+
( wk

|ck|2
− 1

xk

)( wl

|cl|2
− 1

xl

)
≤ C

{
1

α2
|⟨β, ϕk⟩|2xk|⟨β, ϕl⟩|2xl +

xl

α
|⟨β, ϕl⟩|2

( wk

|ck|2
− 1

xk

)
+

xk

α
|⟨β, ϕk⟩|2

( wl

|cl|2
− 1

xl

)
+
( wk

|ck|2
− 1

xk

)( wl

|cl|2
− 1

xl

)}
. (C.4)

Using this, we have

Vn,1 ≤
C

t4nn
2

∑
k∈Z

x2
k

(
xkwk

|ck|2
− 1

)2

I{λk ≥ αγν
k}

{
n

α2
+ n2

(
xkwk

|ck|2
− 1

)2

|⟨β, ϕk⟩|4
}

≤ C

t4nnα
2

∑
k∈Z

x2
k

(
xkwk

|ck|2
− 1

)2

I{λk ≥ αγν
k}

+
C

t4n

∑
k∈Z

x2
k

(
xkwk

|ck|2
− 1

)4

|⟨β, ϕk⟩|4I{λk ≥ αγν
k} = o

(
1 +

1

t2n

)
,

for some constant C > 0. Using similar arguments, we obtain Vn,2 = o
(
1 + 1

t2n
+ 1√

ntn

)
+

O
(
1
n

)
and Vn,3 = o

(
1 + 1

t2n
+ 1

n
+ 1√

ntn

)
, which altogether results in Vn,1 = Hn + oP (1).
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Finally, for n → ∞, the stochastic convergence of Hn follows by

Hn = V
n− 1

t2nn

∑
k∈Z

(
xkwk

|ck|2
− 1

)2

I{λk ≥ αγν
k}

P→ V.

For proving, that Vn,2 converges to 0 in probability, we show again the corresponding L2-

convergence. To this end, for all i ∈ {1, . . . , n} and all k ∈ Z, we bound the term E|U1,k|2

by a constant C < ∞ using the centeredness of U and Lemma B.1, to obtain Vn,2 = oP (1).

The detailed arguments can be found in the supplementary material.

The second step is to show the conditional Lindeberg condition by verifying an uncon-

ditional Lyapunov condition.

Proposition C.2. Under the assumptions of Theorem 3.2, under the null hypothesis, and

with (X,W ) ∈ F4
η , we have

∀ ε > 0 :
n∑

j=2

E
(
Y 2
n,jI{|Yn,j| > ε} | Fn,j−1

) P−→ 0 as n → ∞. (C.5)

Proof. It is shown in Alj et al. (2014) and Gaenssler et al. (1978) that the conditional

Lindeberg condition follows from the unconditional Lyapunov condition. We will show in the

following, that
∑n

j=2 E|Yn,j|4 = o(1) and decompose
∑n

j=2 E|Yn,j|4 = Ln,1+Ln,2+Ln,3+Ln,4,

where

Ln,1 =
1

t4nn
4

n∑
j=2

∑
k∈Z

E |Uj,kDj,kZn,j,k|4 , Ln,2 =
1

t4nn
4

n∑
j=2

∑
k,l∈Z,
|k|̸=|l|

E
∣∣Uj,kDj,kZn,j,kUj,lDj,lZn,j,l

∣∣2 ,
Ln,3=

1

t4nn
4

n∑
j=2

∑
k,l,q∈Z,

|k|,|l|̸=|q|,|k|̸=|l|

E
(
|Uj,kDj,kZn,j,k|2Uj,lDj,lZn,j,lUj,qDj,qZn,j,q

)
,

Ln,4=
1

t4nn
4

n∑
j=2

∑
k,l,p,q∈Z,

|k|,|l|,|p|̸=|q|,
|k|,|l|̸=|p|,|k|̸=|l|

E
(
Uj,kDj,kZn,j,kUj,lDj,lZn,j,lUj,pDj,pZn,j,pUj,qDj,qZn,j,q

)
.
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For Ln,1, we use that for all k ∈ Z, n ∈ N, j ∈ {1, . . . , n}, Zn,j,k are stochastically

independent of Uj,kDj,k and that Uj,k andDj,k are uncorrelated. Further, the fourth absolute

moment of Uj,k is uniformly bounded due to the centeredness of U and Lemma B.1. The

fourth absolute moment of Dj,k can be estimated using Assumption 3 and (X,W ) ∈ F4
η as

