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Abstract:

Many high-dimensional optimization problems can be reformulated as finding the optimal path under

an equivalent state-space model setting. Here, we present a general emulation strategy for developing

a state-space model with a likelihood function (or posterior distribution) that shares the same general

landscape as that of the original objective function. Then, the solution of the optimization problem is

the same as the optimal state path that maximizes the likelihood function. To find such an optimal

path, we adapt a simulated annealing approach by inserting a temperature control into the emulated

dynamic system, and propose a novel annealed sequential Monte Carlo (SMC) method that effectively

generates Monte Carlo sample paths based on samples obtained previously on a higher temperature

scale. Compared with the vanilla simulated annealing implementation, the annealed SMC is an iterative

algorithm for state-space model optimization that generates state paths directly from the equilibrium

distributions using a decreasing sequence of temperatures and sequential importance sampling, which

does not require burn-in or mixing iterations to ensure a quasi-equilibrium condition. Lastly, we

demonstrate the proposed method by presenting several emulation examples and the corresponding

simulation results.

Key words and phrases: Emulation, State Space Model, Sequential Monte Carlo, Optimization, Simu-

lated Annealing
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2 CHENCHENG CAI AND RONG CHEN

1. Introduction

High-dimensional global optimization algorithms have been widely investigated since the

advent of high-dimensional complex data. For example, the gradient descent algorithm and

its variations (Bertsekas, 1997) require that the objective function be convex or uni-modal

to ensure that the found local optimal is global. Recent research in machine learning in-

volves many nonconvex optimization problems (Anandkumar et al., 2014; Arora et al., 2012;

Netrapalli et al., 2014; Agarwal et al., 2014). However, many of these problems remain

NP-hard, and theory is only available for their convex relaxations (Jain et al., 2017). De-

terministic optimization algorithms (Hooke and Jeeves, 1961; Nelder and Mead, 1965; Land

and Doig, 1960) may result in an exhaustive search, which is computationally expensive in

a high-dimensional space. Stochastic optimization algorithms use Monte Carlo simulations

to explore the parameter space in a stochastic and often more efficient way (Kiefer et al.,

1952; Kirkpatrick et al., 1983; Mei et al., 2018).

In this article, we propose an emulation approach that reformulates a high-dimensional

optimization problem as one of finding the most likely state path in a state-space model.

State-space models describe the behavior of a usually high-dimensional random variable as

a form of dynamic evolution, with wide applications in mathematics, physics, and many

other fields. Many high-dimensional optimization problems can be transformed to finding

the optimal state path under an equivalent state-space model with a likelihood function that

shares the same general landscape as that of the objective function of the original optimiza-
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STATE SPACE EMULATION AND ANNEALED SEQUENTIAL MONTE CARLO 3

tion problem. Specifically, for a high-dimensional optimization problem with the objective

function f(x), we construct an emulated state-space model with a likelihood function that

is proportional to a Boltzmann-like distribution exp(−κf(x)), where κ > 0 is the inverted

temperature.

Several existing heuristic approaches use the emulation idea. Cai et al. (2009) transform

a regression variable selection problem with many predictors into an optimization problem

over the high-dimensional binary space {0, 1}p. The latter problem can be further converted

to a most likely path problem in a state-space model with binary-valued states indicating

the variable selection, even though the predictors have no chronological order in nature.

Kolm and Ritter (2015) reformulate a portfolio optimization problem as a state-space model

by mapping the utility function to the log-likelihood function. The utility function is then

optimized by finding the most likely path in the corresponding state-space model by applying

the Viterbi algorithm (Viterbi, 1967) over Monte Carlo samples. Similarly, Irie and West

(2016) relate the multi-period portfolio optimization problem to a log-likelihood of a mixture

of linear Gaussian dynamic systems, and propose an algorithm based on the Kalman filter

(Kalman, 1960) and EM algorithm (Dempster et al., 1977) to find the most likely path.

Iglesias et al. (2013) and Zhang et al. (2021) reformulate inversion problems as state-space

models by segmenting the observations into a sequence, and then optimizing the hidden path

using a Kalman filter and an ensemble Kalman filter.

The aforementioned studies map high-dimensional optimizations to problems under

state-space model settings. However, finding the most likely path analytically and numer-
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4 CHENCHENG CAI AND RONG CHEN

ically remains challenging. For example, the approach in Cai et al. (2009) is difficult to

generalize to continuous spaces. In addition, the Viterbi algorithm used in Kolm and Ritter

(2015) requires the dynamic system to be Markovian and nonsingular, and needs a large

sample size, in general, to achieve high accuracy. The combination of the Kalman filter

and the EM algorithm proposed in Irie and West (2016) works only when the underlying

distribution can be well represented by the mixture of Gaussian distributions.

In this paper, we propose a new sequential Monte Carlo (SMC) simulated annealing

approach, called the “annealed SMC”, to find the most likely path in a state-space model.

The SMC algorithm is one of a class of Monte Carlo methods that draws samples from

state-space model systems in a sequential fashion. With the sequential importance sampling

and resampling (SISR) scheme, an SMC is extremely powerful in terms of sampling from

complex dynamic systems, especially for state-space models (Gordon et al., 1993; Kitagawa,

1996; Kong et al., 1994; Liu and Chen, 1995, 1998; Pitt and Shephard, 1999; Chen et al.,

2000; Doucet et al., 2001). Recall that the likelihood function of the emulated state-space

model is designed to be proportional to exp(−κf(x)), where κ is the inverted temperature. To

mimic the (physical) annealing procedure in a non-interactive, non-quantum thermodynamic

system (Kirkpatrick et al., 1983), we choose a sequence of decreasing temperatures κ0 < κ1 <

· · · < κK , which corresponds to a sequence of emulated state-space models.

