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Though introduced nearly 50 years ago, the infinitesimal jackknife (IJ) re-

mains a popular modern tool for quantifying predictive uncertainty in complex

estimation settings. In particular, when supervised learning ensembles are con-

structed via bootstrap samples, recent work demonstrated that the IJ estimate

of variance is particularly convenient and useful. However, despite the algebraic

simplicity of its final form, its derivation is rather complex. As a result, studies

clarifying the intuition behind the estimator or rigorously investigating its prop-

erties have been severely lacking. This work aims to take a step forward on both

fronts. We demonstrate that surprisingly, the exact form of the IJ estimator can

be obtained via a straightforward linear regression of the individual bootstrap

estimates on their respective weights or via the classical jackknife. The latter

realization allows us to formally investigate the bias of the IJ variance estimator

and better characterize the settings in which its use is appropriate. Finally, we

extend these results to the case of U-statistics where base models are constructed

via subsampling rather than bootstrapping and provide a consistent estimate of

the resulting variance.
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1. Introduction

Given a sample X1, ..., Xn ∼ P, a parameter of interest θ, and an estimator

θ̂ = s(X1, ..., Xn), it is often of interest to estimate Var(θ̂). Given data

x = (x1, ..., xn) and an estimate θ̂ = s(x), to provide a bootstrap estimate

of variance, we draw B (re)samples of size n with replacement to form

bootstrap samples x∗1, ...,x
∗
B from which we calculate bootstrap estimates

θ̂1, ..., θ̂B. The nonparametric bootstrap variance estimate of θ̂ is then taken

as the empirical variance of θ̂1, ..., θ̂B (Efron, 1979, 2014). Within this con-

text, given the necessity of calculating θ̂1, ..., θ̂B, it is natural to consider

the estimator θ̃B = 1
B

∑B
b=1 θ̂b as a “bootstrap smoothed” or “bagged” al-

ternative of θ̂ (Efron and Tibshirani, 1994; Breiman, 1996).

The standard bootstrap approach to assess the variability of θ̃B is com-

putationally burdensome, requiring bootstrap replicates of not only the

original data, but of the bootstrap samples as well. This double bootstrap

(Beran, 1988), is especially costly whenever the original statistic s is com-

putationally costly. A variety of approaches have been suggested to reduce

the computational burden of these sorts of problems. Some of these (White,

2000; Davidson and MacKinnon, 2000, 2002, 2007; Giacomini et al., 2013;

Chang and Hall, 2015) employ what is now referred to as the fast double

bootstrap whereby only a single second-level bootstrap sample is collected.
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Sexton and Laake (2009) propose an alternative nonparametric means by

which Var(θ̃B) may be estimated, suggesting also that the number of second-

level bootstrap replicates B
′
may be small. In lieu of full bootstrap samples,

subsampling, or m-out-of-n bootstrap sampling, was proposed by Politis

and Romano (1994) and Bickel et al. (1997). More recently, Sengupta et al.

(2016) proposed a combination of these approaches, first subsampling and

then employing a single second-level resample. Similarly, Kleiner et al.

(2014) proposed the bag of little bootstraps which involves splitting the

original dataset into a number of subsamples and then taking bootstrap

samples on each subset.

Though the above approaches can reduce the computational complex-

ity, each nonetheless involves further resampling. Recently, Efron (2014)

alleviated this issue by developing an algebraically compact, closed-form

estimator for the variance of a bagged estimate. Instead of additional re-

sampling, Efron’s proposal required only additional bookkeeping to recall

which samples in the original data appeared how many times in each boot-

strap sample. This development has proved especially helpful for estimating

the variance in predictions generated via supervised learning ensembles like

random forests (Wager et al., 2014; Wager and Athey, 2018; Zhou et al.,

2021).
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Though its form is algebraically simple, Efron’s variance estimator can

appear somewhat mysterious. Its development comes from an application

of the original theory for the infinitesimal jackknife (IJ) involving functional

derivatives. Likely as a result, studies investigating its statistical properties

as well as the contexts in which the estimator would be appropriate are

lacking. Efron, for example, notes that the appropriateness of his nonpara-

metric delta method (IJ) approach follows from the fact that the bagged

estimates represent a more smooth function of the data. Thus, while clearly

a significant result, these estimates would not necessarily apply in other re-

sampling schemes without smoothness guarantees.

Here we take a step forward both in better understanding the intuition

behind this important estimator as well as in understanding its statistical

properties. In addition to the IJ derivation utilized by Efron, we consider

two alternative approaches that are more straightforward and easily mo-

tivated. The first exploits the important fact that conditional on the ob-

served data, the bagged estimate depends only on the resampling weights.

We consider a linear approximation to this function of bootstrap weights

(i.e. standard linear regression) and demonstrate that this approach exactly

reproduces the infinitesimal jackknife results given in Efron (2014) when-

ever all bootstrap samples are employed. As an additional benefit, this
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setup motivates a more general procedure for estimating the variance of

any resampled estimate.

In addition to the linear regression and IJ approaches, we also consider

a classical jackknife motivation and again demonstrate its equivalence in

the full bootstrap context. This alternative representation of the estima-

tor allows us to explore its asymptotic properties and in particular, the

bias. While the variance estimators motivated by the jackknife, infinites-

imal jackknife, and linear regression approaches are shown to be identical

when all bootstrap samples are used, they differ in practical settings when

only a randomly selected subsample are employed, suggesting different bias

corrections that might be imposed.

Finally, we derive the form of the IJ variance estimate in the U-statistic

regime and discover that the variance estimators commonly employed in

practice are actually a sort of “pseudo” infinitesimal jackknife in that they

are a linear approximation but differ from the form derived directly from the

definition. We then investigate the properties of the pseudo infinitesimal

jackknife and provide a consistent estimate of the variance of (generalized)

U-statistics.

The remainder this paper proceeds as follows. In Section 2, we provide

the background and historical motivation for the IJ method. In Section 3,
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in addition to Efron’s recent derivation in Efron (2014), we provide three

alternative approaches for obtaining variance estimates for any bootstrap

smoothed statistic, examine their bias, and demonstrate their equivalence

when all bootstrap samples are employed. Finally, in Section 4, we derive

the IJ estimator for the variance of (generalized) U-statistics and discuss

its consistency. These results provide formal guarantees for the validity

of confidence intervals constructed on such estimators in settings where

not all subsamples are employed, and therefore apply directly to the kinds

of modern supervised learning ensembles like random forests commonly

employed in practice.

