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Abstract: In this article, we propose a flexible model-free approach to the regression analysis of a tensor

response and a vector predictor. Without specifying the specific form of the regression mean function,

we consider two closely related statistical problems: (i) estimation of the dimension reduction subspace

that captures all the variations in the regression mean function, and (ii) hypothesis testing of whether the

conditional expectation of a linear dimension reduction of the response given the predictor is invariant to

the changes in the predictor. We propose a new nonparametric metric called tensor martingale difference

divergence, and study its statistical properties. Built on this new metric, we develop computationally effi-

cient estimation and asymptotically valid testing procedures. We demonstrate the efficacy of our method

through both simulations and two real data applications for macroeconomics and e-commerce.
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1. Introduction

Tensor data is now becoming ubiquitous in a wide range of scientific and business applica-

tions. For instance, in economics, multiple macroeconomic indices at varying time points

across different countries are assembled as a three-way tensor. In neuroscience, images ob-

tained by anatomical or functional magnetic resonance imaging take the form of three-way

or four-way tensors. Tensor data analysis is thriving in statistics and machine learning in

recent years. See Bi et al. (2021), Sun et al. (2021) for reviews.

A central question in tensor analysis is finding meaningful low-dimensional tensor

structures given the complex and high-dimensional tensor data. There is a line of research

modeling the tensor as predictor or response in a regression setting. Early tensor predictor

regression solutions focus on parametric and usually linear or generalized linear type models

(Zhou et al. 2013, Li et al. 2018, Zhang & Li 2017, Chen et al. 2019). More recently, Hao

et al. (2021), Zhou et al. (2024) extended tensor predictor regression to nonparametric mod-

els through basis expansion. Relatedly, Rabusseau & Kadri (2016), Li & Zhang (2017), Sun

& Li (2017) studied tensor response regression under different low-dimensional structures,

but all assumed linear association models and often assumed the normality distribution.

There is another line of research focusing on sufficient dimension reduction (SDR) with-

out losing any regression information and without imposing any specific model form; see

Li (2018) for a review. While most SDR solutions consider vector-valued regression, there

have been extensions to matrix or tensor-valued regression (Li et al. 2010, Xue & Yin 2014,
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Ding & Cook 2015, Sheng & Yuan 2020, Wang et al. 2022). Nevertheless, they all targeted

tensor predictor instead of tensor response.

In this article, we propose a flexible and assumption-lean approach for tensor response

regressions. Particularly, we seek linear subspaces that transform the tensor response into

two parts: a low-dimensional part that contains all relevant mean function information, and

the orthogonal part that is invariant to the change of the predictor values. Consequently,

it effectively reduces the number of free parameters while retaining both the tensor struc-

ture and full regression mean information. It also lends naturally to sparse estimation and

prediction. Furthermore, we develop a mean independence test using wild bootstrap to as-

sess whether a linear reduction of tensor is mean independent of another random vector. We

achieve our goals by generalizing the martingale difference divergence metric of Lee & Shao

(2018) from vector response to tensor response, which fully quantifies the mean dependence

between a tensor response and a vector predictor in a model-free fashion. Our proposal is

nonparametric in nature, and does not impose any specific model forms or data distributions.

This differentiates our solution from most of existing tensor analyses. Meanwhile, the ex-

tension from the vector case SDR and martingale difference divergence to the tensor case is

far from trivial, and requires utterly new techniques. On the application side, our approach

provides a useful tool for numerous types of applications. One example is neuroscience,

where the scientific interest is to identify brain regions that exhibit different patterns based

on magnetic resonance imaging between groups of patients with a neurological disorder and
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healthy controls. Another example is educational study, where the interest is to understand

the effect of trainings towards students’ grades of series of testings in various courses. A

third example is economics, where the interest is to predict different types of housing prices

from different locations based on the macroeconomic indices such as interest rate, unem-

ployment rate, and stock prices. All these questions can be formulated as regressions with a

tensor response and a vector predictor.

The rest of the article is organized as follows. Section 2 presents our mean dimension

reduction approach, and Section 3 develops a mean independence test. Section 4 presents the

simulations, and Section 5 shows data applications. Section 6 concludes with a discussion,

and the Supplementary Materials collect proofs and additional numerical results.

2. Mean Dimension Reduction

2.1 Flexible tensor response regression model

We consider an order-m response tensor Y ∈ Rr1×···×rm , and a vector predictor X ∈ Rp.

We impose a mild finite moment condition that E (∥Y∥2F + ∥X∥2) < ∞, where ∥ · ∥F is

the Frobenius norm. We begin with a quick review of the linear tensor response regression

model of Li & Zhang (2017),

Y = B̃ ×(m+1) X + ϵ, (2.1)

where the error tensor ϵ ∈ Rr1×r2×...×rm is independent of X and normally distributed, with

E(ϵ) = 0 and cov{vec(ϵ)} having a separable Kronecker covariance structure, and B̃×(m+1)
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X is the (m+1)-mode product where each element is the product of mode-(m+1) fiber of

B̃ multiplied by X . The coefficient tensor B̃ ∈ Rr1×···×rm×p is of a Tucker decomposition

structure (Kolda & Bader 2009), B̃ = JΦ;B1, B2, . . . , Bm, IpK =
∑u1

j1=1 . . .
∑um

jm=1 b1,j1 ◦

· · · ◦ bm,jm ◦ ϕj1,...,jm , where Φ = (ϕk1,...,km) ∈ Ru1×...×um×p, Bk = (bk,1, · · · , bk,uk
) ∈

Rrk×uk , uk < rk, k = 1, . . . ,m, and ◦ is the vector outer product. Their goal was to uncover

the subspaces span(Bk), k = 1, . . . ,m to reduce the dimension of Y .