We start by drawing sample paths from the base emulated state-space model at a high

base temperature κ0. Although samples from a low temperature (large κ) system are close

to the optimal sample path, because the distribution is sharp at a low temperature, drawing
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STATE SPACE EMULATION AND ANNEALED SEQUENTIAL MONTE CARLO 5

from such a distribution directly is usually difficult. Using the annealed SMC, we can obtain

samples of a low temperature system based on samples obtained at a higher temperature.

Eventually, all the SMC sample paths converge to the most likely one. The sequence of

temperatures κ0 < κ1 < · · · < κK provides a slow-changing path from the base emulated

state-space model at κ0, which is easy to sample from, but not very useful for optimization,

to the target emulated state-space model at κK , which is difficult to sample from but provides

solutions to the optimization problem.

This study makes two main contributions to the literature. First, we reformulate the

problem as an emulated space-space model, and then we propose an annealed SMC algo-

rithm to find the solution. Two examples are provided, in which the emulated state-space

models are natural, simple, and illustrative. Two additional examples are provided in the

Supplementary Material to demonstrate the flexibility of the proposed method in solving

existing optimization problems, with some new applications.

The rest of the paper is organized as follows. Section 2 briefly reviews state-space models

and introduces the principles of state-space emulation. Two illustrative emulation examples

are provided in Section 2.3. Section 3 introduces the framework of the annealed SMC,

designed to find the most likely path. Simulation results corresponding to the two examples

in Section 2.3 are presented in Section 4. Section 5 concludes the paper.
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6 CHENCHENG CAI AND RONG CHEN

2. State-Space Model and State-Space Emulation

2.1 State-Space Model

State-space models describe the mechanism of sequential observations yT = (y1, . . . , yT )

using a sequence of latent variables xT = (x1, . . . , xT ). The latent variables xT are assumed

to follow a discrete-time stochastic process governed by the state equations

p(xt | xt−1) = pt(xt | xt−1), (2.1)

for t = 2, . . . , T , and x1 follows its marginal distribution p1(x1). When the distribution of

xt conditioned on xt−1 does not depend on xt−2, such that p(xt | xt−1) = p(xt | xt−1), the

system is Markovian. The observations yT are generated independently, conditioned on the

latent variables, using the observational equations

p(yt | xt) = gt(yt | xt), (2.2)

for t = 1, . . . , T . In inference problems, the formulae of the state equations pt(·) and the

observation equations gt(·) are usually known, except for a set of unknown parameters of

interest θ. Here, we assume pt(·) and gt(·) are completely known, and we infer the latent

states xT . Estimating xT from the observations yT under the likelihood principle is known

as the most likely path (MLP) problem in hidden Markov models.

The state equations provide the prior information on xT :

π(xT ) ∝ p1(x1)
T∏
t=2

pt(xt | xt−1), (2.3)
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and the observation equations serve as the likelihood functions:

p(yT | xT ) =
T∏
t=1

gt(yt | xt). (2.4)

A maximum-a-posterior (MAP) estimator can be obtained by maximizing the posterior

function in (2.5):

π(xT |yT ) ∝ p1(x1)g1(y1 | x1)
T∏
t=2

pt(xt | xt−1)gt(yt | xt). (2.5)

When both pt(·) and gt(·) are Gaussian, the maximum of (2.5) can be obtained easily

using a Kalman filter and smoother (Kalman, 1960). In general cases, when the analytic

solution to optimize (2.5) is infeasible, the MAP estimator can be obtained by drawing sample

paths {(x(i)
1 , . . . , x

(i)
T )}i=1,...,n from the posterior distribution (2.5). We discuss estimating the

most likely path using Monte Carlo methods in Section 3.

2.2 State-Space Emulation

We propose a state-space emulation approach for solving high-dimensional optimization

problems. The approach constructs a state-space model so that the original optimization

problem is equivalent to finding the most likely state path under the state-space model.

Let f : X d → R be the objective function to be minimized and ξ : R → [0,+∞)

be a monotone decreasing function. Then, minimizing f(x) is equivalent to maximizing

ϕ(x) := ξ(f(x)), such that

argmin
x∈X d

f(x) = argmax
x∈X d

ϕ(x).

Statistica Sinica: Preprint 
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8 CHENCHENG CAI AND RONG CHEN

Furthermore, if there exists a state-space model with a posterior function (2.5) that is

proportional to ϕ(x) such that π(xT | yT ) ∝ ϕ(xT ) = ξ(f(xT )), with artificially de-

signed state equations {pt(·)}t=1,...,T , observation equations {gt(·)}t=1,...,T , and T = d, we

call the state-space model an “emulated” state-space model. The observations yT can

either be observations from the original optimization problem (e.g., the observed points

in the smoothing spline problem in Section 2.3.1), or can be designed artificially. Note

that it is always possible to rewrite any joint distribution function ϕ(xT ) in the form

of (2.3) as ϕ(xT ) = ϕ(x1, . . . , xT ) = ϕ1(x1)
∏T

t=2 ϕt(xt | xt−1), where ϕt(xt | xt−1) =∫
XT−t ϕ(xT )dxt+1 . . . dT/

∫
XT−t+1 ϕ(xT )dxt . . . dT and ϕ1(x1) =

∫
X t−1 ϕ(xT )dx2 . . . dxT . How-

ever, a series of conditional distributions is difficult to sample from and to evaluate.