2. Background of the Infinitesimal Jackknife (IJ)

Let Dn denote a sample of observed values from real-valued random vari-

ables X1, . . . , Xn that are i.i.d. from a distribution P. In practice, we are

often interested in estimating statistical functionals – functions of the under-

lying distribution P, often estimated via the empirical distribution Pn. As-

sume that s is permutation symmetric in these n arguments and denote this

statistic as s(X1, . . . , Xn) = f(Pn). These “functions of functions” were first

introduced by Volterra (1887) and today are a familiar topic of advanced

analysis. Any statistic that treats the samples equivalently can also be

viewed as a function of Pn, albeit without always necessarily having an ex-
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plicit form of f . We can further extend the domain of f to any non-negative

functions on X1, . . . , Xn by defining f(Pn) = f(c · Pn), for any c > 0.

A common task, especially in today’s big data era, is to find an appro-

priate and feasible means of estimating the variance of f(Pn). Historically,

there have been three primary methods: the infinitesimal jackknife (Miller,

1974), influence curves (Hampel, 1974; Huber et al., 1972), and the delta

method (Efron, 1982). Though each method was motivated differently,

Efron (1981) pointed out that the three methods are identical. We thus

refer to the common estimator as IJ, which is defined as

IJ =
1

n2

∑
i

D2
i , (2.1)

where

Di = lim
ε→0

f((1− ε)Pn + εδXi
)− f(Pn)

ε
(2.2)

and δx is the Dirac delta function.

We now briefly review the original derivation of the IJ, following closely

to the original constructions given by Mises (1947) and Jaeckel (1972). Let

P be the set of all linear combinations of P and an arbitrary finite number of

the δx measures. Let P+ be the set of positive measures in P , not including

the zero measures and assume f is defined for the probability measures in

P+. As above, extend f to all of P+ by letting f(c · Q) = f(Q) for all
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c > 0. Note that P+ is convex and includes Pn. We say f is differentiable

at G in P+, if there exists a function f ′(G, x), defined at all x in R, with

the following property:

Definition 1 ( Jaeckel (1972)). Let H be any member of P such that G+tH

is in P+ for all t in some interval 0 ≤ t ≤ tH, tH > 0, so that f(G + tH) is

defined for t in this interval. Then for any such H, f ′(G, x) satisfies

df(G + tH)

dt
|t=0 := lim

t→0

f(G + tH)− f(G)

t
=

∫
f ′(G, x) dH(x). (2.3)

If H = G, we see that
∫
f ′(G, x) dG(x) = 0 since f(cG) = f(G). On

the other hand, if H = δx −G, we find

lim
t→0

f((1− t)G + tδx)− f(G)

t
=

∫
f ′(G, x) d(δx −G)(x) = f ′(G, x). (2.4)

Indeed, Hampel (1974) defined f ′(G, x) by (2.4) and called it the “influence

curve”, since it reflects the influence of f by adding a small mass on G at x.

Additionally, the derivative of f(G + tH) at arbitrary t0 with 0 < t0 < tH

is given by

df(G + tH)

dt
|t=t0 =

df(G + t0H + uH)

du
|u=0 =

∫
f ′(G + t0H, x) dH(x). (2.5)

Now assume that f is differentiable (in the sense defined above) at all G

in some convex neighbor of P in P+ such that Pn lies in the neighborhood
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with probability approaching one. We now describe the motivation for

addressing when the IJ estimator might provide a sensible estimate of the

variance of f(Pn). Parameterizing the segment from P to Pn by P(t) =

P + t(Pn − P) for 0 ≤ t ≤ 1, we have that if Pn lies in the neighborhood of

P, then

f(Pn)− f(P) = f(P(1))− f(P(0))

=
df(P(c))

dt
|t=c

=

∫
f ′(P(c)) d(Pn − P) (by (2.5))

(2.6)

for some c in [0, 1], where the second equality above is due to the mean

value theorem. Now, for large n, Pn is near P and one would expect that

f ′(P(c)) is close to f ′(P) in such a way that

f(Pn)− f(P) =

∫
f ′(P, x) d(Pn − P)(x) + op

(
1/
√
n
)

=
1

n

∑
i

f ′(P, Xi) + op
(
1/
√
n
) (2.7)

where the last equality is due to the fact that
∫
f ′(P, x) dP(x) = 0. We

hope that f(Pn) − f(P) is dominated by the first term, so that the re-

mainder is op (1/
√
n). Since this first term is a sum of i.i.d. random vari-

ables,
√
n(f(Pn) − f(P)) is asymptotic normal with mean 0 and variance

V =
∫

[f ′(P, x)]2 dP(x). Since P is unknown and f ′(P, x) depends on both

f and P, we generally will not know f ′(P, x) in advance, and so we could
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estimate V by

V =

∫
[f ′(P, x)]2 dP(x) ≈

∫
f
′2(Pn, x) dPn(x) =

1

n

∑
i

[f ′(Pn, Xi)]
2. (2.8)

Then Var(f(Pn)) can be estimated by n−2
∑

[f ′(Pn, Xi)]
2, which corre-

sponds to the definition of the IJ estimator given in (2.1) with Di =

f(Pn, Xi). In summary, to obtain the final estimate of the variance of

f(Pn), we need to introduce two steps of approximation. First, in (2.7),

we approximate f(Pn) with a linear statistic at Pn. Then, in (2.8), we

approximate P with Pn and f ′(P) with f ′(Pn). Thus, in evaluating the

quality of the IJ estimator, we must determine (i) whether f is close to

a linear statistic and (ii) whether f ′(Pn) is close to f ′(P). The following

sections provide in-depth investigations into these issues for popular types

of statistics formed by resampling.

3. Infinitesimal Jackknife for Bootstrap (IJB)

We now focus on the bootstrap setting where the infinitesimal jackknife

has seen the most success as a method for estimating variance. Suppose

that s(X1, ..., Xn) is statistic, not necessarily a function of Pn, and we take

all possible bootstrap samples (X∗1 , ..., X
∗
n), plug each into s to obtain a

corresponding bootstrap replication s∗, and then take the average. We

call the new statistic the bootstrap smoothed (bagged) alternative of s
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3.1 Three Approaches for Variance Estimation

and denote it as E∗[s∗], where E∗[·] denotes the expectation taken over the

bootstrap sampling procedure conditional on the data. Note that E∗[s∗] is

now a function of Pn. The dependence of f on Pn can be expressed explicitly

as

f(Pn) =

∫
· · ·
∫
s dPn × · · · × dPn =

∫
s [d(Pn)]n. (3.1)

According to Eq. (2.4), we have

f ′(Pn, x) = n

(∫
s(x, x2, . . . , xn) dPn(x2)× · · · × dPn(xn)− f(Pn)

)
= n

(∫
s(x, · · · ) [dPn]n−1 −

∫
s [d(Pn)]n

) (3.2)

and

f ′(P, x) = n

(∫
s(x, x2, . . . , xn) dP(x2)× · · · × dP(xn)− f(P)

)
= n

(∫
s(x, . . . ) [dP]n−1 −

∫
s [dP]n

)
.

