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Abstract: In this paper, a novel test, called the maximum conditional alpha

(MCA) test, which enhances the testing power for detecting alpha in linear

multi-factor models, is proposed. This test is specifically designed for conditional

multi-factor models with time-varying coefficients, where the number of test as-

sets (N) exceeds the number of observations (T ) and the alternative hypothesis is

a sparse vector, meaning that only a few components violate the null hypothesis.

By carefully studying the estimation error derived from the B-spline estimation,

we rigorously demonstrate that the proposed test converges to a type-I extreme

value distribution when min(T,N) tends to infinity, subject to mild conditions.

Furthermore, the proposed MCA test was extended to incorporate latent fac-

tors within conditional multi-factor models. The small-sample properties of the
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proposed MCA test were assessed via Monte Carlo simulations. Finally, the pro-

posed method was applied to evaluate the efficiency of the U.S. stock market

using the conditional Fama-French three-factor model. The results demonstrate

that the MCA test outperforms existing tests in terms of statistical power.

Key words and phrases: B-Spline Estimator, Maximum Conditional Alpha Test,

Sparse Alternative, Time-Varying Coefficient.

1. Introduction

Explaining the variations in average returns across different assets is a fun-

damental question in finance. The capital asset pricing model (CAPM),

pioneered by Sharpe (1964) and Lintner (1965), has long been the cor-

nerstone of asset pricing. However, CAPM has traditionally been the key

framework for asset pricing. However, the CAPM has proven to be inad-

equate, leading to the development of alternative multi-factor models like

the widely used three-factor model proposed by Fama and French Fama

and French (1993). Typically, each factor in these multi-factor models has

significant economic meaning and pricing ability.

In these models, denoting the excess return of asset i at time t as Rit and

the d× 1 observable vector of common factors as ft = (f1t, . . . , fdt)
> ∈ Rd,
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the linear multi-factor model with N test assets takes the following form:

Rit = αi + βββ>i ft + εit, (1.1)

for i = 1, · · · , N , t = 1, · · · , T , where βββi = (βi1, · · · , βid)> ∈ Rd is a vector

of factor loadings of asset i, and εit is the corresponding idiosyncratic error

term. The intercept term αi in (1.1) captures the excess return of the i-

th asset. In financial investment, the focus lies on the value of αi rather

than Rit. According to the “mean-variance efficiency” theory, if the linear

multi-factor model is correctly specified, the intercept αi for any test asset

i should be zero, indicating that all excess returns can be explained by the

common factors. This leads to the question of how to assess the adequacy

of a specific linear multi-factor model.

This question is essentially about testing whether the regression inter-

cepts αis are zeros. The hypotheses are as follows:

H0 : αi = 0, for all i = 1, · · · , N, vs. H1 : αi 6= 0, for some i = 1, · · · , N.

(1.2)

The Gibbons-Ross-Shanken (GRS) test, introduced by Gibbons et al. (1989),

provides a pioneering method to address this problem. The GRS test is a

Wald-type test for hypotheses (1.2), formulated as follows:

GRS =
T −N − d

N

1

1 + f̄
>

Σ̂ΣΣ
−1

f f̄
α̂αα>Σ̂ΣΣ

−1
α̂αα, (1.3)
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where α̂αα = (α̂1, · · · , α̂N)> ∈ RN is the ordinary least-square (OLS) esti-

mator of intercepts, Σ̂ΣΣ is the estimated covariance matrix of ε̂εε(t), ε̂εε(t) =

(ε̂1t, · · · , ε̂Nt)> ∈ RN , ε̂it is the estimated residual for each i ∈ {1, · · · , N}

and t ∈ {1, · · · , T}, f̄ = T−1
∑T

t=1 ft is the sample mean vector of factors,

and Σ̂ΣΣf = T−1
∑T

t=1(ft− f̄)(ft− f̄)> is the estimated covariance matrix of ft.

This approach has been widely studied (e.g., MacKinlay and Richardson,

1991; Zhou, 1993; Lan et al., 2018; Ma et al., 2020).

Although the GRS test is commonly used to address the above men-

tioned question, it has certain limitations. First, the GRS type test is only

applicable when the number of assets N is fixed and much less than the

number of observations T (e.g., Pesaran and Yamagata, 2017; Lan et al.,

2018; Feng et al., 2022). This limitation arises from the inconsistency and

nontrivial bias introduced by the sample covariance matrix estimator when

N > T (Bai and Silverstein, 2005). Second, the GRS test is not applicable

to conditional time-varying multi-factor models. However, evidence shows

that both the alphas (pricing errors) and betas (factor loadings) vary over

time (e.g., Ghysels, 1998; Guo et al., 2017; Cooper and Maio, 2019). As

Ghysels (1998) pointed out, possible misspecifications arise owing to the

strong assumptions placed on the underlying probability distributions and

the investors’ attitude toward risk in the above mentioned time-invariant

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0137



multi-factors models. Therefore, numerous studies have focused on estimat-

ing the CAPM model with time-varying alphas and betas. A partial list

includes Ferson and Harvey (1999), Li and Yang (2011), Ang and Kristensen

(2012) and Ma et al. (2020). In fact, the conditional time-varying multi-

factor model is more suitable than the traditional time-invariant multi-

factor models. For example, the empirical results in the appendix show

that the null hypothesis of time-invariant alphas and betas is rejected in

each of the 312 (334) portfolios at a significant level of 0.05, approximately

93.4%. Third, the GRS test suffers from low power when the alternative

hypothesis H1 in (1.2) is sparse, i.e., under H1, only a small proportion of

αi’s are far from zero. The main reason is that the sum-of-squares type

statistics accumulate high-dimensional estimation errors under H0, which

leads to a large critical value that can dominate the signals in the sparse al-

ternatives (e.g., see Fan et al., 2015 for detailed explanations). In practical

applications, the alternative hypotheses are not always dense. For example,

we present empirical evidence of sparse alternatives based on a total of 334

portfolios in the appendix, there are less than 10 significant nonzero-alpha

in the time interval 1999-2020, approximately 3%, i.e., the signals in αi

spread out over a small number of test assets.

Some methods attempt to overcome the aforementioned three limita-
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tions since they are all empirically motivated. To resolve the first limitation,

Pesaran and Yamagata (2017) developed two innovative Wald-type tests for

alphas when N > T . Lan et al. (2018) proposed a novel technique based

on random projections to project the N -dimensional test assets into a low-

dimensional space of dimension k ≤ min {N, T}. However, these methods

assume constant alphas and betas over time and are of the sum-of-squares

type, limiting their applicability against sparse alternatives. To address the

second limitation, Ma et al. (2020) proposed the high-dimensional alpha

(HDA) test, allowing for time-varying alphas and betas and accommodat-

ing N significantly larger than T . However, the HDA test is constrained

by sparse alternatives, resolving only the first two limitations. To tackle

the third limitation, Fan et al. (2015) introduced a power enhancement

screening procedure for increased test power against sparse alternatives,

applicable to high-dimensional test assets. Feng et al. (2022) developed

a max-of-squares-type test to assess the mean-variance efficiency. Testing

based on the maximum is known to be highly effective when dealing with

sparse alternatives and can also be applied when N > T . However, these

tests assume constant alphas and betas. To summarize, while the tests pro-

posed by Fan et al. (2015) and Feng et al. (2022) can address the first and

third limitations, they are unable to overcome the second limitation. Con-
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sequently, none of the existing methods can overcome the three limitations

simultaneously. Accordingly, we propose a novel max-of-squares type test,

called the maximum conditional alpha (MCA) test, to address the three

limitations simultaneously.