E|Dj,k|4 ≤ C

(
E|⟨W,ϕk⟩|4

|ck|4
+

E|⟨X,ϕk⟩|4

x4
k

)
≤ Cη

(
w2

k

|ck|4
+

1

x2
k

)
≤ Cη

α2
. (C.6)

By similar arguments, we get E |Ui1,kDi1,k|
2 = E|Ui1,k|2E|Di1,k|2 ≤ C

(
wk

|ck|2
− 1

xk

)
leading to

E
∣∣∣ j−1∑
i=1

Ui,kDi,kxkI{λk ≥ αγν
k}
∣∣∣4

= x4
kI{λk ≥ αγν

k}

(
j−1∑
i=1

E|Ui,k|4E|Di,k|4 + 2
∑

1≤i1<i2≤j−1

E|Ui1,kDi1,k|2E|Ui2,kDi2,k|2
)

≤ Cn

α2
x4
kI{λk ≥ αγν

k}+ Cn2x2
k

(
xkwk

|ck|2
− 1

)2

I{λk ≥ αγν
k}. (C.7)

Putting these results together, we get

Ln,1 =
1

t4nn
4

n∑
j=2

∑
k∈Z

E|Uj,k|4E|Dj,k|4E|Zn,j,k|4

≤ C

t4nn
4α2

n∑
j=2

∑
k∈Z

E
∣∣∣ j−1∑
i=1

Ui,kDi,kxkI{λk ≥ αγν
k}
∣∣∣4

≤ C

t4nnα
2

∑
k∈Z

x2
kI{λk ≥ αγν

k}

{
1

nα2
x2
k +

(
xkwk

|ck|2
− 1

)2
}

= o(1)
1

t4n

{∑
k∈Z

x4
kI{λk ≥ αγν

k}+
∑
k∈Z

x2
k

(
xkwk

|ck|2
− 1

)2

I{λk ≥ αγν
k}

}
,

where the first series converges due to Lemma B.1 and the second can be bounded by Ct2n.

Considering Ln,4, we use the stochastic independence of Zn,j,k and Uj,lDj,l for all k, l ∈ Z,

which results in

E
(
Uj,kDj,kZn,j,kUj,lDj,lZn,j,lUj,pDj,pZn,j,pUj,qDj,qZn,j,q

)
= E

(
Uj,kDj,kUj,lDj,lUj,pDj,pUj,qDj,q

]
E
[
Zn,j,kZn,j,lZn,j,pZn,j,q

)
.
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The rest of the argumentation is just calculating the expectations using that, for all j ∈

{1, . . . , n}, Dj,k, Dj,l, Dj,p and Dj,q are uncorrelated with Sj,m for all m ∈ Z\{m ∈ Z : |m| =

|k|, |l|, |p|, |q|} and stochastically independent of Uj. Finally,

E(Sj,kDj,k) = ⟨β, ϕk⟩E
{
⟨ϕk, Xj⟩

(
⟨Wj, ϕk⟩

ck
− ⟨Xj, ϕk⟩

xk

)}
= ⟨β, ϕk⟩

(
ck
ck

− xk

xk

)
= 0 (C.8)

and, in the same way, E(Sj,kDj,k) = E(Sj,kDj,k) = 0, which gives Ln,4 = 0.