However, in certain problems, including our examples shown later, it is possible to re-

formulate the conditional distribution as ϕt(xt | xt−1) = pt(xt | xt−1)gt(yt | xt), in which it is

easy to generate a sample from pt(xt | xt−1), and it is easy to evaluate gt(yt | xt), for some de-

signed yt. In general, objective functions with local dependence between parameters can be

easily emulated by Markovian state-space models, as in our examples of smoothing splines,

trend filtering, and the optimal trading path. Objective functions with more complex inter-

actions between the parameters usually lead to non-Markovian emulated state-space models,

which need more careful designs. The lasso regression in the Supplementary Material is one

such case.

Minimizing the objective function is then equivalent to finding the most likely path for

the emulated state-space model. The emulated state and observation equations provide

Statistica Sinica: Preprint 
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guidance for further SMC implementation, even though they are artificial.

A common choice for ξ(·) is the Boltzmann distribution function

ξ(s) = e−κs, (2.6)

where κ is a positive constant that relates to the temperature in statistical physics. In

statistics, the Boltzmann function in (2.6) links the least squares method to the maximum

likelihood approach with independent and identically distributed (i.i.d.) Gaussian noise.

With this choice of ξ(·), the system has a physical interpretation: The objective function

f(·) is regarded as the possible energy levels in a non-quantum thermodynamic system. As-

suming no interactions, the number of particles at the energy f(x) follows the Boltzmann

distribution under thermodynamic equilibrium. The integrability of ϕ(x) ensures the exis-

tence of the canonical partition function, such that this physical canonical system is valid.

The minimization of f(·) is now equivalent to finding the base energy level, which inspires

the use of simulated annealing of this thermodynamic system; see Section 3 for further

discussion.

2.3 Examples

2.3.1 Cubic Smoothing Spline

Consider a nonparametric regression model yt = m(xt)+ ϵt with equally spaced xt. Without

loss of generality, let xt = t and treat them as time. The cubic smoothing spline method

Statistica Sinica: Preprint 
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10 CHENCHENG CAI AND RONG CHEN

(Green and Silverman, 1993) estimates a continuous function m(t) by minimizing

L(yT ) =
T∑
t=1

(yt −m(t))2 + λ

∫
[m′′(t)]

2
dt. (2.7)

The first term in (2.7) is the total squared tracking errors at the observation times, and

the second term is the penalty term on the smoothness of the latent function m(·), where

λ controls the regularization strength. Given values of m(1), . . . ,m(T ), the minimizer of

the second term is a natural cubic spline that interpolates m(1), . . . ,m(T ) (see Green and

Silverman (1993)). Hence, the solution that minimizes (2.7) is a natural cubic spline, which

is second-order continuously differentiable and is a cubic polynomial in all intervals [t, t+1],

for t = 1, . . . , T − 1, and is linear outside [1, T ].

Define the derivatives of m(t) at each observation at time t as

at = m(t), bt = m′(t), ct = m′′(t)/2, dt = lim
s→t−

m′′′(s)/6.

The natural cubic spline solution to (2.7) is equivalent to an emulated state-space model on

xt = (at, bt, ct) with a vector autoregressive state equation
at

bt

ct

 =


1 1

√
3/3

0 1
√
3− 1

0 0 −(2−
√
3)




at−1

bt−1

ct−1

+


1/3

1

1

 ηt, (2.8)

with ηt ∼ N (0, σ2
b ) and σ2

b = 3(2−
√
3)/(4λκ). The corresponding observation equation is

yt = at+ ϵt, with εt ∼ N (0, σ2
y), σ2

y = 1/(2κ), and the initial values a1 ∼ N (y1, σ
2
y), b1 ∼ 1,

and c1 = 0. The derivation is postponed to the Supplementary Material.

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0120



STATE SPACE EMULATION AND ANNEALED SEQUENTIAL MONTE CARLO 11

2.3.2 Optimal Trading Path

In asset portfolio management, the optimal trading path problem is a class of optimization

problems that typically maximize certain utility functions of the trading path (Markowitz,

1959). Kolm and Ritter (2015) and Irie and West (2016) proposed reformulating such prob-

lems as an emulated state-space model. Specifically, let xT = (x0, . . . , xT ) be a trading

path in which xt represents the position held at time t. Kolm and Ritter (2015) propose

maximizing the following utility function:

u(xT ) = −
T∑
t=1

ct(xt − xt−1)−
T∑
t=0

ht(yt − xt), (2.9)

where (y0, . . . , yT ) is a predetermined optimal trading path in an ideal world without trad-

ing costs, typically obtained by maximizing the risk-adjusted expected return under the

Markowitz mean-variance theory (Markowitz, 1959). Kolm and Ritter (2015) provide a con-

struction of (y0, . . . , yT ) based on the term structure of the underlying asset’s alpha (the

excess expected return relative to the market). Let ct(·) represent the transaction cost,

which is often assumed to be a quadratic function of the absolute position change |xt−xt−1|.

Without loss of generality, we parametrize it as

ct(|xt − xt−1|) =
1

2σ2
x

(
|xt − xt−1|2 + 2α|xt − xt−1|+ α2

)
,

where α is a nonnegative constant related to the volatility and liquidity of the asset (Kyle

and Obizhaeva, 2011). Let ht(·) be the utility loss due to the departure of the realized path

from the ideal path. We use the squared loss ht(yt − xt) = (yt − xt)
2/(2σ2

y). Then, the

Statistica Sinica: Preprint 
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objective function is

e−κu(xT ) ∝
T∏
t=1

exp

(
−κ(|xt − xt−1|+ α)2

2σ2
x

) T∏
t=1

exp

(
−κ(yt − xt)

2

2σ2
y

)
.