The main contributions of the proposed MCA test can be summarized

as follows. First, it enables testing in a high-dimensional setting where

N > T . Second, it accommodates time-varying alphas and betas in condi-

tional multi-factor models. To estimate these time-varying factor models,

we assume that both alphas and betas are unknown smooth functions of

time t. We utilize the B-spline method to estimate the conditional al-

phas and betas. The detailed procedures for establishing the test statistics

are discussed in Section 2.3. Third, MCA is a max-of-squares-type test,

which can be applied when the alternative hypothesis is sparse. By care-

fully studying the estimation error generated from the B-spline estimation,

we theoretically demonstrate that our test converges to the type-I extreme

value distribution as min(T,N)→∞ under proper conditions. Finally, we

extend the MCA test to incorporate conditional multi-factor models with a

latent structure and establish its theoretical properties. The advantages of

the proposed test over existing methods are confirmed via simulations and

empirical applications.
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The remainder of this paper is organized as follows. Section 2 introduces

methods for estimating the conditional multi-factor model and presents the

proposed MCA test. The MCA null distribution and power properties are

also discussed in Section 2. Section 3 reports the maximum conditional

alpha test with latent factors. Section 4 presents the Monte Carlo simu-

lations performed to examine the small-sample properties of the proposed

MCA test. Finally, Section 5 provides the concluding remarks. All technical

details are presented in the Supplementary Material.

2. Maximum Conditional Alpha Test

This section includes four subsections. In Section 2.1, we introduce the con-

ditional multi-factor model and our hypotheses. In Section 2.2, we describe

the B-spline method for estimating the conditional time-varying alphas and

betas. In Section 2.3, we propose the MCA test. In Section 2.4, we study

the asymptotic power of the proposed MCA test and theoretically compare

the power of MCA with that of the HDA test proposed by Ma et al. (2020).

2.1 Conditional Multi-Factor Models and Hypotheses

We consider the following conditional multi-factor model:

Rit = αit + βββ>itft + εit = αit +
d∑
j=1

βijtfjt + εit, (2.1)
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2.1 Conditional Multi-Factor Models and Hypotheses

for i = 1, · · · , N and t = 1, · · · , T , where Rit is the excess return of test

asset i at time t, αit is the conditional alpha for test asset i at time t,

ft = (f1t, · · · , fdt)> ∈ Rd is the d × 1 observable vector of common factors

with fixed d, and βββit = (βi1t, · · · , βidt)> ∈ Rd is the d×1 vector of conditional

betas. In addition, εεε(t) = (ε1t, · · · , εNt)> ∈ RN is the idiosyncratic error

term that is independent and identically distributed with mean zero and

covariance matrix ΣΣΣ. To identify the parameters in model (2.1), following

Cai (2007), Li and Yang (2011), and Ma et al. (2020), we assume that the

conditional alphas and betas are generated from two smoothing functions

of αi (·) and β (·), that is, αit = αi (t/T ), and βijt = βij (t/T ), respectively.

To assess the performance of a conditional multi-factor model, the nat-

ural null hypothesis is that the conditional alphas for any asset i at each

time t are equal to zero; that is, H0 : αit = 0 for any i = 1, · · · , N and

t = 1, · · · , T . However, Li and Yang (2011) pointed out that this null hy-

pothesis is overly restrictive and can lead to easy rejection. Accordingly,

following Lewellen and Nagel (2006), Li and Yang (2011), Ang and Kris-

tensen (2012), and Ma et al. (2020), we test whether the average conditional

alpha for asset i across all time periods is equal to zero. In other words, the

null hypothesis can be stated as H0 : T−1
∑T

t=1 αit = 0 for any i = 1, · · · , N .

We denote the average conditional alpha and beta as αi,ACA = T−1
∑T

t=1 αit
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2.2 B-spline Estimation

and βij,ACA = T−1
∑T

t=1 βijt, respectively. Then, we can rewrite model (2.1)

as

Rit = αi,ACA + α̃i(t/T ) +
d∑
j=1

βij (t/T ) fjt + εit, (2.2)

where α̃i(t/T ) = αi(t/T )−αi,ACA. Then, the null and alternative hypothe-

ses for testing the average conditional alphas across the N test assets are,

respectively,

H0 : αi,ACA = 0, for all i = 1, · · · , N, vs. H1 : αi,ACA 6= 0, for some i = 1, · · · , N.

(2.3)

To construct the test statistic for testing (2.3), it is necessary to estimate

αi,ACA,α̃i(t/T ) and βij (t/T ) involved in model (2.2), and we discuss their

estimation procedure in detail in the next section.

2.2 B-spline Estimation

In this section, we employ the B-spline method to estimate the conditional

alphas and betas involved in model (2.2). The B-spline basis functions

are chosen because their computational efficiency and numerical stability

in finite samples are higher than those of other basic functions, such as

the truncated power series and the trigonometric series. Let 0 = ζ0 <

ζ1 < · · · < ζn < 1 = ζn+1 be a partition of [0, 1] divided into subintervals
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2.2 B-spline Estimation

Il = [ζl, ζl+1] for 0 ≤ l ≤ n− 1 and In = [ζn, ζn+1] that satisfy

max
0≤l≤n

|ζl+1 − ζl|/ min
0≤l≤n

|ζl+1 − ζl| ≤ m̃,

for some constant 0 < m̃ <∞, where {ζl}nl=1 is a sequence of interior knots,

ζ0 and ζn+1 are the two end points, and n is the number of interior knots. For

any t = 1, · · · , T , its location is defined as l (t) and satisfies ζl(t) ≤ t/T <

ζl(t)+1. Consider the space of polynomial splines of order q on [0, 1] as

B (t/T ) = {B1 (t/T ) , · · · , BL (t/T )}> ∈ RL. Then, denote the normalized

B-spline basis of this space as B̃l (t/T ) = Bl (t/T ) − T−1
∑T

t=1Bl (t/T )

and B̃ (t/T ) =
{
B̃1 (t/T ) , · · · , B̃L (t/T )

}>
∈ RL (e.g., De Boor, 1978;

Schumaker, 1981). Here, L is related to the number of interior knots n

through L = n+ q, and q is the spline degree.

According to Ma and Song (2015), Guo et al. (2017), and Ma et al.