(3.3)

By the Glivenko-Cantelli theorem, supx |Pn(x) − P(x)| a.s.−−→ 0. Though

the distance between Pn and P is small as n increases, f ′(Pn, x) does not

necessarily converge to f ′(P, x) since Pn appears as the differential [dPn]n

a total of n times rather than a constant number of times.

3.1 Three Approaches for Variance Estimation

We turn now to the question of how to derive an estimator for Var(E∗[s∗]).

In the following subsections, we lay out three different approaches, including
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3.1 Three Approaches for Variance Estimation

the Efron’s infinitesimal jackknife formulation and ultimately demonstrate

that all three are equivalent when all bootstrap samples are utilized.

Method 1: The Infinitesimal Jackknife Approach:

Since E∗[s∗] can be viewed as a function of Pn, estimating Var(E∗[s∗]) =

Var(f(Pn)) is a standard problem for the infinitesimal jackknife method and

we denote the estimator IJB. From the definition of E∗[s∗], we have

f((1− ε)Pn + εδXi
)

= n−n
∑ s(X∗1 , . . . , X

∗
n)n!

(w∗1!)(w
∗
2!) . . . (w

∗
n!)

[
(1− ε)

∑
k 6=i w

∗
k(1 + (n− 1)ε)w

∗
i
]

= n−n
∑ s(X∗1 , . . . , X

∗
n)n!

(w∗1!)(w
∗
2!) . . . (w

∗
n!)

[1 + nε(w∗i − 1)] + o(ε2)

= f(Pn) + εnCov∗(s
∗, w∗i ) + o(ε2),

where w∗i = #{j : X∗j = Xi}. By Eq. (2.2), Di = nCov∗(s
∗, w∗i ) = nCovi

and thus

IJB =
∑
i

Cov2
i =

∑
i

Cov2
∗(s
∗, w∗i ). (3.4)

The estimator in (3.4) was first derived by Efron (2014) as a straight-

forward application of (2.1) and (2.2). Nonetheless, Cov2
i may seem a bit

abstract and this work did not discuss how well the estimator might be

expected to perform in various settings. However, if we go back to the orig-

inal idea of infinitesimal jackknife given in Section 2, we can see that Cov2
i

is identical to f ′(Pn, Xi) in (3.2), which simply comes from the approxima-
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3.1 Three Approaches for Variance Estimation

tions of 1
n

∑
i f
′(P, Xi) to f(Pn) and f ′(Pn, x) to f ′(P, x), and thus, how

well the estimator performs in practice depends entirely on the accuracy of

the approximations.

Method 2: The Jackknife Approach:

We now propose an estimator for Var(E∗[s∗]) motivated by the classical

jackknife procedure. Let Dn[i] denote the dataset remaining after deletion

of the ith sample,

Dn[i] = (X1, . . . , Xi−1, Xi+1, . . . , Xn)

and let t(Dn[i]), assumed to be well defined, denote the corresponding

deleted point value of the statistic of interest, called the ith jackknife repli-

cate. Letting t denote E∗[s∗], the jackknife estimate of variance is then

defined as

n− 1

n

∑
(t(Dn[i])− t̄)2 (3.5)

where t̄ is the mean of t(Dn[1]), . . . , t(Dn[n]). This estimate in (3.5) is

referred to as the Jackknife-After-Bootstrap (JAB) introduced by Efron

(1992). These n jackknife replicates t(Dn[1]), . . . , t(Dn[n]) can be thought

of as approximations to t(Dn) and thus it is therefore natural to use their

sample variance to estimate the variance of t(Dn), scaled by a factor of n
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3.1 Three Approaches for Variance Estimation

to account for their correlation. Note that

t(Dn[i]) =

∫
sn−1(x1, xi−1, xi+1, . . . , xn) dPn(x1) · · ·Pn(xi−1)×Pn(xi+1) · · ·Pn(xn)

where sn−1(·) is the version of s with n − 1 arguments. Now suppose that

we consider fixing the ith position rather than deleting the ith sample. We

would thus replace t(Dn[i]) by t(i,j) where

t(i,j) =

∫
s(x1, x2, . . . , xi−1, Xj, xi+1, . . . , xn)

dPn(x1) · · ·Pn(xi−1)× Pn(xi+1) · · ·Pn(xn).

Since s is permutation symmetric, t(i,j) is independent of i and so t(1,j) =

t(i,j) for all i. In the end, we still obtain n values t(1,1), . . . , t(1,n) just as

with the traditional JAB. We can therefore make use of those values and

consider

JK]
B =

∑
j

(t(1,j) − t̄)2 =
∑
j

(ej − s0)2 (3.6)

as an estimate of the variance of E∗[s∗], where t̄ is the mean of t(1,1), . . . , t(1,n).

Note that the goal here is to follow in the footsteps of the classical idea of the

jackknife, but with a twist in the terms of the JAB to arrive at an estima-

tor for Var(E∗[s∗]). An example may help in understanding the connection

between JAB and JKB. Let sn−1 denote a decision tree built with n − 1

i.i.d. samples and similarly define sn to be a decision tree built with n i.i.d.

samples. Now, t(Dn[j]) will be the average of all decision trees constructed
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3.1 Three Approaches for Variance Estimation

with n−1 samples randomly selected from (X1, . . . , Xj−1, Xj, . . . , Xn) (with

replacement) and t(1,j) will be the average of all decision trees constructed

with n samples, with the first sample held fixed at Xj and with the rest

randomly selected from (X1, . . . , Xn) (with replacement). The first type of

bagging keeps Xj out of picture, giving it 0 probability to be selected into

training and thus giving more weights to other samples, while the second

gives Xj more weight and thereby reduces those of others. Both can be

viewed as a variant of the version of bagging utilizing all bootstrap samples

from X1, . . . , Xn, the variance of which is what we are seeking to estimate.

In the interest of completeness, we will later compare the JAB with the

three other proposed methods in a small simulation study.

Method 3: The OLS Linear Regression Approach:

Recall that in a standard bootstrap procedure, B resamples of size n

are sampled uniformly at random (with replacement) from the rows of Dn.