Taking the position constraint x0 = xT into consideration, as discussed in Cai et al. (2018),

an emulated state-space model can therefore be constructed as

pt(xt | xt−1) ∝ exp

(
−κ(|xt − xt−1|+ α)2

2σ2
x

)
, (2.10)

gt(yt | xt) ∝ exp

(
−κ(yt − xt)

2

2σ2
y

)
. (2.11)

With the state equation (2.10) and the observation equation (2.11), the state-space model

has a likelihood function proportional to exp(−κu(xT )).

3. Annealed SMC

3.1 SMC

The SMC method is a class of sampling methods designed for state-space models. It uses the

sequential nature of state-space models, and draws samples incrementally using sequential

importance sampling and resampling (SISR) schemes. A typical SMC approach is demon-

strated in Figure 1.

The function qt(·) in the propagation step in Figure 1 is the proposal distribution. As

discussed in Lin et al. (2013), the “perfect” choice for the proposal is the conditional distri-

bution with the full information set, such that qt(xt | xt−1) = p(xt | xt−1,yT ). However, in

most cases, it is not possible to evaluate or sample from this conditional probability at time t.

Statistica Sinica: Preprint 
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Figure 1: Sequential Monte Carlo (SMC) Algorithm

• Draw x
(i)
1 from p1(x1) and set weight w

(i)
0 = 1 for i = 1, . . . , n.

• For time t = 2, · · · , T :

– Propagation: For i = 1, · · · , n,

∗ Draw x
(i)
t from qt(xt | x(i)

t−1) and set x
(i)
t = (x

(i)
t−1, x

(i)
t ).

∗ Update weights by setting

w
(i)
t ← w

(i)
t−1 ·

pt(x
(i)
t | x

(i)
t−1)gt(yt | x

(i)
t )

qt(x
(i)
t | x

(i)
t−1)

.

– Resampling (optional):

∗ Assign a priority score β
(i)
t to each sample x

(i)
0:t.

∗ Draw samples {J1, . . . , Jn} from the set {1, . . . , n} with replacement, with

probabilities proportional to {β(i)
t }i=1,...,n.

∗ Let x
∗(i)
t = x

(Ji)
t and w

∗(i)
t = w

(Ji)
t /β

(Ji)
t .

∗ Set {(x(i)
t , w

(i)
t )}i=1,...,n ← {(x∗(i)

t , w
∗(i)
t )}i=1,...,n.

• Return the weighted sample set {(x(i)
T , w

(i)
T )}i=1,...,n.
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The priority score βt is the weight used in the resampling step, and quantifies the sampler’s

preference over different sample paths. The most common choice of βt is β
(i)
t ∝ w

(i)
t . Vari-

ations of the SMC algorithm choose different proposal distributions and different priority

scores. The Bayesian particle filter (Gordon et al., 1993) sets qt(xt | xt−1) = pt(xt | xt−1).

It works well when the observations yT are relatively noisy compared with the state equa-

tion part. With accurate observations, the independent particle filter (Lin et al., 2005)

uses qt(xt | xt−1) ∝ gt(yt | xt). As an important (with a certain additional cost) compro-

mise over the Bayesian particle filter and the independent particle filter, Kong et al. (1994)

and Liu and Chen (1998) suggest adopting qt(xt | xt−1) ∝ pt(xt | xt−1)gt(yt | xt) to re-

duce the variance. Other SMC methods focus on finding more appropriate priority scores

in resampling, with the help of future information. The auxiliary particle filter (Pitt and

Shephard, 1999) conducts resampling with the priority score β
(i)
t = w

(i)
t p(yt+1 | xt). The

delayed sampling method (Chen et al., 2000; Lin et al., 2013) looks ahead ∆ steps, and uses

β
(i)
t = w

(i)
t p(yt+1, . . . , yt+∆ | xt).

In emulations for the optimizations, we are more interested in generating samples in the

high probability density region of π(xT ). Hence our problem is essentially a smoothing prob-

lem. Briers et al. (2010) proposed using a generalization of the two-filter smoothing formula

to sample approximately from the joint distribution π(xT ). Additional local Markov Chain

Monte Carlo (MCMC) moves can be adopted to mitigate degeneracy (Gilks and Berzuini,

2001). Many other SMC smoothing algorithm implementations reduce the potential degen-

eracy in samples; see, for example, Godsill et al. (2004); Del Moral et al. (2010); Briers et al.

Statistica Sinica: Preprint 
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(2010); Guarniero et al. (2017).

3.2 Finding the Most Likely Path

With emulation, finding the optimum of f(x) is now equivalent to finding the mode, or the

most likely state path (MLP), of π(xT ),

x∗
T = argmax

xT∈XT

π(xT | yT ), (3.1)

with π(xT | yT ) defined in (2.5) and X being the common support for all latent variables.

By construction, the mode, which is the optimum of f(x), does not depend on κ used in

(2.6).

In this article, we focus on finding the MLP from Monte Carlo samples. A set of weighted

Monte Carlo samples from the distribution π(xT ) can be generated using the SMC and its

various implementation schemes. Let {(x(i)
T , w

(i)
T )}i=1,...,n be the samples drawn from the

emulated state-space model using the SMC algorithm in Figure 1. A natural and easy way

is to use the empirical MAP path, such that

x̂
(map)
T = argmax

xT∈{x(i)
T }i=1,...,n

π(xT | yT ). (3.2)

Although the empirical MAP involves the least computation given the Monte Carlo samples,

it usually requires a very large sample size to achieve high accuracy, especially when the

dimension T is large.