(2020), the unknown functions α̃i (t/T ) and βij (t/T ) can be well approxi-

mated by the B-spline functions as

α̃i (t/T ) ≈ γγγ>i0B̃ (t/T ) and βij (t/T ) ≈ γγγ>ijB (t/T ) , (2.4)

for any j = 1, · · · , d, where γγγi0 ∈ RL and γγγij ∈ RL are the coefficients of

the B-spline functions. Substituting expression (2.4) into model (2.2), we

have

Rit ≈ αi,ACA + γγγ>i0B̃ (t/T ) +
d∑
j=1

γγγ>ijB (t/T ) fjt + εit, (2.5)

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0137



2.2 B-spline Estimation

and we can estimate αi,ACA, γγγi0, and γγγij by minimizing

L (αi,ACA, γγγi0, γγγij) =
N∑
i=1

T∑
t=1

{
Rit − αi,ACA − γγγ>i0B̃ (t/T )−

d∑
j=1

γγγ>ijB (t/T ) fjt

}2

.

Hereafter, we denote them as α̂i,ACA, γ̂γγi0, and γ̂γγij, respectively.

To obtain the analytical expressions of α̂i,ACA, γ̂γγi0, and γ̂γγij, we rewrite

model (2.5) in matrix form as follows:

Ri ≈ αi,ACA1T + Zγγγi + εεεi, (2.6)

where Ri = (Ri1, · · · , RiT )> ∈ RT , Z = (Z1, · · · ,ZT )> ∈ RT×(1+d)L and

Zt = (Ztk, 1 ≤ k ≤ (d+ 1)L)> =
{
B̃ (t/T )> , f>t ⊗B (t/T )>

}>
∈ R(1+d)L.

In addition, γγγ = (γγγ1, · · · , γγγN) ∈ R(1+d)L×N where γγγi =
(
γγγ>ij, 0 ≤ j ≤ d

)> ∈
R(1+d)L, and E = (εεε1, · · · , εεεN) ∈ RT×N where εεεi = (εi1, · · · , εiT )> ∈ RT .

Based on model (2.6), using the traditional OLS estimation method, we

minimize L (αi,ACA, γγγi0, γγγij) and obtain

α̂i,ACA ≈
(
1>TMZ1T

)−1
1>TMZRi and α̂αα>ACA ≈

(
1>TMZ1T

)−1
1>TMZR,

γ̂γγi =
(
Z>M1T

Z
)−1 Z>M1T

Ri and γ̂γγ =
(
Z>M1T

Z
)−1 Z>M1T

R,

where α̂ααACA = (α̂1,ACA, · · · , α̂N,ACA)> ∈ RN , R = (R1, · · · ,RN) ∈ RT×N ,

MZ = IT − Z
(
Z>Z

)−1 Z>, and M1T
= IT − 1T

(
1>T 1T

)−1
1>T , with 1T =

(1, · · · , 1)> ∈ RT being a vector of dimension T whose entries are one, and

IT being a T × T identity matrix.
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2.2 B-spline Estimation

Furthermore, the estimators of α̃i(t/T ) and βij(t/T ) are ̂̃αi(t/T ) =

γ̂γγ>i0B̃ (t/T ) and β̂ij(t/T ) = γ̂γγ>ijB (t/T ), respectively, where γ̂γγi0 and γ̂γγij are

elements of γ̂γγi. The average conditional betas over the sample β̂ij,ACA are

β̂ij,ACA =
1

T

T∑
t=1

β̂ijt =
1

T

T∑
t=1

γ̂γγ>ijB (t/T ) = γ̂γγ>ijBA,

for i = 1, · · · , N , j = 1, · · · , d. BA = 1
T

∑T
t=1 B (t/T ) ∈ RL is the average

of the B-splines.

To ensure that our proposed method is useful in practice, it is crucial

to find smoothing parameters that automatically adapt to the data both in

theory and practice. The smoothing parameter L is related to the number

of internal knots n through L = n + q, and q (q ≥ 1) is the degree of the

spline curve. Following Rice and Wu (2001), we use splines with equally

spaced knots and a fixed degree q, and only choose the internal knots n. In

this study, following Ma and Song (2015) and Ma et al. (2020), the order

of B-splines q is set at 3 for all estimation windows and only the internal

knots n are chosen. Specifically, we choose n by minimizing the Bayesian

information criterion (BIC) as follows:

BIC(n) = log

 1

NT

N∑
i=1

T∑
t=1

{
Rit − γ̂γγ>i0B̃ (t/T )−

d∑
j=1

γ̂γγ>ijB (t/T ) fjt

}2


+
logNT

NT
(n+ q)(d+ 1).

Then, the optimal number of interior knots is given by n̂ = argminn BIC(n).
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2.3 Maximum Conditional Alpha (MCA) Test and Null Distribution

2.3 Maximum Conditional Alpha (MCA) Test and Null Distri-

bution

In this section, we propose the MCA test based on the estimators of condi-

tional alphas and betas obtained from Section 2.2 and study the theoretical

properties. To achieve this goal, we first introduce some notations. The

operators
p→ and

d→ denote convergence in probability and in distribution

as (N, T ) → ∞, respectively. Let D denote the diagonal matrix of ΣΣΣ, and

let Π = (ϕij)N×N = D−1/2ΣΣΣD−1/2 denote the correlation matrix. For an

m1 ×m2 matrix A = (aij), let λmin(A) and λmax(A) denote the minimum

and maximum eigenvalues of matrix A, respectively. Moreover, we denote

‖A‖∞ = max1≤i≤m1

∑m2

j=1 |aij|. Let ‖B‖ be the spectral norm of B if B

is a matrix, and let `2 be the norm of B if B is a vector. For any two

sequences of positive numbers {an}∞n=1 and {bn}∞n=1, we write an = O(bn) if

there exists a constant C such that an/bn ≤ C for all n; we write an = o(bn)

if an/bn → 0 as n → ∞. Similarly, an = Op(bn) if an/bn is stochastically

bounded, and an = op(bn), if an/bn →p 0.

Next, we construct the test statistic. Note that for any i = 1, · · · , N ,

the traditional t-test for testing αi,ACA = 0 is

Ti =
α̂i,ACA√
̂V ar (α̂i,ACA)

=
(1>TMZ1T )1/2α̂i,ACA

σ̂
1/2
ii

,
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2.3 Maximum Conditional Alpha (MCA) Test and Null Distribution

where ̂V ar(α̂i,ACA) = (1>TMZ1T )−1σ̂ii is the variance estimate of α̂i,ACA, σ̂ii

is the i-th diagonal element of the sample variance-covariance matrix Σ̂ΣΣ =

T−1R>MZ̃R, Z̃ = (1T ,Z) ∈ RT×{(1+d)L+1}, and MZ̃ = IT − Z̃
(
Z̃>Z̃

)−1

Z̃>.

Under the null hypothesis of αi,ACA = 0, we expect Ti to be small.

Further, we observe that the testing problem (2.3) is equivalent to testing

αi,ACA = 0. Therefore, we expect Ti to be uniformly small across i =

1, · · · , N , which motivates us to construct a max-of-squares type test as

follows:

MCA = max
1≤i≤N

T2
i = max

1≤i≤N

(1>TMZ1T )α̂2
i,ACA

σ̂ii
.

Hereafter, we call this test the MCA test.