Each observation in the original dataset receives equal weight and so we

can write that weight vector as w∗ ∼ Multinomial( 1
n
, . . . , 1

n
). Now realize

that conditional on the original data Dn, each bootstrap estimate s∗ is a

function of only those (empirical) weights (w∗1, . . . , w
∗
n) corresponding to the

observations actually selected in the bootstrap sample. Consider the linear

space spanned by w∗ = (w∗1, . . . , w
∗
n) and denote the l∗ as the projection of
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3.2 Comparing the Three Approaches

s(w∗)− E∗[s∗] onto that linear space.

We can use Var∗(l
∗) as an estimate of Var(E∗[s∗]) which corresponds

exactly to the setup where the relationship between the bootstrap estimates

and observation weights is estimated via ordinary least squares linear re-

gression.

Remark 1. In the sections that follow, we rely more heavily on Methods

1 and 2 for assessing the properties of the infinitesimal jackknife variance

estimator. Nonetheless, the OLS approach in Method 3 reveals helpful and

important insight into how the infinitesimal jackknife can be viewed. An

explicit walkthrough of how the linear regression setup can be used to derive

the infinitesimal jackknife estimator is provided in Appendix A.

3.2 Comparing the Three Approaches

We now examine how the three estimators derived above compare to each

other. The first result below gives that the three estimators are identical

whenever all bootstrap samples are used.

Theorem 1. Suppose that we have data Dn and a statistic s. Let (X∗1 , . . . , X
∗
n)

be a general bootstrap sample of Dn, s∗ = s(X∗1 , . . . , X
∗
n) and w∗j = #{i :

X∗i = Xj}, then (1) E∗[s∗w∗j ] = ej, (2) l∗ =
∑

j w
∗
jβj, where βj = (ej − s0),

and (3) Var∗(l
∗) = JK]

B = IJB where ej = E∗[s∗ | X∗1 = Xj] and s0 = E∗[s∗].
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3.2 Comparing the Three Approaches

The proof of Theorem 1 can be found in Appendix B. Consider the more

practical setting in which we draw only B bootstrap samples (X∗b1, . . . , X
∗
bn)

and calculate s∗b = s(X∗b1, . . . , X
∗
bn) for each b = 1, . . . , B. And consider the

bagged estimate s∗ = 1
B

∑B
b=1 s

∗
b . By the law of total variance, we have

Var(s∗) = Var(E[s∗ | Dn]) + E[Var(s∗ | Dn)]

= Var(E∗[s∗]) +
1

B
E[Var∗(s

∗)].

(3.7)

The first term in Eq. (3.7) is dominant and so to provide a good estimate

of Var(s∗), we must provide a good estimate of Var(E∗[s∗]). Since we do

not employ all bootstrap samples, we cannot use IJB directly but we can

use the B bootstrap replications to provide an estimate. First, a natural

estimate of Covj is simply Ĉovj, the sample covariance of (s∗1, . . . , s
∗
B) and

(w∗1j, . . . , w
∗
Bj). Next, as for ej − s0, we can estimate s0 with

∑B
b=1 s

∗
b/B,

and since ej the expected value of s∗ given X∗i = Xj for any i = 1, . . . , n,

a natural estimate would be the weighted average of the mean of s∗b where

X∗i = Xj. Here, the weights are the proportion of times when X∗i = Xj

across the B bootstrap samples. A straightforward calculation gives that

êj =
B∑
b=1

w∗bj∑
w∗bj

s∗b and êj − ŝ0 =
B∑
b=1

(
w∗bj∑
w∗bj
− 1

B

)
s∗b . (3.8)

Finally, the natural estimate of Var∗(l
∗) is given by V̂ar(l̂), where l̂ =

(l̂1, . . . , l̂B) is the projection of (s∗1 − s̄∗, . . . , s∗B − s̄∗) onto the linear space
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3.2 Comparing the Three Approaches

spanned by (w∗1j, . . . , w
∗
Bj) for j = 1, . . . , n which can be readily computed

via least squares and V̂ar(l̂) = 1
B−1

∑B
b=1(l̂b)

2.

Putting all of this together, we have the following three limited number

of bootstrap replications (i.e. not all bootstrap samples employed) variance

estimators corresponding to the infinitesimal jackknife, jackknife, and OLS

linear regression methods:

σ̂2
IJ := ÎJB =

∑
j

Ĉov
2

j =
∑
j

[
1

B − 1

∑
b

(s∗b − s̄∗)(w∗bj − w̄∗j )

]2

σ̂2
JK := ĴK]

B =
∑
j

(êj − ŝ0)2 =
∑
j

[∑
b

(
w∗bj∑
w∗bj
− 1

B

)
s∗b

]2

σ̂2
OLS := V̂ar(l̂) =

1

B − 1

∑
b

(l̂b)
2.

(3.9)

Elaborating on how these methods relate to each other, note that

rewriting σ̂2
IJ and σ̂2

JK as

σ̂2
IJ =

∑
j

[∑
b

w∗bj
B − 1

(s∗b − s̄∗)

]2
, σ̂2

JK =
∑
j

[∑
b

w∗bj∑
bw
∗
bj

(s∗b − s̄∗)

]2
(3.10)

respectively, we can see that σ̂2
JK merely replaces

∑B
b=1w

∗
bj with B − 1.∑B

b=1w
∗
bj is actually close to B − 1 since its expectation is B and standard

deviation
√
B(1− 1/n). For σ̂2

IJ and σ̂2
OLS, let s = (s∗1− s̄∗..., s∗B − s̄∗)T and

let w∗j = (w∗1j, . . . , w
∗
Bj)

T for j = 1, . . . , n. Further, denote the matrix of

[w∗1 − w̄∗11B, . . . ,w∗n − w̄∗n1B)] as W and let UΣVT be the singular value
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decomposition (SVD) of W/
√
B − 1. Then

σ̂2
IJ =

1

(B − 1)
sT

WWT

B − 1
s

=
1

(B − 1)
sTU · Σ2 ·UT s.

(3.11)

Since n−1
∑

j w∗j = 1B, the column space of [w∗1, . . . ,w
∗
n] is the same as that

of [w∗1−w̄∗11B, . . . ,w∗n−w̄∗n1B,1B], the projection of s onto the column space

of [w∗1, . . . ,w
∗
n] is the same as that onto [w∗1 − w̄∗11B, . . . ,w∗n − w̄∗n1B,1B].