Note that the MLP is the same under different κ. However, the distribution π(xT | yT , κ)

is more flat for small κ (high temperature), and is more concentrated around the MLP for

Statistica Sinica: Preprint 
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large κ. Hence, the empirical MAP path tends to be more accurate if the Monte Carlo

samples are generated from the target distribution with large κ. When κ is sufficiently

large, the average sample path is also a good estimate of the MAP. However, it is much

more difficult to generate Monte Carlo samples with large κ, because of the tendency to be

trapped in a local optimum. Simulated annealing gradually modifies the easily generated

samples at a higher temperature to obtain samples from a lower temperature system with

more accurate estimates.

3.3 Annealed SMC

We propose a simulated annealing algorithm for the SMC on state-space models. The idea

comes from the thermodynamics analogue discussed in the previous section. When the

function ξ(·) is chosen to be Boltzmann-like, as in (2.6), the Monte Carlo samples from the

emulated state-space model correspond to a random sample set from the non-interacting

particles in a thermodynamic equilibrium system, as discussed in Section 2.2.

If the temperature cools to zero sufficiently slowly that the system is approximately in

thermodynamic equilibrium for any temperature in between, all particles will condense to

the base energy level. The idea of simulated annealing as an analogy of the physical system

was proposed and discussed in Kirkpatrick et al. (1983).

To mimic the thermodynamic procedure, we propose the following system to simulate

the annealing procedure for the SMC samples. Let 0 < κ0 < κ1 < · · · < κK be an increasing

sequence of inverse temperatures. Suppose at κ0, a base emulated state-space model is

Statistica Sinica: Preprint 
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constructed as

π(xT ;κ0) ∝ e−κ0f(xT ) ∝ p0(x0)
T∏
t=1

pt(xt | xt−1)gt(yt | xt). (3.3)

At a higher inverse temperature κk, an emulated state-space model can be induced from

(3.3) such that

π(xT ;κk) ∝ e−κkf(xT ) ∝ p0(x0;κk)
T∏
t=1

pt(xt | xt−1;κk)gt(yt | xt;κk), (3.4)

where pt(xt | xt−1;κk) ∝ [pt(xt | xt−1)]
κk/κ0 and gt(yt | xt;κk) ∝ [gt(yt | xt)]

κk/κ0 are the

corresponding state equations and observation equations, respectively at κk. The start-

ing inverse temperature κ0 is usually chosen to be relatively small, such that the function

π(xT ;κ0) ∝ e−κ0f(xT ) is relatively flat and is easy to sample from using the SMC. We start

with κ0, and draw {(x(j)
0,T , w

(j)
0,T )}j=1,...,m from the base emulated state-space model π(xT ;κ0).

For k = 1, . . . , K, new samples {(x(j)
k,T , w

(j)
k,T )}j=1,...,m are drawn with respect to the distribu-

tion π(xT ;κk), using the samples {(x(j)
k−1,T , w

(j)
k−1,T )}j=1,...,m obtained at κk−1. The procedure

is depicted in Figure 2. The annealed SMC uses the following proposal distribution at

temperature κk:

qk,t(xt | xt−1;κk) ∝ p̂k,t(xt | xt−1;κk−1), (3.5)

where the conditional distribution p̂k,t(xt | xt−1;κk−1) is an estimate of πT (xt | xt−1;κk−1),

and can be obtained from the Monte Carlo samples {(x(j)
k−1,T , w

(j)
k−1,T )}j=1,...,m under κk−1. We

discuss how to obtain such an estimate later. Because κ increases slowly, πT (xt | xt−1;κk−1)

and πT (xt | xt−1;κk) are reasonably close. With a sufficiently large terminating κK , samples
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Figure 2: Annealed Sequential Monte Carlo Algorithm

• Draw {(x(j)
0,T , w

(j)
0,T )}j=1,...,m from π(xT ;κ0) with SMC in Figure 1, using a set of pro-

posal distributions q1,t(xt | xt−1;κ0).

• For k = 1, . . . , K, draw {(x(j)
k,T , w

(j)
k,T )}j=1,...,m from π(xT ;κk) with SMC in Figure 1

using the proposal distribution

qk,t(xt | xt−1;κk) ∝ p̂k,t(xt | x(j)
k,t−1),

where the right hand side is an estimate of πT (xt | xt−1;κk−1).

• Estimate the most likely path from {(x(j)
K,T , w

(j)
K,T )}j=1,...,m.

from the target distribution π(xT ;κK) are highly concentrated around the true optimal path

x∗
T , and hence are useful for inferring the most likely path.

In summary, the annealed SMC provides an iterative procedure for the difficult sampling

problem under κK by using samples obtained at a higher temperature. On the one hand, the

annealed SMC provides a relatively “flat” and easy-to-sample starting distribution π(xT ;κ0),

and designs a slow-changing path connecting π(xT ;κ0) to the desired “sharp” distribution

π(xT ;κK). On the other hand, for each iteration k = 1, . . . , K, the annealed SMC adopts an

optimal proposal distribution p(xt | xt−1,yT ;κk−1) based on the full information set yT , and

is usually difficult to evaluate in conventional SMC implementations. In the annealed SMC,

the proposal distribution is estimated by using sample paths from the previous iteration. The
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details of estimating the proposal distribution are discussed in the Supplementary Material.

Our annealing framework falls into the general framework of simulated annealing. The

design of temperature sequences {κk}k=0,...,K is known as the “cooling schedule”. Kirkpatrick

et al. (1983) uses an exponential schedule such that κk = αkκ0, for some positive number α.

A more conservative schedule such that κk ∝ log(1 + k) is suggested by Hajek (1988) and

Aarts and Korst (1989) to ensure convergence to a global minimum. Ingber (1989) proposed

a fast adaptive cooling schedule that allows the temperature to increase (or κ to decrease)

in order to regain the broadness of the samples at a certain point. The specific choice of

cooling schedule is beyond the scope of this study. By default, we choose the most aggressive

exponential schedule, with a picked value of α for faster convergence, in the example section,

and the results are promising.