To derive the theoretical results of the proposed MCA test, we first pro-

vide some technical conditions. Let Hr denote the collection of all functions

on [0, 1] such that the q-th order derivative satisfies the Hölder condition

of order ψ with r = q + ψ. That is, there exists a constant C0 ∈ (0,∞)

such that for each φ ∈ Hr,

|φ(q)(u1)− φ(q)(u2)| ≤ C0|u1 − u2|ψ,

for any 0 ≤ u1, u2 ≤ 1. Subsequently, we assume the following:

Assumption (A.1) αi(·) ∈ Hr and βij(·) ∈ Hr for some r > 3/2.

Assumption (A.2) (i) εεε(t) is independent and identically distributed
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2.3 Maximum Conditional Alpha (MCA) Test and Null Distribution

with mean zero and a covariance matrix ΣΣΣ = (σij)N×N ; (ii) there exist two

finite constants η > 0 and K > 0 such that E {exp(ηε2
it/σii)} ≤ K holds

uniformly for t ∈ {1, · · · , T}; (iii) {εεε(t)}Tt=1 and {ft}Tt=1 are independent.

Assumption (A.3) (i) There exist constants 0 < cf < Cf < ∞ such

that

cf < λmin

{
E
{

(1, f>t )>(1, f>t )
}}
≤ λmax

{
E
{

(1, f>t )>(1, f>t )
}}

< Cf ,

holds uniformly for t ∈ {1, · · · , T}; (ii) there exist finite positive constants

a1 and b1 such that for any s > 0, max1≤j≤d P (|fjt| > s) ≤ exp {−(s/b1)a1};

(iii) the process {ft, t ≥ 1} is strong mixing with mixing coefficient α(t).

There exist positive constants a2 with 3a−1
1 + a−1

2 > 1 and Cα such that

α(t) ≤ exp(−Cαta2).

Assumption (A.4) (i) There exists a finite positive constant c0 such

that c−1
0 < λmin(ΣΣΣ) ≤ λmax(ΣΣΣ) < c0, and (ii) there exists a finite r1 > 0

such that max1≤i<j≤N | ϕij| ≤ r1 < 1.

All assumptions are mild and reasonable. Assumption (A.1) corre-

sponds to the smoothness assumption for the unknown functions, which is

widely employed in the field of nonparametric smoothing (e.g., He and Shi,

1996). Assumption (A.2) (i) implies that εit have zero means and are seri-

ally uncorrelated such that E(εitεjs) = 0 for all i, j, and t 6= s. Assumption

(A.2) (ii) assumes that εit has a sub-Gaussian-type tail. Assumption (A.2)
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2.3 Maximum Conditional Alpha (MCA) Test and Null Distribution

(iii) follows the similar assumptions (Assumption 3.1 (ii)) made in previous

studies such as Fan et al. (2015) and Assumption (A3) (iii) of Ma et al.

(2020). Assumption (A.3) (i) is a standard condition on the design matrix

for regression models, commonly known as Condition (C2) in Wang et al.

(2008). Assumptions (A.3) (ii) and (iii) are adapted from Assumptions 3.3

(ii) and 3.2 of Fan et al. (2011), ensuring weak correlation and satisfying

the strong mixing condition among the factors {f1, · · · , fT} across different

time periods. Assumption (A.4) combines Conditions 1 and 3 from Cai

et al. (2014). Specifically, Assumption (A.4) (i), which focuses on eigen-

values, is a common assumption in high-dimensional settings. Assumption

(A.4) (ii) is considered mild as it states that if max1≤i<j≤N |ϕij| = 1, then

ΣΣΣ is singular.

Based on the aforementioned assumptions, we can state the following

theorem.

Theorem 1. Suppose that Assumptions (A.1)-(A.4) hold. Assume that

LT−1/3 = o(1), L−rT 1/2 log(N) = o(1), and log(N) = o(L2/3). Under the

null hypothesis H0, for any x ∈ R and min(N, T )→∞, we have

P
[
MCA− 2 log (N) + log {log (N)} ≤ x

]
d→ exp

{
− 1√

π
exp

(
−x

2

)}
.

Following Theorem 1, when min(N, T ) → ∞, MCA − 2 log (N) +

log {log (N)} converges to the type I extreme value distribution with the
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2.4 Asymptotic Power

cumulative distribution function exp
{
− 1√

π
exp

(
−x

2

)}
. Based on this lim-

iting null distribution, with a pre-specified significance level λ, we reject the

null hypothesis when

MCA− 2 log (N) + log {log (N)} ≥ qλ,

where qλ = − log (π)−2 log
{

log (1− λ)−1} is the (1−λ)-th quantile of the

type I extreme value distribution.

2.4 Asymptotic Power

In this section, we evaluate the asymptotic power of the MCA test under

the sparse alternatives. To characterize the signals of nonzero elements in

αααACA, we introduce the set

U(c) =

{
αααACA : max

1≤i≤N
|αi,ACA/σ1/2

ii | ≥ c
√

log(N)/T

}
.

Then, we have the following result.

Theorem 2. Suppose that Assumptions (A.1)-(A.4) hold. Assume that

LT−1/3 = o(1), L−rT 1/2 log(N) = o(1), and log(N) = o(L2/3). As min(N, T )→

∞, we have

inf
αααACA∈U(2

√
2/
√
cm)

P (Ψλ = 1)→ 1,

where Ψλ = I [MCA ≥ 2 log (N)− log {log (N)}+ qλ], and cm is a constant

defined in Lemma 4 in the Supplementary Material.
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2.4 Asymptotic Power

Theorem 2 shows that the null hypothesis of (2.3) can be rejected with

the probability approaching one if αααACA belongs to the class U(2
√

2/
√
cm)

under the sparse alternative H1. The asymptotic power of Ψλ approaches

one.

In the literature, the HDA test recently proposed by Ma et al. (2020) is

also suitable for conditional factor models to allow time-varying alphas and

betas. To compare the powers of the MCA and HDA tests, we briefly review

the HDA test. Denote êit as the t-th element of MZRi. Denote t̂r(ΣΣΣ2) as

the bias-corrected estimator of tr(ΣΣΣ2) proposed by Lan et al. (2014). The

HDA test uses a sum-type test based on the residuals obtained from the

null model with the test statistic TH = Ĵ∗NT/σ̂NT , where Ĵ∗NT = JNT −

N−1T−1
∑N

i=1

∑T
t=1 ê

2
ith

2
t , JNT = N−1T−1

(
1>TMZ1T

)2
α̂αα>ACAα̂ααACA, ht = 1−

Z>t
(
Z>Z

)−1 Z>1T , and σ̂2
NT = 2N−2T−2t̂r(ΣΣΣ2)

∑
t6=s(h

2
th

2
s). To compare

the two tests, we define a set of alternative hypotheses,

S (kN , $) =
{
αααACA ∈ RN :

N∑
i=1

I(αi,ACA 6= 0) = kN ,
√

8 log(N)/(cmT )

≤ max
1≤i≤N

αi,ACA/σ
1/2
ii ≤

√
8N$/(cmT )

}
,

where we assume kN = Np with 0 ≤ p < 1/2 and $ < 1/2 − p. Then, we

have the following result.