With similar arguments as above, which can be found in the supplementary material, we get

Ln,2 = o
(

1
t4n

+ 1
t2nn

+ 1
t2n

+ 1
tn

√
n

)
+O

(
1
n
+ 1

n2

)
= o(1) and Ln,3 = o

(
1

t2nn

)
.

All remaining terms can be estimated with similar techniques. We exemplarily show the

idea for Proposition A.5, that is for Rn,2, in the supplementary material.

D. Proofs of Theorems 3.2 and 3.4

D.1 Proof of Theorem 3.2

For the sake of simplicity, we assume that X is centered. If not, the additional bias term

has to be taken into account as well as stated in the assertion of the theorem. We give a

short overview of the proof. The used propositions and lemmas are stated and proven in the

appendix. For the employed decomposition of the test statistic, we need several (modified)

correlation operators of the instruments and X. We define Un, ∆W,n : L2([0, 1]) → R by

Unf =
1

n

n∑
i=1

(Wi ⊗ Ui)f and ∆W,nf =
1

n

n∑
i=1

(Wi ⊗ Yi)f,

and set

Ũn =
1

n

n∑
i=1

⟨·, W̃i⟩Ui =
1

n

∑
k∈Z

ck
wk

n∑
i=1

⟨ϕk,Wi⟩⟨·, ϕk⟩Ui,

̂̃Un =
1

n

n∑
i=1

⟨·, W̃n,i⟩Ui =
1

n

∑
k∈Z

ĉk
ŵk

I{ŵk ≥ α}
n∑

i=1

⟨ϕk,Wi⟩⟨·, ϕk⟩Ui.
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For the test statistic, the following decomposition holds

n

tn
Tn =

1

tn

n∑
j=1

|⟨Tn,1 + Tn,2 + Tn,3, Xj⟩|2 +
1

tn

n∑
j=1

⟨Tn,1 + Tn,2 + Tn,3, Xj⟩⟨Xj, Rn⟩

+
1

tn

n∑
j=1

⟨Xj, Tn,1 + Tn,2 + Tn,3⟩⟨Rn, Xj⟩+
1

tn

n∑
j=1

|⟨Rn, Xj⟩|2 , (D.1)

where

Tn,1 =

(
Γ̃†
n
̂̃Un − Γ†

X,nUX,n

)
− Π̂Kn

(
Γ̃†Ũn − Γ†

XUX,n

)
,

Tn,2 =
(
Γ̃†
nΓ̃n − Γ†

X,nΓX,n

)
β − Π̂KnAn,

Tn,3 = Π̂Kn

(
Γ̃†Ũn − Γ†

XUX,n + An

)
−
(
Γ̃†Ũn − Γ†

XUX,n + An

)
,

Rn = Γ̃†Ũn − Γ†
XUX,n + An

and

An =
1

n

n∑
i=1

∑
k∈Z

Di,kI{λk ≥ αγν
k}

∑
m∈Z,
|m|̸=|k|

Si,mϕk. (D.2)

When subtracting n
tn
Rn, the last term in (D.1) can be further decomposed to get

1

tn

n∑
j=1

|⟨Rn, Xj⟩|2 −
n

tn
Rn =

n

tn
Rn,3 +

n

tn
(Rn,2 −Rn) +

n

tn
(Rn,1 +Rn,4 +Rn,5) , (D.3)

where Rn,i, i = 1, . . . , 5 as defined in (A.1). In Theorem A.1, we have shown that

n

tn
Rn,3=

1

ntn

∑
k∈Z

xkI{λk ≥ αγν
k}

n∑
i,j=1,
i̸=j

Di,k

(
σUi +

∑
m∈Z,
|m|̸=|k|

Si,m

)
Dj,k

(
σUj +

∑
m∈Z,
|m|̸=|k|

Sj,m

)

converges weakly to a normal distribution with mean 0 and variance V, while the remaining

terms on the right-hand side of (D.3) are asymptotically negligible using Proposition A.5.

Furthermore, the remaining terms on the right-hand side of (D.1) vanish due to Propositions

A.2, A.3 and A.4 by using standard arguments that allow to handle also the mixed terms.