The conventional simulated annealing algorithm (Kirkpatrick et al., 1983) is a variation

of the MCMC method, which adapts the Metropolis–Hastings algorithm (Metropolis et al.,

1953; Hastings, 1970) with an extra temperature control. The convergence of the conven-

tional simulated annealing algorithm is given by Granville et al. (1994). In contrast, the

annealed SMC does not require a mixing condition, as is usually the case in MCMC algo-

rithms. At each iteration at κk, the samples are always properly weighted with respect to

the target distribution π(xT ;κk), because of the weight adjustments. The convergence of

the SMC is discussed in Crisan and Doucet (2000).

The terminology “annealed SMC” is also used by Ulker et al. (2011) and Wang et al.

(2019), although differently to how we use it in our method. The method of Ulker et al. (2011)
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and Wang et al. (2019) (henceforth, “SMC annealing”) constructs an annealing sequence of

intermediate target distributions πt(x), indexed by t = 0, . . . , T , with π0(x) as the beginning

distribution and πT (x) as the terminating distribution. The goal the method is to generate a

set of samples that follow the terminating distribution by starting from samples that follow

a relatively flat beginning distribution. SMC techniques are used when translating samples

from the current distribution πt(x) to the next πt+1(x) by adopting an MCMC move as the

proposal distribution. Our method also constructs a sequence of annealed target distributions

πk(xT | κk), with the optimization using a Monte Carlo of a (near) degenerated terminating

distribution. In our method, within each temperature (κk), we use the SMC to sample

the high-dimensional xT under a dynamic system setup. The sequence of SMC proposal

distributions within each temperature uses the information contained in the Monte Carlo

samples from the previous temperature.

More specifically, there are three major differences between the proposed method and the

SMC annealing method. First, the goal of SMC annealing is to draw samples from a target

distribution (usually the posterior) that is difficult to sample from directly. The goal of our

algorithm is to find the optimum such that the terminating distribution is proportional to

the original one, raised to an arbitrarily high power. Second, our method solves the problem

when x itself is high dimensional with a dynamic structure, for which the SMC is used to

sequentially sample the components of x, whereas SMC annealing deals with relatively lower

dimensional x, without needing SMC sampling. Third, SMC annealing uses the SMC on

the sequence of annealing distributions, whereas our method performs as SMC within each
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annealing temperature, and uses the samples from the previous iteration to construct the

internal SMC propagation proposal step in the subsequent temperature.

3.4 Path refinement using the Viterbi algorithm

A more accurate estimate of the mode can be obtained by using the Viterbi algorithm

(Viterbi, 1967) on the discrete space consisting of the SMC samples. The Viterbi algorithm

is a dynamic programming algorithm originally used to solve the MLP problem in hidden

Markov models, where the hidden states are finite. Let At = {a(j)t }j=1,...,m be the grid points

for xt, and Ω = A1×· · ·×AT be the Cartesian product of the grid point sets. In state-space

models, the Viterbi algorithm searches for the maximum over all possible combinations of

the grid points in Ω. Specifically, the MLP obtained by the Viterbi algorithm is

x̂T
(viterbi) = argmax

xT∈Ω
π(xT | yT ). (3.6)

The Viterbi algorithm for state-space models based on the grid points {a(j)1 }j=1,...,m, . . . ,

{a(j)T }j=1,...,m is depicted in Figure 3.

Although the original Viterbi algorithm was designed for discrete state spaces, we adopt

it for continuous state spaces by discretizing the state space into a set of selected finite

grid points at each time point. The performance depends on the “quality” of the selected

grid points (e.g., how densely close to the underlying optimal path) and on the number of

grid points used. Here, we use the generated Monte Carlo samples as the discretizing grid

points. Because these samples follow the target distribution at a low temperature, they

should concentrate in the important regions.
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Figure 3: Viterbi Algorithm for Markovian State-Space Models

• Let At = {a(j)t }j=1,...,m be a set of grid points for xt for t = 1, . . . , T .

• At time 1, initialize ℓ
(j)
0 = 0 and x̂

(j)
1 = a

(j)
1 for j = 1, . . . ,m.

• At each time t = 2, . . . , T , for j = 1, . . . ,m, set

ℓ
(j)
t = max

k∈{1,...,m}
ℓ
(k)
t−1pt(a

(j)
t | x̂

(k)
t−1)gt(yt | a

(j)
t ), (3.7)

and set x̂
(i)
t = (x̂

(k∗j )

t−1 , a
(j)
t ), where j∗j is the optimal point of (3.7).

• Return x̂
(j∗)
T , where j∗ = argmaxj∈{1,...,m} ℓ

(j)
T .

For example, one can setAt = {x(i)
t }i=1,...,m such that Ω = {x(i)

1 }i=1,...,m×· · ·×{x(i)
T }i=1,...,m

is the joint set of all SMC sample points. Running the Viterbi algorithm through these sam-

ples improves the result from the Monte Carlo samples, but does not obtain the underlying

optimal path in the continuous space. Therefore, we refer to this step as “refinement” rather

than “optimization”.

One can also add and remove grids points to expand the coverage, with more detail

around the more important state paths. For instance, in the lasso regression example in the

Supplement Material, a Viterbi refinement helps to shrink the estimate of the zero coefficients

to exactly zero.