Proposition 1. Suppose that Assumptions (A.1)-(A.4) and Condition (C1)
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in Ma et al. (2020) hold. Assume that LT−1/3 = o(1), LrT−3/2 = o(1),

L−rT 1/2N1/4 = o(1), and T−1+%N1/2+%L = O(1) for a small % > 0, and

N−1/2‖ΣΣΣ‖∞ = o(1). If αααACA ∈ S (kN , $), as min(N, T )→∞,

P (MCA ≥ 2 log (N)− log {log (N)}+ qλ)→ 1, and P
(
TH > z1−λ

)
→ λ,

where z1−λ denotes the λ-th upper quantile of a standard normal distribu-

tion.

Proposition 1 indicates that under the class of sparse alternatives S (kN , $),

the HDA test would suffer from trivial power, while the MCA test has the

full power. This result is expected since HDA is a sum-of-squares type test

based on the sum of α2
i,ACAs, which are mainly designed for dense alterna-

tives.

3. Maximum Conditional Alpha Test with Latent Factors

To establish the theoretical properties of the proposed MCA test, we assume

that the eigenvalues of ΣΣΣ are bounded from infinity. However, if the linear

pricing model fails to sufficiently explain the asset returns, we can expect

that λmax(ΣΣΣ) → ∞. This is a structure that can be easily explained if the

random noise εεε(t) admits a factor structure. That is,

εεε(t) = ΛΛΛ>Xt + εεε(t), t = 1, · · · , T, (3.1)
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where Xt = (X1t, · · · , Xvt)
> ∈ Rv is the low dimension of v unknown latent

factors with the identification restriction Cov (Xt) = Iv; ΛΛΛ = (λλλ1, · · · ,λλλN)> ∈

Rv×N are the unknown factor loadings, where λλλi = (λi1, · · · , λiv)> ∈ Rv,

and εεε(t) = (ε1t, · · · , εNt)> ∈ RN is the random noise independent of ft

and Xt. For simplicity, we assume Xt follows a multivariate normal dis-

tribution and that there are no interaction effects between the explana-

tory variables ft and the latent factors Xt. To further model the test-

specific variations, we assume that εεε(t) is normally distributed, i.e., εεε(t)
d∼

N (0,Σεεε) with Σεεε = diag(σεεε,11, · · · , σεεε,NN). Under the multi-factor error

structure of (3.1), model (2.6) can be further written as

Ri ≈ αi,ACA1T + Zγγγi + Xλλλi + εεεi, (3.2)

where X = (X1, · · · ,XT )> ∈ RT×v, εεεi = (εi1, · · · , εiT ) ∈ RT , and let εεε =

(εεε1, · · · , εεεN) ∈ RT×N . Then, we can obtain

α̂i,ACA − αi,ACA ≈
(
1>TMZ1T

)−1
1>TMZXλλλi +

(
1>TMZ1T

)−1
1>TMZεεεi, and

(α̂ααACA −αααACA)> ≈
(
1>TMZ1T

)−1
1>TMZXΛΛΛ +

(
1>TMZ1T

)−1
1>TMZεεε.

Note that
(
1>TMZ1T

)−1
1>TMZεεε follows a multivariate normal distribution,

that is, (
1>TMZ1T

)−1/2
1>TMZεεε

d∼ N (0,Σεεε) .

To test αi,ACA = 0, we first need to remove the effects of Xλλλi.
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We estimate X and ΛΛΛ using the principal component method (Wang,

2012). Specifically, we first extract the effect of observed factors ft by re-

gressing Ri on ft using the B-spline method, obtaining the residual Ê =

MZR. Next, we define µ̂e as the e-th largest eigenvalue of (TN)−1Ê Ê> and

%̂%%e as the corresponding eigenvector. Consequently, we set X̂ = T 1/2 (%̂%%1, · · · , %̂%%v̂),

and ΛΛΛ can be estimated by Λ̂ΛΛ =
(
X̂>X̂

)−1

X̂>Ê . Based on the estima-

tors Λ̂ΛΛ and X̂, we can obtain the estimated random error as ε̂εε = MX̂Ê

with MX̂ = IT − X̂
(
X̂>X̂

)−1

X̂>. Subsequently, σεεε,ii can be estimated by

σ̂εεε,ii = T−1ε̂εε>i ε̂εεi. Moreover, we define notations µ̃e, %̃%%e, Λ̃ΛΛ, X̃, and σ̃εεε,ii as the

associated estimators based on extract error E . In practice, following Wang

(2012) and Ahn and Horenstein (2013), v̂ can be selected by maximizing

the eigenvalue ratios as v̂ = argmaxe≤πmax
µ̂e/µ̂e+1 with some pre-specified

maximum possible order πmax. As v̂ = v with probability approaching unity

(Wang, 2012), we assume that v̂ = v in the following discussion.

Consequently, we define factor-adjusted test statistics as

T̃i =

(
1>TMZ1T

)1/2
α̂i,ACA −

(
1>TMZ1T

)−1/2
1>TMZX̂λ̂λλi

(σ̂ε,ii)
1/2

.

Therefore, we expect T̃i to be uniformly small across i = 1, · · · , N ,

which motivates us to construct an adjusted max-of-squares type test as
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follows:

M̃CA = max
1≤i≤N

T̃
2

i =

(
1>TMZ1T

){
α̂i,ACA −

(
1>TMZ1T

)−1
1>TMZX̂λ̂λλi

}2

σ̂ε,ii
.

To derive the theoretical results of our adjusted MCA test, we provide

some additional technical conditions.

Assumption (A.5) Assume that latent factor Xt and εεε(t) are indepen-

dent and normally distributed for t = 1, . . . , T . Additionally, Xt
d∼ N(0, Iv)

and εεε(t)
d∼ N(0, diag(σεεε,11, · · · , σεεε,NN)).

Assumption (A.6) There exists some positive definite matrix ΣΣΣΛΛΛ of

dimension v such that N−1ΛΛΛΛΛΛ> = ΣΣΣΛ + O(N−1/2), with the eigenvalues of

ΣΣΣΛ being bounded from zero to infinity. Moreover, there exists some positive

constant λmax such that maxi ‖λλλi‖2 ≤ λmax. Assume that 1
n

∑n
i=1 σεεε,ii =

σ̃εεεii +O(N−1/2).

Assumption (A.7) Let θ̃θθ = (σεεε,ii1
>
TMZ1T )−1/2MZ1T . Assume for

projection matrix P such that ‖PX−P‖ = Op(
√
L/T ), we have |θ̃θθ

>
(PX−

P)b| ≤ CP‖PX−P‖|θ̃θθ
>
PXb|, for any random vector b and some constants

CP <∞, with probability tending to 1.

Assumptions (A.5) and (A.6) can also be founded in Wang (2012).

Assumption (A.7) is a technical condition to eliminate the influence of the

factor estimation error. To illustrate this, let’s consider an example where

Assumption (A.7) holds. If P = cpPX for some constant matrix cp, then
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we have |θ̃θθ
>

(PX − P)b| = (1 − cp)|θ̃θθ
>
PXb| = ‖(1 − cp)PX‖|θ̃θθ

>
PXb|, and

the Assumption (A.7) holds with Cp = 1.