Finally, the assertion follows from Slutsky’s lemma.

35

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0154



D.2 Proof of Theorem 3.4

We only consider the special case µX = 0 here. The general case can be proven by similar

arguments. Under H1, β̂ is not consistently estimating β such that it converges in probability

to β + b for some b ∈ L2[0, 1] with b = σ
∑

k∈Z
E(U1⟨X1,ϕk⟩)

xk
I{λk ≥ αγν

k}ϕk(t) such that b ̸= 0

under endogeneity by continuity imposed in Assumption 1. Hence, we have

Tn =
1

n

n∑
i=1

|⟨β̂IV − (β̂ − b), Xi⟩|2 −
2

n

n∑
i=1

⟨β̂IV − (β̂ − b), Xi⟩⟨b,Xi⟩+
1

n

n∑
i=1

|⟨b,Xi⟩|2

=
1

n

n∑
i=1

|⟨β̂IV − (β̂ − b), Xi⟩|2 −Op

(√
tn
n

)
+Op (1) .

The standardized version of the first part converges in distribution to a standard normal

distribution by similar arguments as in Theorem 3.2 and Corollary 3.3, while the sum of the

remainder terms multiplied with n
tn

goes to infinity for n → ∞. Consequently, we have

P

 n

t̂n

Tn − R̂n√
V̂n

> u1−γ

→ 1 for n → ∞.

E. Proof of Theorem 4.1

Let ΦV(·) denote the distribution function of the normal distribution with mean zero and

variance V, Fn the distribution function of n
tn
(Tn −Bn −Rn) and F ∗

Sn,n
the distribution

function of the conditional distribution of n
tn
(T ∗

n −B∗
n −R∗

n) given Sn. By bounding

sup
t∈R

∣∣F ∗
Sn,n(t)− Fn(t)

∣∣ ≤ sup
t∈R

∣∣F ∗
Sn,n(t)− ΦV(t)

∣∣+ sup
t∈R

|Fn(t)− ΦV(t)| =: M1,n +M2,n,

similar to the example in Section 29 of DasGupta (2008), it is enough to show the con-

vergence of M1,n and M2,n. Due to the continuity of ΦV, the convergence of M2,n di-

rectly follows from Theorem 3.2 and Polya’s Theorem, as stated in Section 1.5.3 of Serfling

(1980). Again, using Polya’s Theorem, it is enough to show for M1,n, that for all ε > 0
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limn→∞ P
(∣∣F ∗

Sn,n
(t)− ΦV(t)

∣∣ > ε
)
= 0. For this we just imitate the proof of Theorem 3.2.

Analogously to (D.1), we decompose

n

tn
T ∗
n =

1

tn

n∑
j=1

∣∣〈T ∗
n,1 + T ∗

n,2 + T ∗
n,3, Xj

〉∣∣2 + 1

tn

n∑
j=1

⟨T ∗
n,1 + T ∗

n,2 + T ∗
n,3, Xj⟩⟨Xj, R

∗
n⟩

+
1

tn

n∑
j=1

⟨Xj, T
∗
n,1 + T ∗

n,2 + T ∗
n,3⟩⟨R∗

n, Xj⟩+
1

tn

n∑
j=1

|⟨R∗
n, Xj⟩|2 ,

where, similar to the proof of Theorem 3.2, we get

1

tn

n∑
j=1

|⟨R∗
n, Xj⟩|2 −

n

tn
Rn =

n

tn
R∗

n,3 +
n

tn

(
R∗

n,2 −Rn

)
+

n

tn

(
R∗

n,1 +R∗
n,4 +R∗

n,5

)
.

Then, n
tn
(R∗

n,3 −B∗
n −R∗

n) converges weakly to N (0,V) in probability along the same lines

of Theorem A.1. The remainder terms can be discussed to be negligible with the same

arguments as for the remainder terms in Theorem 3.2. 2
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