Furthermore, since 1TB · s = 0, the projection will be the same as the pro-

jection onto [w∗1 − w̄∗11B, . . . ,w∗n − w̄∗n1B] = W. As the rank of W is n− 1

and U forms an orthonormal basis of the column space of W, we have

σ̂2
OLS =

1

(B − 1)
sTUUT s =

1

(B − 1)
sTU · In−1 ·UT s. (3.12)

Therefore,

∣∣σ̂2
IJ − σ̂2

OLS

∣∣ = | 1

(B − 1)
sTU

(
Σ2 − In−1

)
UT s|

= | 1

(B − 1)
trace

(
sTUUT s

(
Σ2 − In−1

))
|

≤ maxi
(
Σ2 − In−1

) 1

B − 1
||s||2

= maxi
∣∣Σ2 − In−1

∣∣ V̂ar(s∗).

(3.13)

To see why Σ2 is close to In−1, note that Σ2 is a diagonal matrix of rank n−1

with the diagonal entries being the non-zero eigenvalues of (B−1)−1WWT ,

which are equal to the non-zero eigenvalues of (B − 1)−1WTW. Holding
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n fixed, as B gets large, the non-zero eigenvalues will approximate those of

E∗[(B − 1)−1WTW] = (I− 1
n
1n1

T
n ), which are simply n− 1 ones.

We stress here that our goal is not to contrast these three estimators in

order to suggest an optimal form for use in practice, but rather to demon-

strate how these estimators which are already used in practice are connected

in theory. While these alternative derivations and estimators are helpful for

providing insight into the infinitesimal jackknife in general, σ̂2
IJ = ÎJB seems

to be the estimator that has garnered the most practical interest. In the

following subsections, we thus focus on assessing its properties. A brief

simulation study comparing the estimates obtained from the three different

methods laid out above as well as the Jackknife-After-Bootstrap (JAB) is

presented in Appendix E.

3.3 The Bias of ÎJB

We now begin to analyze the properties of ÎJB as an estimator. As discussed

above in reference to (3.7), in order to understand how well ÎJB estimates

Var(s∗), we need only understand how well it estimates Var(E∗[s∗]). Here

we consider both the Monte Carlo bias and sampling bias of ÎJB where the

sampling bias is considered with respect to variation in the data, whereas

the Monte Carlo bias is considered with respect to bootstrap process con-
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ditional on the data. We combine these two sources of bias with

E[E∗[ÎJB]]− Var(E∗[s∗]) = E[E∗[ÎJB]− IJB]] + E[IJB]− Var(E∗[s∗])

∝ E∗[ÎJB]− IJB︸ ︷︷ ︸
Monte Carlo Bias

+E[IJB]− Var(E∗[s∗])︸ ︷︷ ︸
Sampling Bias

.

(3.14)

and consider their impact separately in the following subsections. Note

that here we only discuss about the bias of Monte Carlo thereby give no

consideration to the variability of ÎJB arising from the Monte Carlo choice

of the bootstrap replications.

Monte Carlo Bias: We first consider the Monte Carlo bias of ÎJB, which

is relatively straightforward. Note that

E∗[ÎJB]− IJB =
∑
j

E∗[Ĉov
2

j ]− Cov2
j =

∑
j

E∗[Ĉov
2

j ]− E2
∗[Ĉovj]

=
∑
j

Var∗(Ĉovj)

(3.15)

and some calculation gives that

Var∗(Ĉovj) = − B − 2

B(B − 1)
Cov2

∗(s
∗, w∗j ) +

Var∗(s
∗)Var∗(w

∗
j )

B(B − 1)

+
E∗[(s∗ − E∗[s∗])2(w∗j − E∗[w∗j ])]2

B

:= I + II

where

I =
1

B
Var∗

(
(s∗ − E∗[s∗])(w∗j − E∗[w∗j ])

)
,

II =
1

B(B − 1)

[
Var∗(s

∗)Var∗(w
∗
j ) + Cov2

∗(s
∗, w∗j )

]
.

(3.16)
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The first term I is the dominant term and isO(1/B). Essentially, we see here

that using Ĉov
2

j to estimate Cov2
j is analogous to using X̄2 to estimate E2[X]

for some random variable X, which is biased as E[X̄2]−E2[X] = Var(X)/B.

Indeed, Var(X)/B may not be negligible, especially when B is small and

the coefficient of variation of X is large. The variance estimator defined

below offers a bias correction for ÎJB.

Definition 2. A Monte Carlo bias corrected version of ÎJB is given by

ÎJ
mc

B = ÎJB −
1

B

∑
j

V̂ar
(
(s∗ − s̄∗)(w∗j − w̄∗j )

)
, (3.17)

where V̂ar denotes sample variance.

The bias correction term above is a sum over n terms. Then if B is

small, the bias correction term will be significant. In recent work, Wager

et al. (2014) proposed the Monte Carlo bias corrected estimator

ÎJ
whe

B = ÎJB −
n

B
V̂ar(s∗). (3.18)

We see that if Var∗((s
∗−E∗[s∗])(w∗j−E∗[w∗j ]) is close to Var∗(s

∗−E∗[s∗])Var∗(w
∗
j−

E∗[w∗j ]) = (1 − 1
n
)Var∗(s

∗ − E∗[s∗]), then (3.18) is close to (3.17). This

happens when n is sufficiently large that wj does not heavily impact the

values of s∗, so that w∗j is nearly independent of s∗ in calculating Var∗((s
∗−

E∗[s∗])(w∗j − E∗[w∗j ]). Simulations provided in the appendix demonstrate

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0131



3.3 The Bias of ÎJB

this point. For small values of n, (3.17) is usually more natural and accu-

rate.

Sampling Bias: Appendix B provides explicit calculations to exam-

ine how IJB behaves on some simple familiar examples. In particular, we

look at two linear statistics, the sample mean and variance, and show, not

surprisingly that IJB is asymptotically unbiased. On the other hand, for

statistics like the sample maximum that are far from linear, the estima-

tors perform quite poorly even when large numbers of bootstrap samples

are employed. The following proposition provides an equivalence condition

under which IJB is asymptotically unbiased and suggests that E∗[s∗] needs

to be asymptotically linear. Unfortunately, this condition is not practically

verifiable but gives some insight of how hard it is for IJB to be accurate in

estimating the variance of E∗[s∗], and it naturally leads to the discussion of

U-statistics, an alternative version of bagging, in the next section.

Proposition 1. Let E∗[s∗] be the bootstrap smoothed alternative of s, then

lim
n→∞

E[Var∗(l
∗)]

Var(E∗[s∗])
= 1 ⇐⇒ lim

n→∞
n(1− ρ) = 1 (3.19)

where ρ is the correlation between e1 and e2 and ei = E∗[s∗ | X∗1 = Xi].