Similarly, in the MCA test, we have the following theorem:

Theorem 3. Suppose that Assumptions (A.1),(A.3), and (A.5) –(A.7)

hold. Assume that LT−1/3 = o(1), L−rT 1/2 log(N) = o(1), and log(N) =

o(L2/3). Under the null hypothesis H0, for any x ∈ R and min(N, T )→∞,

we have

P
[
M̃CA− 2 log (N) + log {log (N)} ≤ x

]
d→ exp

{
− 1√

π
exp

(
−x

2

)}
.

Compared with Theorem 1, Theorem 3 allows λmax(ΣΣΣ)→∞.

4. Simulation Studies

In this section, we employ Monte Carlo simulations to illustrate the finite

sample performance of the MCA test and compare its power enhancement

performance to that of the HDA test proposed in Ma et al. (2020). We

consider two different simulation settings. For the first setting, the error

term is cross-sectionally dependent, whereas for the second setting, we allow

higher-order spatial auto-correlation error processes.
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4.1 Two Simulation Settings

4.1 Two Simulation Settings

Example 1: We consider a modified version of the example studied in Sec-

tion 4.1 of Ma et al. (2020). Response Rit are generated from the conditional

three-factor model proposed by Fama and French (1993):

Rit = αit +
3∑
j=1

βijtfjt + εit (i = 1, · · · , N, t = 1, · · · , T ),

where f1t, f2t and f3t represent the three factors, i.e., the MKTt , SMBt

(small minus big), and HMLt (high minus low) factors, respectively. We

assume that all these factors follow AR(1)-GARCH(1,1) processes, and the

unknown coefficients for each factor are the same as those reported in Ma

et al. (2020). The data generating process is as follows:

MKTt − 0.34 = 0.05(MKTt−1 − 0.34) + g
1/2
1t ς1t,

SMBt − 0.04 = 0.07(SMBt−1 − 0.04) + g
1/2
2t ς2t,

HMLt − 0.06 = 0.04(HMLt−1 − 0.06) + g
1/2
3t ς3t,

where ςjt is independent and identically generated from a standard normal

distribution for j = 1, · · · , 3, and

g1t = 0.32 + 0.67g1t−1 + 0.13g1t−1ς
2
1t−1,

g2t = 0.33 + 0.51g2t−1 + 0.03g2t−1ς
2
2t−1,

g3t = 0.26 + 0.72g3t−1 + 0.05g3t−1ς
2
3t−1.
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4.1 Two Simulation Settings

The above processes are generated over the periods t = −24,−23, · · · ,

0, 1, · · · , T with the initial values MKT−25 = 0, SMB−25 = 0, HML−25 =

0, and gj(−25) = 1, for j = 1, · · · , 3. To offset the start-up effects, we

discard the first 25 simulated observations and use t = 1, · · · , T in this

studies. We consider that the conditional alphas and betas are driven by

the unobservable state variable ot. Let ot follow the AR(1)-ARCH(1,1)

process, that is, ot = 0.8ot−1 + ut, where ut = δt%t, %t ∼ N (0, 1), and

δ2
t = 0.1 + 0.6u2

t−1 with δ2
0 = 1. The above processes are generated over

the period t = −24,−23, · · · , 0, 1, · · · , T with o−25 = 0 and u−25 = 1.

Observations t = 1, · · · , T are used in the simulations. By definition, αit =

αi(t/T ) = αi,ACA + α̃i(t/T ) in (2.2), and we set the conditional alphas

αit = ci(1 + ot), where αi,ACA = ci and α̃i(t/T ) = ciot. Furthermore,

the conditional betas are βijt = ãj + b̃jot for i = 1, · · · , N , t = 1, · · · , T ,

and j = 1, · · · , 3, and we set (ã1, b̃1) = (0.5, 0.5), (ã2, b̃2) = (0.1, 0.5),

and (ã3, b̃3) = (0.2, 0.5). Thus, under the null hypothesis, ci = 0 for all

i = 1, · · · , N , which means that the conditional three-factor model holds.

Finally, we generate the idiosyncratic errors εεε(t) = (ε1t, · · · , εNt)> ∈

RN , according to εεε(t) = ΣΣΣ1/2ε̃εε(t), ε̃εε(t) = (ẽ1t, · · · , ẽNt)> ∈ RN , ΣΣΣ = (σij) ∈

RN×N , with σij = 0.5|i−j| for 1 ≤ i, j ≤ N , which means that the error term

is approximately irrelevant when |i− j| is sufficiently large. We consider
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three settings for ẽit: (1) Standardized normal distribution: ẽit ∼ N (0, 1);

(2) Standardized exponential distribution: ẽit ∼ exp(1); (3) Mixture distri-

bution: ẽit ∼ 0.9N (0, 1) + 0.1N (0, 9).

Example 2: The second experiment contains higher-order spatial auto-

correlation error processes. The settings of this experiment are the same as

those in Example 1, except ΣΣΣ. Following Fan et al. (2015), we start with

ΣΣΣ1 = diag
{

Σ1,1, · · · ,Σ1,N/4

}
being a block-diagonal correlation matrix with

4× 4 blocks located along the main diagonal, and each diagonal block Σ1,j

for j = 1, · · · , N/4 is assumed to be I4 initially. We then randomly choose

[N0.3] blocks among them and make them nondiagonal by setting the (l, k)-

th element of Σ1,j as 0.2|l−k| for 1 ≤ l, k ≤ 4. Here, [·] denotes the integer

part of a real number. To allow for error cross-sectional heteroskedasticity,

we set ΣΣΣ = ΣΣΣ
1/2
0 ΣΣΣ1ΣΣΣ

1/2
0 , where ΣΣΣ0 = diag {σ2

1, · · · , σ2
N} and σi ∼ U(1, 1.5)

for i = 1, . . . , N .

4.2 Simulation Results

To evaluate the empirical size and power of the proposed MCA test in the

two examples mentioned above, we conduct simulations with varying num-

bers of observations (T = 120, 240, 360) and test assets (N = 50, 100, 200,

500). Further, the error terms are generated from the three aforementioned
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distributions (i.e., normal, exponential, and mixture distributions). For

each setting, we use the BIC detailed in Section 2.2 to select the interior

knots n, and the order of B-splines q is set to three for all the estimation

windows. All simulations compare the actual rejection rates over 1,000 re-

alizations with a nominal level of 5%. For comparison purposes, we also

include the results of the HDA test. We set ci = 0 for all i = 1, · · · , N

to evaluate the empirical size of the MCA and HDA tests. To assess the

empirical powers of the MCA and HDA tests, we set ci = c =
√

2 log(N)
Tp

for

i ∈ S ⊆ {1, · · · , N} with |S| = [Np], where each element in S is uniformly

and randomly drawn from {1, · · · , N}, and we consider three specific al-

ternatives. The first case involves a dense alternative with p = 1. In this

case, all αi,ACAs are non-zero, but their magnitudes are significantly small.