The Viterbi algorithm explores all combinations of sample points, and results in a better

mode estimation than that of the empirical MAP in (3.2). However, it has limitations
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in terms of implementation with state-space models. One limitation is that the Viterbi

algorithm works only on Markovian state-space models. In addition, it works only with a

nonsingular state evolution in which the degrees of freedom is the same as the state variable

dimension. Otherwise, the state paths cannot be re-assembled by the Viterbi algorithm.

For example, in the cubic spline problem, the state evolution is singular. Although one

can reduce the dimension of the state variable to make the evolution nonsingular, the state

evolution then becomes non-Markovian. Another limitation is the requirement of the Monte

Carlo sample size. The Monte Carlo samples induced by Ω provide a discretization of the

support X for each time t. The accuracy of the Viterbi algorithm depends strongly on the

discretization quality, especially when X is continuous. In general, the denser the Monte

Carlo samples are around the true MLP, the more accurate the Viterbi algorithm solution is.

As a result, it often requires a large Monte Carlo sample size to generate better discretization

and to achieve high accuracy. To reduce the path error ∥x̂(viterbi)
1:T − x∗

1:T∥ by half, the Monte

Carlo sample size m needs to be doubled, because the discretization size is reduced by half,

on average, when the sample size doubles. On the other hand, the computational cost

increases quadratically with the sample size m. One way to improve this is to apply the

Viterbi algorithm iteratively by shrinking to the high value region of the previous iteration,

and regenerating grid points there. However, similar to an iterative grid search, the iterative

Viterbi algorithm may yield a suboptimal solution.
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4. Simulation Results

In this section, we provide simulated results for the annealed SMC in terms of finding the

most likely path for the two emulated state-space models from Section 2.3.

Note that the smoothing spline problem has a closed-form solution. Even in the emulated

state-space model setting, the Kalman filter provides the exact solution. It is used for

illustration purposes only. On the other hand, the optimal trading path problem is not

trivial, and is a real application to which the proposed method is ideally suited, especially

when nonlinear solvers usually give less accurate solutions.

Two additional examples are provided in the Supplementary Material. We aim to demon-

strate the flexibility of the proposed method by solving existing optimization problems with

some new applications, though our approach may not yield better performance than that of

specially designed optimization algorithms for general problems.

4.1 Cubic Smoothing Spline

In this simulation study, we consider the cubic smoothing spline problem in Section 2.3.1.

The observations are generated by yt = sin(9(t − 1)/100) + ζt, for t = 1, . . . , 50, with

ζt ∼ N (0, 1/16), and we fix λ = 10 in the objective function (2.7).

Because the dynamic system is linear and Gaussian, the most likely path is obtained by

the Kalman smoother (Kalman, 1960). We use this as the benchmark. We start from the

initial inverse temperature κ = κ0 = 4. Figure 4 demonstrates m = 1000 samples (in gray)
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drawn from the target distribution π(xT | yT ;κ0) ∝ [π(xT | yT )]
κ0 by the SMC algorithm

described in Figure 1, along with the observations yT (the solid line) and the true most likely

path (the dashed line).

Figure 4: Sample paths at κ0 = 4.

The proposal distribution qt(·) used at κ0 is chosen to be proportional to pt(xt | xt−1)gt(yt |

xt). At each time t, ηt is drawn from the proposal distribution qt(ηt | at−1, bt−1, ct−1, yt), which

is Gaussian. Resampling is conducted when the effective sample size (ESS) defined in (4.1)

is less than 0.3m:

ESS =
(
∑m

i=1 w
(i)
t )2∑m

i=1(w
(i)
t )2

. (4.1)

To find the most likely path stochastically and numerically, we apply the annealed SMC

approach in Figure 2 with a predetermined sequence of inverted temperatures κk = 1.5kκ0,

for k = 1, . . . , 16. The proposal distribution for the annealed SMC is estimated using the

parametric approach (see the Supplementary Material). Specifically, because the innovation

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0120



26 CHENCHENG CAI AND RONG CHEN

Figure 5: Sample paths at different κ’s

in the state equation is of one dimension, at κk, we need only to generate proposal samples

for ct. To do so, we first fit {(c(j)k−1,t, a
(j)
k−1,t−1, b

(j)
k−1,t−1, c

(j)
k−1,t−1)}j=1,...,m with a multivariate

Gaussian distribution, and then sample from the conditional distribution. To prevent de-

generacy, the resampling step is only conducted at the end of each annealed SMC iteration,

and after each iteration, one post-MCMC move is conducted to regenerate the sample states.

The post-MCMC move uses blocked Gibbs sampling (Jensen et al., 1995), owing to the spe-

cial structure of the state dynamic. At each iteration of the Gibbs sampling, (xt, xt+1, xt+2)

are updated together.

Figure 5 shows the sample paths (after the post-MCMC step) at the end of different
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annealed SMC iterations. When the temperature shrinks to zero as κ increases, the sample

paths move to a small neighborhood region around the true most likely path. Figure 6 shows

the value of the objective function at the weighted average path of the samples for different

numbers of iterations. The true optimal value (the objective function value at the optimal

path) obtained by the Kalman smoother is plotted as the dashed horizontal line. As the

number of iterations increases, the objective function value at the averaged path decreases

stochastically, and converges at roughly the seventh iteration.

Figure 6: Value of the objective function against the number of iterations

To compare the computational efficiency, we record the computing time needed for differ-

ent approaches, as follows. The Kalman smoother takes 2.2 ms, Scipy minimizer takes 129.6

ms and the annealed SMC takes 232.9 ms. The Scipy approach uses the nonlinear optimizer

provided by the python package Scipy (Jones et al., 2001), which implements the Broyden–

Fletcher–Goldfarb–Shanno (BFGS) algorithm by default. The annealed SMC records the
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time until convergence (the time when the value of the objective function is not improved

by further iteration). The Kalman smoother is the fastest one to find the most likely path

for linear Gaussian models, owing to its deterministic nature. The annealed SMC is slower

than the nonlinear solver program provided by Scipy, but achieves similar accuracy. Note

that this is a simple convex optimization problem in which a straightforward optimization

algorithm such as the Scipy performs well. Our estimation approach is more flexible, and

this example serves as an illustration of how the algorithm works.