To help provide some intuition, consider the case where s = X̄, which

is linear. Here, we have ρ = n2−1
n2+n−1 = 1− 1

n
+ O( 1

n2 ). From Proposition 1,

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0131



we can see that 1−ρ = 1
n

+ o( 1
n
) is the condition required and a statistic as

smoothed as sample mean just results in 1− ρ = 1
n

+O( 1
n2 ). In this sense,

it would be reasonable to say that the condition generally fairly restrictive,

requiring E∗[s∗] to be close to linear.

In general, the replicates of bootstrap samples defies understanding the

bias and other statistical properties of IJB comprehensively. To understand

even E∗[s∗] alone requires an understanding of s∗ for each bootstrap sam-

ple. Our main point here is thus that IJB, the infinitesimal jackknife for

bootstrap, may only work well in very limited scenarios where the boot-

strap statistic is asymptotic linear. The bootstrap statistic E∗[s∗] may have

comparatively small variance, but is not necessarily much more linear than

the original statistic s. We thus recommend taking care when employing

IJB. On the contrary, U-statistics, as averages across subsamples, not only

improve the stability, but also must be more linear than s. This second fact

makes the infinitesimal jackknife consistent for variance estimation, under

relatively more mild conditions.

4. Pseudo Infinitesimal Jackknife for U-statistics (ps-IJU)

While the infinitesimal jackknife is naturally appealing for estimating the

variance of bagged statistics, the current resurgence in interest is due in

large part to its potential for quantifying the uncertainty of complex su-
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pervised machine learning ensembles often formed by subsampling. Imme-

diately following Efron (2014), Wager et al. (2014) showed that the same

infinitesimal jackknife approach could be used to generate confidence inter-

vals for random forests. In recent years, a number of works have expanded

on this idea (Mentch and Hooker, 2016; Wager and Athey, 2018; Peng et al.,

2022). Among the key breakthroughs was the realization that predictions

generated by averaging across ensembles of subsampled regression estimates

could be seen as akin to classical U-statistics. We thus now explore how the

infinitesimal jackknife can be extended to the case of subsampling without

replacement. In this case, E∗[s∗] is a U-statistic, which is often more conve-

nient for theoretical analysis and also more likely to be close to linear. Here

s is a (permutation-symmetric) function of k i.i.d. random variables and

the U-statistic can be written as U =
(
n
k

)−1∑
(n,k) s(Xi1 , . . . , Xik) where

the sum is taken over all
(
n
k

)
subsamples of size k. In the classical language

of U-statistics, we would refer to s as the kernel and k as the order or rank

of the kernel. The U-statistics we discuss throughout the remainder of this

paper are assumed non-degenerate.

4.1 The Pseudo Infinitesimal Jackknife for U-statistics (ps-IJU)

In recent work, Wager and Athey (2018) investigated the consistency and

asymptotic normality of random forests where the individual trees were
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constructed with subsamples of the original data. As part of this work, the

authors proposed another estimate of variance wherein the format of the IJ

for bootstrap was simply copied over to this subsampling regime to arrive

at ∑
j

Cov2
∗(s
∗, w∗j ), (4.1)

where ∗ refers to the subsampling procedure. We refer to this estimator

as ps-IJU, since it is not derived from the definition of the infinitesimal

jackknife. The alternative estimator derived directly from the definition in

(2.1) is denoted by IJU. Generally speaking, IJU and ps-IJU are quite close

to each other, though ps-IJU has a slighter simpler expression. Further

discussion and comparisons are given in Appendix C.

It is, however, possible to provide a more rigorous motivation for ps-IJU

that follows from the spirit of the infinitesimal jackknife if not the exact

formulation of it. Recall from Section 2 (see (2.7)), we assume that f(Pn)−

f(P) can be written as 1
n

∑
i f
′(P, Xi)+op(1/

√
n), where the dominant term

is a sum of i.i.d. random variables and we estimate the variance of f ′(P, Xi)

by 1
n

∑
i f
′2(Pn, Xi). Now suppose that we write f(Pn)−f(P) as

∑
i g(Xi)+

op(1/
√
n), where g(Xi) is not necessarily 1

n
f ′(P, Xi). From classical U-

statistic theory, there is a natural candidate for g(Xi): the Hájek projection

- E[f(Pn)−f(P)|Xi] = k
n
E[s−E[s]|Xi]. Since Var (

∑
g(Xi)) = k2

n
V1, where
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V1 = Var(E[s|X1]), we need only to propose a reasonable estimate for V1

and we can then use k2

n
V̂1 as an estimate of the variance of the U-statistic.

Since V1 = E[E[s|X1]− E[s]]2, a natural candidate of V̂1 would be

1

n

∑
j

(E∗[s∗|X∗1 = Xj]− E∗[s∗])2 =
1

n

∑
j

(ej − s0)2. (4.2)

As it turns out, (4.1) is the same as (4.2).

Proposition 2. Let D∗n = (X∗1 , . . . , X
∗
k) denote a subsample of size k from

the original data Dn and define w∗j = 1Xj∈D∗n. Then

Cov∗(s
∗, w∗j ) =

k

n
(ej − s0),

where ∗ refers to the subsampling procedure, ej = E∗[s∗|X∗1 = Xj] and

s0 = E∗[s∗]. Thus,

ps-IJU =
∑
j

Cov2
∗(s
∗, w∗j ) =

((
k
1

)(
n
1

))2∑
j

(ej − s0)2. (4.3)

To understand the bias of ps-IJU, the H-decomposition is quite useful. To

set this up, we first need to introduce following notation for kernels s1, . . . , sk

of degrees 1, . . . , k. These kernels are defined recursively as

s1(x1) = s1(x1)

sc(x1, . . . , xc) = sc(x1, x2, ..., xc)−
c∑
j=1

∑
i1,...,ij∈{1,...,c}

sj(xi1 , . . . , xij)
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where sc(x1, . . . , xc) = E[s(x1, . . . , xc, Xc+1, . . . , Xk)]−E[s]. Let Vj = Var(sj)

for j = 1, . . . , k. Then Var(U) =
∑k

j=1

(
k
j

)2(n
j

)−1
Vj, and E[IJU] can also be

written as a linear combination of those Vj. In particular, we have the

following theorem.