The second case is the medium dense alternative, where we set two different

signal strengths as p = 0.8 and 0.6. In this case, there are still some non-

vanishing αI,ACAs with relatively small magnitudes. For example, when

N = 500, the proportions of non-zero alphas are 8.3% and 28.9%, respec-

tively. The third case is the sparse alternative, where we set two different

signal strengths as p = 0.4 and 0.2. In this case, there are only a few non-

zero αi,ACAs with relatively large magnitudes. For example, when N = 500,

the proportions of non-zero alphas are 2.4% and 0.7%, respectively. In all
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Table 1: Size and power of MCA and HDA tests from Examples 1 and 2

with normal distribution errors.

size
power(dense) power(medium dense) power(sparse)

p=1 p=0.8 p=0.6 p=0.4 p=0.2

T N MCA HDA MCA HDA MCA HDA MCA HDA MCA HDA MCA HDA

Example 1

120 50 0.059 0.064 0.793 0.813 0.802 0.791 0.823 0.688 0.844 0.561 0.917 0.472

100 0.052 0.059 0.869 0.877 0.856 0.823 0.89 0.685 0.866 0.416 0.947 0.436

200 0.058 0.056 0.913 0.909 0.893 0.815 0.88 0.637 0.894 0.35 0.941 0.226

500 0.061 0.06 0.946 0.942 0.927 0.849 0.923 0.582 0.924 0.192 0.943 0.096

240 50 0.047 0.044 0.765 0.84 0.729 0.708 0.779 0.513 0.849 0.493 0.934 0.363

100 0.052 0.049 0.85 0.913 0.844 0.818 0.85 0.652 0.881 0.339 0.968 0.358

200 0.053 0.057 0.886 0.924 0.892 0.864 0.893 0.577 0.91 0.23 0.963 0.147

500 0.047 0.047 0.926 0.951 0.95 0.89 0.927 0.482 0.933 0.128 0.972 0.071

360 50 0.048 0.046 0.763 0.858 0.752 0.767 0.776 0.566 0.84 0.441 0.946 0.289

100 0.05 0.045 0.84 0.895 0.821 0.795 0.848 0.599 0.891 0.285 0.975 0.276

200 0.047 0.043 0.867 0.926 0.891 0.84 0.909 0.508 0.928 0.19 0.977 0.121

500 0.051 0.05 0.924 0.967 0.937 0.889 0.941 0.446 0.954 0.137 0.993 0.066

Example 2

120 50 0.058 0.063 0.767 0.786 0.759 0.744 0.712 0.61 0.764 0.513 0.852 0.424

100 0.059 0.064 0.808 0.833 0.844 0.829 0.836 0.688 0.834 0.44 0.896 0.421

200 0.061 0.062 0.897 0.9 0.893 0.848 0.871 0.621 0.847 0.308 0.912 0.238

500 0.062 0.06 0.938 0.944 0.922 0.863 0.915 0.575 0.913 0.222 0.902 0.104

240 50 0.056 0.059 0.713 0.809 0.762 0.819 0.709 0.58 0.773 0.486 0.877 0.365

100 0.061 0.05 0.818 0.906 0.796 0.811 0.798 0.602 0.833 0.352 0.929 0.314

200 0.059 0.041 0.863 0.912 0.86 0.821 0.846 0.527 0.874 0.226 0.921 0.153

500 0.053 0.054 0.921 0.951 0.913 0.862 0.906 0.504 0.909 0.139 0.944 0.077

360 50 0.049 0.047 0.692 0.794 0.713 0.783 0.709 0.587 0.767 0.433 0.89 0.341

100 0.052 0.042 0.795 0.892 0.795 0.837 0.796 0.558 0.836 0.284 0.944 0.29

200 0.054 0.047 0.85 0.926 0.87 0.867 0.86 0.545 0.884 0.182 0.963 0.121

500 0.055 0.048 0.93 0.948 0.92 0.881 0.913 0.418 0.915 0.117 0.959 0.06

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0137



4.2 Simulation Results

of these cases, we set the remaining ci = 0 for i /∈ S. Tables 1–3 present

the sizes and powers of the MCA and HDA tests with normal, exponential,

and mixture distribution errors, respectively.

Table 1 provides the MCA and HDA test results for Examples 1 and 2

with normal distribution errors, revealing the following findings. First, the

sizes of the MCA and HDA tests are well, regardless of T and N for the two

examples. Second, regarding the power performance, under the dense cases,

the HDA tests slightly outperforms the MCA test. This result is expected

as HDA is mainly designed for dense alternatives. However, in this setting,

we still find that the performance of MCA is satisfactory and comparable

with that of HDA. This is not the case for sparse alternatives. Specifically,

under the medium dense cases, MCA is slightly superior to HDA. Under the

sparse cases, MCA is greatly superior to HDA, and the HDA test performs

poorly, especially when N and T are large. For example, when N = 500,

T = 360, and p = 0.2, the power of the MCA test is 0.993 in Example 1,

whereas that of the HDA test is only 0.066; the proposed MCA test power

is approximately 15 times that of the HDA test. Moreover, when the error

term follows exponential and mixture distributions, the simulation results

reported in Tables 2 and 3, respectively, are quantitatively similar to the

results in Table 1 for a normal distribution. These results imply that the
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4.2 Simulation Results

Table 2: Size and power of MCA and HDA tests from Examples 1 and 2

with exponential distribution errors.

size
power(dense) power(medium dense) power(sparse)