4.2 Optimal Trading Path

In this simulation, we consider the optimal trading path problem in Section 2.3.2. Following

Cai et al. (2018), we set T = 20, σ2
x = 0.25, σ2

y = 1, and α = 0.5. The ideal trading path is

given by

yt = 25 exp{−(t+ 1)/8} − 40 exp{−(t+ 1)/4}.

We start from the initial temperature κ = κ0 = 1.0. The sample paths at κ0 are drawn

using the constrained SMC (Cai et al., 2018), where the resampling step is performed with

the priority scores βt(xt) ∝ p̂(yt+1, . . . , yT | xt). The priority scores are estimated from a set

of backward pilot samples (Cai et al., 2018). In this example, we use m∗ = 300 backward

pilot samples. The resulting m = 1000 (forward) sample paths are shown in Figure 7. The

observations y1, . . . , yT , which represent the ideal optimal trading strategy without trading

costs, are plotted as the solid line. An estimated path (dashed line) is provided by the Scipy

nonlinear optimization algorithm.
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Figure 7: Sample paths at κ0

We use the following sequence of inverted temperatures for annealing: κk = 2kκ0, for k =

1, . . . , 20. The proposal distribution in the annealed SMC is sampled using the parametric

approach by approximating the joint distribution of xk−1,t and xk−1,t−1 with a bivariate

normal distribution. The annealed m = 1000 sample paths are resampled at the end of

each iteration, and no post-MCMC step is conducted. Samples at several different inverted

temperatures are shown in Figure 8. We use the sample average as our estimator for the

most likely path. The value of the objective function at the sample average path decreases

stochastically, as shown in Figure 9, eventually converging to around the 11th iteration.

The optimal objective function value achieved by the annealed SMC is 89.459, whereas that

obtained by the Scipy nonlinear optimizer is 89.462. The values of the objective function at

the sample paths at the 20th iteration have an average of 89.459 and a standard deviation
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of 1.09× 10−5. The annealed SMC gains some improvement in accuracy at the cost of extra

computation. The Scipy nonlinear optimizer takes 78 ms, and the annealed SMC takes 1.820

s for the initial emulated model (including the time for backward sampling) and costs around

2 ms for each subsequent iteration. Sampling from the base emulated model costs much more

than in subsequent iterations for two reasons. First, it requires a large sample size for the

base model, because of high degeneracy. Second, the end point constraint is imposed and

an additional backward pilot run is needed to reduce degeneracy.

Figure 8: Sample paths at different κ’s
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Figure 9: Value of the objective function against the number of iterations

5. Conclusion

In this article, we have proposed a general framework for state-space model emulation in

high-dimensional optimization problems. The main idea of emulation is to change the goal

from optimization to sampling. We have demonstrated that by constructing a proper state-

space model, many high-dimensional optimization problems can be reformulated in terms

of finding the optimal (most likely) path under the state-space model. In order to reduce

the accuracy loss due to the nature of sampling, we propose the annealing steps with an

extremely sharp terminating distribution, where the samples, though random, are highly

concentrated around the optimum (the most likely path). We demonstrate the procedure

of state-space model emulation using two conventional problems in the main content and in

two additional problems given in the Supplementary Material and show how they can be

solved using the proposed annealed SMC approach.
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The proposed annealed SMC approach shares some properties with traditional simu-

lated annealing methods. Both can optimize a wide range of objective functions, including

nonconvex functions and multi-modal functions, and both often require a heavier computa-

tion cost than the simpler standard optimization algorithms, such as the gradient descent

algorithms. However, the annealed SMC approach for state-space models differs from the

traditional simulated annealing methods with an MCMC for stochastic optimization in the

following ways. First, emulating an optimization problem as a state-space model is advan-

tageous when the problem is high dimensional, and when the system is inherently dynamic

(such as the trading path problem or the ℓ1 trend filtering problem) or when the parameters

to be estimated inherently play similar roles in the problem (such as the parameters in the

regression problem). Second, the SMC as an alternative to the MCMC has certain advan-

tages in many fixed-dimensional problems, such as those in which the “dependence” between

the parameters in the emulated target distribution is local and (locally) very strong. In such

problems, the MCMC encounters slow mixing difficulties, whereas the SMC naturally takes

advantage of such properties. Third, given any temperature, the SMC samples target the

equilibrium distribution, whereas the MCMC samples often move toward the target distri-

bution gradually. Hence, the annealed SMC may tolerate a faster cooling schedule. Fourth,

the inherited parallel structure of the SMC allows for faster computation, and enables better

adaption to multi-modal problems.

The state-space model emulation and the annealed SMC provide an alternative way to

solve high-dimensional optimization problems. Of course, the approach may not be suit-
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able for all problems, owing to its high computational cost and its requirement of certain

structures. Nevertheless, the proposed approach is a useful high-dimensional optimization

method for a wide range of complex problems that more traditional methods struggle to

solve. Although the examples presented here do not demonstrate a significant improvement

of the state-space emulation approach over the traditional one, they effectively show how to

implement, and how to use it for other problems.

Supplementary Material

The online Supplementary Material contains technical details related to the annealed SMC

algorithm, and two additional emulation examples with simulation results.
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