Theorem 2. The pseudo-IJ estimator of the variance of a U-statistic is

defined as

ps-IJU =
k2

n2

n∑
j=1

[ej − s0]2 (4.4)

where ej = E∗[s∗|X∗1 = Xj] and s0 = E∗[s∗]. Then

E[ps-IJU] =
k∑
j=1

rj

(
k

j

)2(
n

j

)−1
Vj, (4.5)

where

rj =

(
n− k
n

)2
j

1− j/n
, for i = 1, . . . , k. (4.6)

Note that although our goal here is to use k2

n
V̂1 to estimate k2

n
V1,

E[k
2

n
V̂1] = E[ps-IJU] involves higher order terms of V2, . . . , Vk. Though

not ideal, it is unavoidable since we do not have new data generated from

the underlying distribution. If we simply multiply ps-IJU by ( n
n−k )2 n−1

n
as

proposed in Wager and Athey (2018), then only the first term is unbiased,

but it doubles the quadratic term, triples the cubic term etc. (a similar

phenomenon was discovered by Efron (1981) for the jackknife variance esti-

mator). This explains why this estimation procedure is inflated in practice.
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In many applications, k is not small and so the higher order terms of Var(U)

are not negligible and the effect of rj cannot be ignored. Indeed, as alluded

to at the beginning of this section, in many modern machine learning ap-

plications like random forests, k corresponds to the number subsamples

utilized in the construction of each base learner and so k is generally best

chosen to be as large as possible.

4.2 The Consistency of ps-IJU and Its Derivatives

In this subsection, we investigate the properties and consistency of ps-IJU,

beginning with the idea of generalized U-statistics, recently defined in Peng

et al. (2022).

Definition 3 (Generalized U-statistic (Peng et al., 2022)). SupposeX1, . . . , Xn

are i.i.d. samples from some distribution P and let s denote a (possibly ran-

domized) real-valued function that is permutation symmetric in its k ≤ n

arguments. A generalized U-statistic with kernel s of order (rank) k refers

to any estimator of the form

Un,k,N,ω =
1

N̂

∑
(n,k)

ρs(Xi1 , . . . , Xik ;ω) (4.7)

where ω denotes i.i.d. randomness, independent of the original data. The ρ

denotes i.i.d. Bernoulli random variables determining which subsamples are

selected where P(ρ = 1) = N/
(
n
k

)
and N̂ corresponds to the sum of the ρ.
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When N =
(
n
k

)
, the estimator in (4.7) is a generalized complete U-statistic

and is denoted as Un,k,ω. When N <
(
n
k

)
, these estimators are generalized

incomplete U-statistics. Note that each collection of subsamples is paired

with an individual ρ sampled i.i.d., but we use a single ρ here for notational

convenience.

Generalized U-statistics are essentially incomplete U-statistics with po-

tentially extra randomness and where the order of the kernel may grow with

n. Random forests, for example, are generalized U-statistics in which the

additional randomness ω determines which features are eligible for splitting

at each node in each tree. In recent work, Peng et al. (2022) proved that

if k
n
(ζk/kζ1,ω − 1) → 0, then the complete generalized U-statistic Un,k,ω is

asymptotically normal with variance k2

n
ζ1,ω, where ζk = Var(s), the variance

of the kernel, and ζ1,ω = V1 = Var(E[s|X1]), the covariance of two kernels

with only one sample in common. Let eωi =
(
n−1
k−1

)−1∑
s(Xi, . . . ;ω) and let

sω0 =
(
n
k

)−1∑
s(. . . ;ω). Like ρ, each collection of subsamples is paired with

an i.i.d. ω. Then the corresponding ps-IJU for generalized U-statistics is

defined as

ps-IJωU =
k2

n2

∑
[eωi − sω0 ]2. (4.8)

The following theorem gives that the same conditions used by Peng et al.

(2022) to establish asymptotic normality are sufficient to establish the con-
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sistency of ps-IJωU. In other words, if the (generalized) U-statistic is nearly

linear, then ps-IJωU/Var(Un,k,ω) converges to one in probability.

Theorem 3. Let X1, . . . , Xn be i.i.d. from P and Un,k,ω be a generalized

complete U-statistic with kernel s(X1, . . . , Xk;ω). Let θ = E[s], ζ1,ω =

Var(E[s|X1]) and ζk = Var(s). Then if k
n

(
ζk

kζ1,ω
− 1
)
→ 0,

ps-IJωU/Var(Un,k,ω)
p−→ 1. (4.9)

Corollary 1. If the conditions in Theorem 3 are met, then

Un,k,ω ± zα/2
n

n− k
√

ps-IJωU = Un,k,ω ± zα/2
n

n− k

√∑
Covω∗ (s

∗, w∗i )
2

= Un,k,ω ± zα/2
k

n− k

√∑
(eωi − sω0 )2

(4.10)

provides an asymptotically valid confidence interval for θ with confidence

level 1 − α. Note that Covω∗ (s
∗, w∗i ) can be defined in the same fashion as

(4.8) to include the extra randomness and equals k
n
(eωi − sω0 ).

The n
n−k appearing in (4.10) corrects for finite sample bias. Note that The-

orem 3.5 in Wager and Athey (2018) can be viewed as a special case of

Theorem 3, where the kernel is taken as Eω[s(X1, ..., Xk;ω)]. However, in

the random forest setting, calculating such a statistic involves building all

possible randomized trees on a collection of subsamples, a task which is gen-

erally computationally impossible in practical settings. Indeed, because of
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their inherent computational burden in calculating
(
n
k

)
base estimates, the

complete forms of these estimators are almost never utilized in practice.

Fortunately, asymptotic normality for incomplete generalized U-statistics

was also established in Peng et al. (2022). Thus, to establish asymptoti-

cally valid confidence intervals for these incomplete counterparts, we need

only establish a consistent means of estimating the asymptotic variance of

Un,k,N,ω.

Let

p̂s-IJωU =
k2

n2

∑
i

[êωi − ŝω0 ]2, (4.11)

where

ŝω0 =
1

N

∑
s(...;ω), êωi =

n

Nk

∑
s(Xi, ...;ω). (4.12)

Here,
∑
s(...;ω) denotes the sum of all kernels that make up the incomplete

U-statistic, whereas
∑
s(Xi, ...;ω) denotes the sum of all kernels that make

up the incomplete U-statistic and include Xi in their respective subsamples.

The following theorem shows that we can obtain a consistent estimate of

ζ1,ω so long as N is large enough to ensure that n
Nkζ1,ω

→ 0. Importantly,

this means that N need not be on the order of
(
n
k

)
.