p=1 p=0.8 p=0.6 p=0.4 p=0.2

T N MCA HDA MCA HDA MCA HDA MCA HDA MCA HDA MCA HDA

Example 1

120 50 0.055 0.051 0.795 0.812 0.829 0.791 0.824 0.622 0.858 0.548 0.925 0.418

100 0.053 0.059 0.859 0.859 0.878 0.833 0.853 0.671 0.875 0.435 0.944 0.46

200 0.062 0.056 0.896 0.903 0.922 0.862 0.913 0.687 0.92 0.342 0.936 0.208

500 0.061 0.064 0.927 0.936 0.931 0.86 0.916 0.567 0.924 0.225 0.949 0.102

240 50 0.053 0.05 0.749 0.829 0.793 0.796 0.8 0.632 0.872 0.458 0.934 0.351

100 0.048 0.045 0.844 0.887 0.836 0.816 0.876 0.638 0.892 0.316 0.967 0.349

200 0.051 0.046 0.869 0.917 0.905 0.866 0.889 0.507 0.924 0.228 0.968 0.136

500 0.049 0.047 0.928 0.957 0.925 0.883 0.94 0.483 0.945 0.154 0.976 0.078

360 50 0.051 0.051 0.737 0.819 0.753 0.709 0.833 0.616 0.845 0.41 0.948 0.308

100 0.045 0.049 0.832 0.9 0.809 0.766 0.861 0.609 0.906 0.286 0.972 0.253

200 0.048 0.054 0.859 0.913 0.89 0.845 0.91 0.544 0.932 0.177 0.975 0.116

500 0.042 0.045 0.937 0.968 0.927 0.882 0.93 0.438 0.958 0.116 0.987 0.079

Example 2

120 50 0.06 0.054 0.797 0.826 0.778 0.752 0.755 0.586 0.838 0.55 0.868 0.405

100 0.048 0.061 0.852 0.849 0.857 0.793 0.842 0.641 0.82 0.296 0.914 0.393

200 0.053 0.051 0.901 0.911 0.898 0.832 0.897 0.604 0.873 0.325 0.918 0.209

500 0.058 0.056 0.93 0.921 0.926 0.855 0.913 0.505 0.902 0.208 0.937 0.093

240 50 0.052 0.045 0.72 0.79 0.747 0.779 0.728 0.506 0.817 0.476 0.885 0.339

100 0.046 0.05 0.812 0.873 0.832 0.817 0.841 0.621 0.852 0.295 0.931 0.325

200 0.052 0.047 0.89 0.935 0.866 0.837 0.864 0.566 0.869 0.207 0.947 0.142

500 0.05 0.053 0.915 0.946 0.927 0.867 0.916 0.47 0.92 0.13 0.954 0.07

360 50 0.051 0.044 0.719 0.825 0.742 0.765 0.743 0.614 0.782 0.43 0.896 0.291

100 0.046 0.058 0.777 0.857 0.784 0.766 0.82 0.584 0.837 0.245 0.954 0.273

200 0.053 0.047 0.864 0.915 0.849 0.845 0.86 0.504 0.899 0.161 0.957 0.109

500 0.046 0.04 0.906 0.954 0.925 0.878 0.925 0.41 0.925 0.104 0.962 0.069
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4.2 Simulation Results

Table 3: Size and power of MCA and HDA tests from Examples 1 and 2

with mixture distribution errors.

size
power(dense) power(medium dense) power(sparse)

p=1 p=0.8 p=0.6 p=0.4 p=0.2

T N MCA HDA MCA HDA MCA HDA MCA HDA MCA HDA MCA HDA

Example 1

120 50 0.055 0.055 0.805 0.838 0.796 0.763 0.803 0.684 0.852 0.547 0.907 0.477

100 0.051 0.051 0.856 0.874 0.863 0.828 0.88 0.685 0.894 0.446 0.942 0.464

200 0.056 0.053 0.904 0.916 0.89 0.829 0.898 0.653 0.909 0.363 0.934 0.207

500 0.055 0.065 0.934 0.943 0.938 0.862 0.936 0.584 0.926 0.212 0.946 0.088

240 50 0.054 0.05 0.768 0.846 0.82 0.834 0.785 0.568 0.863 0.478 0.942 0.38

100 0.05 0.047 0.827 0.887 0.838 0.788 0.873 0.673 0.893 0.348 0.959 0.355

200 0.049 0.056 0.89 0.937 0.899 0.868 0.912 0.576 0.918 0.26 0.974 0.161

500 0.051 0.045 0.921 0.94 0.922 0.847 0.927 0.485 0.948 0.156 0.978 0.083

360 50 0.046 0.049 0.758 0.866 0.745 0.692 0.798 0.55 0.869 0.475 0.937 0.316

100 0.049 0.05 0.815 0.865 0.862 0.835 0.874 0.65 0.907 0.304 0.971 0.296

200 0.051 0.047 0.881 0.942 0.891 0.869 0.914 0.56 0.945 0.184 0.991 0.145

500 0.05 0.051 0.933 0.959 0.918 0.866 0.942 0.427 0.961 0.132 0.984 0.072

Example 2

120 50 0.045 0.053 0.787 0.819 0.773 0.77 0.765 0.643 0.796 0.557 0.86 0.469

100 0.05 0.048 0.866 0.889 0.821 0.811 0.836 0.676 0.829 0.41 0.914 0.435

200 0.056 0.062 0.901 0.917 0.903 0.852 0.857 0.654 0.88 0.38 0.915 0.229

500 0.062 0.059 0.944 0.933 0.93 0.852 0.902 0.559 0.917 0.207 0.915 0.092

240 50 0.049 0.045 0.731 0.824 0.749 0.785 0.744 0.643 0.79 0.497 0.888 0.366

100 0.055 0.045 0.837 0.904 0.841 0.839 0.81 0.588 0.852 0.352 0.953 0.321

200 0.048 0.049 0.904 0.941 0.878 0.838 0.864 0.565 0.88 0.237 0.943 0.14

500 0.052 0.053 0.927 0.95 0.927 0.867 0.905 0.45 0.921 0.141 0.946 0.075

360 50 0.052 0.055 0.692 0.791 0.703 0.744 0.712 0.506 0.789 0.44 0.905 0.363

100 0.041 0.046 0.805 0.883 0.811 0.82 0.801 0.557 0.838 0.311 0.952 0.317

200 0.052 0.051 0.874 0.93 0.875 0.832 0.869 0.529 0.887 0.179 0.959 0.118

500 0.052 0.044 0.923 0.96 0.92 0.876 0.918 0.399 0.945 0.108 0.966 0.066
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sizes of both the MCA and HDA tests are satisfactory; however, the MCA

test is superior to the HDA test for sparse alternatives and comparable with

the HDA test for dense alternatives. In summary, MCA is superior to HDA

for the two examples presented here, and the results are robust to different

error specifications.

Additionally, we conducted experiments to illustrate the finite sample

performance of the proposed test under conditional multi-factor models

with latent factors. The experimental results are summarized in Appendix

S8, which show that the empirical size and power performances of the pro-

posed adjusted MCA test are stable.

5. Conclusion

This paper addressed the problem of testing for the presence of alpha in con-

ditional time-varying multi-factor models. We have introduced the MCA

test as a novel approach, specifically designed for situations where the num-

ber of test assets N is significantly larger than the number of observations

T and the alternative hypothesis is sparse. The theoretical analysis demon-

strated that the convergence of the proposed test to the Type-I extreme

value distribution as min(T,N) → ∞ under appropriate conditions. Fur-

thermore, we extended the MCA test to incorporate unobservable latent
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factors in conditional pricing models. The simulation results and real data

analysis confirmed the satisfactory finite sample performance of the pro-

posed test.

The results and findings of this study suggest two possible avenues for

future research. First, extending the proposed testing procedure to en-

compass nonparametric pricing models would enhance its applicability and

provide a more comprehensive analysis of asset pricing. Second, addressing

the issue of missing observations in the proposed method would improve

its robustness and practical utility. This avenue could build upon existing

work in the literature, such as the studies by Giglio et al. (2021) and Jin

et al. (2021), which have discussed the implications of missing data in fac-

tor models. We believe that these efforts would considerably broaden the

applicability of MCA.

Supplementary Material

The Supplementary Material consists of ten parts (Sections S1–S10). Sec-

tion S1 provides eight useful lemmas, Section S2 provides the proof of The-

orem 1, Section S3 provides the proof of Theorem 2, Section S4 provides the

proof of Proposition 1, Section S5 provides the proof of Theorem 3, Section

S6 describes the test portfolios, Section S7 presents the empirical evidence
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of the time-varying coefficients and sparse alternatives based on real data,

Section S8 reports the simulation results of conditional multi-factor models

with latent factors, Section S9 reports the simulation results of the MAX

test proposed by Feng et al. (2022), and Section S10 provides the simulation

results for a student-t distribution error.
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