Theorem 4. Let X1, . . . , Xn be i.i.d. from P and p̂s-IJωU be as (4.11). Let

ζ1,ω = Var(E[s|X1]) and ζk = Var(s). Assume E[s] and ζk are bounded.
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Then if k
n

(
ζk

kζ1,ω
− 1
)
→ 0 and n

Nkζ1,ω
→ 0, we have

p̂s-IJωU

/k2
n
ζ1,ω

p−→ 1. (4.13)

Remark 2. Consider the case that ζk/kζ1,ω ≤ c1 and kζk ≥ c2 for some

constants c1 and c2. These conditions simply imply that the variance of the

kernel vanishes at a rate of at most 1/k and the linear term of the variance

is not negligible. Theorem 4 states that we need only have n � k and

N � nk in order to ensure that p̂s-IJωU/
k2

n
ζ1,ω

p−→ 1.

Theorem 4 provides a consistent estimate of the variance of predictions

generated by subsampled random forests, where the number of trees in the

random forest need not be
(
n
k

)
and the trees themselves may be randomized.

Note, of course, that the conditions in Theorem 4 are not guaranteed to

hold generally and would need to be verified for whatever trees or other

base learners are employed by the forest in practice.

To verify the conditions in Theorem 4, it is important to understand

how ζ1,ω behaves as k, n→∞. Although, it is difficult in general to quan-

tify ζ1,ω for the kernels based on adaptive nearest neighbor methods (most

notably, decision trees), recently, work by Wager and Athey (2018) and

Peng et al. (2022) proved that for “double sample trees”, a special type

of tree that uses one half of the subsample to build the tree structure and
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the other to form the prediction, ζ1,ω is well behaved and vanishes at a

rate of k−(1+ε), ∀ε > 0. Additionally, Peng et al. (2022) provides empirical

evidence in a small simulation that this term actually behaves well for trees

built according to the original CART criterion as well.

It is also worth noting in (4.12) that the sum on left is taken over N̂

terms whereas the right is taken over N̂i terms. Note that N = E[N̂ ] and

Nk
n

= E[N̂i] simply ease of proof and could be replaced by their empirical

values N̂ and N̂i, which are more natural and could result in more accurate

estimation as suggested by the simulations in Appendix F. Applying the

replacement, we have

k2

n2

∑
i

[êωi − ŝω0 ]2 =
∑
i

k2

n2
[êωi − ŝω0 ]2

replace−−−−→
∑ N̂2

i

N̂2

[
1

N̂i

∑
s(Xi, ...;ω)− 1

N̂

∑
s(...;ω)

]2
=
∑
i

[
1

N̂

∑
s(. . . ;ω)w∗i −

1

N̂

∑
s(. . . ;ω)

N̂i

N̂

]2

=
∑
i

Ĉov
2
(s∗, w∗i ).

(4.14)

In the recent literature on random forests discussed above,
∑

i Ĉov
2
(s∗, w∗i )

is often the quantity used to estimate the variance of predictions in practice.

Recent work has established that Un,k,N,ω has different asymptotic dis-

tributions depending on the number of subsamples N that are employed
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(Peng et al., 2022). When N � n/k, Un,k,N,ω ∼ N (0, ζk/N), when N =

O(n/k), Un,k,N,ω ∼ N (0, k
2

n
ζ1,ω + ζk

N
), and when N � n/k and N (0, k

2

n
ζ1,ω).

Thankfully, regardless of the setting, there are only two variance parameters

that may need to be estimated: ζk and ζ1,ω. We can estimate ζk simply by

calculating sample variance of base learners built on non-overlapping sub-

samples. Based on the above arguments, ζ1,ω can be estimated by p̂s-IJωU.

Therefore, it is guaranteed that p̂s-IJωU

/
k2

n
ζ1,ω

p−→ 1 and ζ̂k

/
ζk

p−→ 1. Thus,

Theorem 4 provides a means by which we can consistently estimate the vari-

ance of the (asymptotic) normal distribution established for random forests

in Peng et al. (2022). This result together with Peng et al. (2022) thus

provides a more complete picture of the distributional results for random

forests, resting upon the same assumptions as on the decision trees.

Interestingly, for a random forest built with N = O(n) decision trees,

we will not be able to estimate its variance consistently by using only the

trees contained in the random forest; this requires � n
kζ1,ω

decision trees.

Because kζ1,ω ≤ ζk and ζk usually tends toward 0 as k grows, kζ1,ω thereby

vanishes. This implies that the number of trees required for consistent

variance estimation would be� n. These results shed light on the intuition

established throughout the machine learning literature that it is always

significantly more computationally intensive to estimate the variance of
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ensembles than to obtain the ensemble itself. A brief simulation study

comparing the variance estimates is provided in Appendix F.

5. Discussion

The work above provides an in-depth examination of the infinitesimal jack-

knife estimate of variance for resampled statistics. We provided alternative

perspectives on the estimator, most notably demonstrating its equivalence

to an OLS regression of the bootstrap estimates on their respective sam-

pling weights. Ultimately we derived three alternative estimators under the

bootstrap regime and demonstrated their equivalence when all bootstrap

samples are employed. We also examined both the Monte Carlo and sam-

pling bias of the IJ estimator in the bootstrap setting and proposed a novel

bias-corrected estimator, providing conditions under which it is asymptot-

ically unbiased. In the latter portion of the work, we examine how these

preliminary results translate outside the bootstrap setup by looking instead

at subsampling. Here the statistics resemble a U-statistic and we derived

corresponding results for generalized U-statistics, a new tool for analyzing

modern learning ensembles like random forests. We also provided a for-

mal motivation for the pseudo IJ often employed in practice and establish

its consistency under similar linearity conditions. Importantly, we further

established consistency for the finite sample (incomplete) versions of these
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estimators so that one needn’t utilize all possible subsamples in order for

the empirical ps-IJU to form a consistent estimator.

Finally, recall from the previous section we assume the statistics are

approximately linear so that when we write Var(U) =
∑k

j=1

(
k
j

)2(n
j

)−1
Vj,

the variance is dominated by the first order term k2/nV1 and we propose

an estimate of V1 accordingly. One may wonder whether, if the remaining

terms are not negligible, an improved estimate can be provided by also

including estimates for Vj for j = 2, . . . , k. While such estimates can be

provided, establishing the superiority of the resulting estimator is a far more

in depth undertaking that we reserve for future work. Further detailed

discussion is provided in Appendix D.

Supplementary Material

Online supplementary material is provided, which contains an extended discussion and walk-

through of the connection between OLS linear regression and the infinitesimal jackknife. Ex-

ample calculations, simulations, and proofs are also provided.
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