Next, we generalize the parametric model of (2.1), by considering a more flexible, non-

parametric mean function, while imposing no distributional assumption on the error term.

Specifically, we consider

Y = E(Y | X) + ε = B ×(m+1) f(X) + ε, (2.2)

where the error tensor ε ∈ Rr1×r2×...×rm satisfies that E(ε | X) = 0, and f(·) : Rp → Rv is

an arbitrary function. We further assume the coefficient tensor B = JΘ; β1, β2, . . . , βm, IvK ∈

Rr1×...×rm×v, where Θ ∈ Rd1×...×dm×v, βk ∈ Rrk×dk , dk < rk, k = 1, . . . ,m. Our goal is to

uncover {span(βk)}mk=1 that captures all regression mean information of Y|X under (2.2).

We make a few remarks. First, the coefficient tensor B and the function f in (2.2) are

not fully identifiable, but their product E(Y | X) = B ×(m+1) f(X) is unique. Relatedly,

each basis matrix βk is not identifiable, but the corresponding subspace span(βk) is unique

in (2.2). Therefore, in our dimension reduction inquiry, we seek to uncover {span(βk)}mk=1.

Second, our goal differs from that of Li & Zhang (2017). Both aim to reduce the dimension

of a tensor response. However, Li & Zhang (2017) targeted the conditional mean while

5

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0075



accounting for the variance of Y given X under the linear model (2.1), whereas we target

the conditional mean without imposing any distributional or linear model assumptions.

2.2 Tensor martingale difference divergence

We first briefly review the notion of martingale difference divergence proposed by Lee &

Shao (2018), which quantifies the dependence between two random vectors. Specifically,

for U ∈ Ru and V ∈ Rv satisfying E(∥U∥2 + ∥V ∥2) < ∞, define the martingale difference

divergence matrix (MDDM) as,

M(V | U) = −E [{V − E(V )}{V ′ − E(V ′)}T∥U − U ′∥] ∈ Rv×v, (2.3)

where (U ′, V ′) is an independent copy of (U, V ), and ∥ · ∥ is the Euclidean norm. By

definition, M(V | U) is a symmetric and positive semi-definite matrix. It characterizes the

dependence of the conditional mean function E(V |U) on U , in that, when E(V |U)− E(V )

lies within a lower-dimensional subspace, the eigenvectors of M(V | U) span the same

subspace (Lee & Shao 2018).

Next, we extend this notion to the tensor case, and develop the concept of tensor

martingale difference divergence, which is a set of symmetric positive semi-definite ma-

trices. For the tensor Y , its mode-k matricization, Y(k), maps Y into an rk ×
∏

j ̸=k rj

matrix so that the (i1, . . . , im)th element of Y maps to the (ik, j)th element of Y(k), with

j = 1 +
∑

k′ ̸=k(ik′ − 1)
∏

k′′<k′,k′′ ̸=k rk′′ .

Definition 1 Suppose E(∥X∥2 + ∥Y∥2F ) < ∞. Let µ(k) = E(Y(k)). Define the mode-k
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tensor martingale difference divergence between Y and X as,

M (k)(Y | X) = −E
{(

Y(k) − µ(k)

)(
Y ′

(k) − µ(k)

)T
∥∥X −X ′∥∥} ∈ Rrk×rk ,

Collectively, define the tensor martingale difference divergence as the set,

M(Y | X) =
{
M (1)(Y | X), . . . ,M (m)(Y | X)

}
.

Let Ek denote the column space spanned by M (k)(Y | X), i.e., Ek = span
{
M (k)(Y |

X)
}
⊆ Rrk , and let E⊥

k denote its complement space. We next establish some properties

of M(Y | X) through Ek, and also the connection between M(Y | X) and its MDDM

counterpart for the vector case.

Proposition 1 The following statements are true about Ek.

(i) E(Y ×(k) Qk | X) = E(Y ×(k) Qk) almost surely, where Qk is the projection onto E⊥
k .

(ii) Ek =
∑

j span
{
M(Y(k),j | X)

}
, where Y(k),j ∈ Rrk is the jth column of Y(k).

(iii) dk = dim(Ek) = rank{M (k)(Y | X)}.

Proposition 1 suggests a way to decompose the conditional mean E(Y | X) into two

parts: a part that contains all relevant information, plus an orthogonal part that is totally

irrelevant. That is,

E(Y | X) = E(Y ×(k) Pk | X) + E(Y ×(k) Qk | X) = E(Y ×(k) Pk | X) + E(Y ×(k) Qk),
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for k = 1, . . . ,m, where Pk is the projection onto Ek. In other words, {Ek}mk=1 fully captures

all the changes in the mean function, and M(Y | X) captures all necessary information

regarding E(Y | X). Combined with model (2.2), Proposition 1 implies that

Ek = span(βk), dk = dim{span(βk)}.

We thus estimate {span(βk)}mk=1 through M(Y | X). Furthermore, Proposition 1 estab-

lishes the connection between M(Y | X) and the individual columns of the mode-k matri-

cization of Y , based on which we develop our estimation and testing methods.

2.3 Subspace and dimension estimation

Given the data observations {(Xi,Yi)}ni=1, we obtain the sample estimate of M (k)(Y | X),

M̂ (k)(Y | X) = − 1

n2

∑
i,i′

{
(Yi)(k) − Y(k)

}{
(Yi′)(k) − Y(k)

}T ∥Xi −Xi′∥, (2.4)

where Y(k) is the sample mean of Y(k), k = 1, . . . ,m. Let
{
λ̂
(k)
j

}rk

j=1
denote the eigenval-

ues in the descending order, and
{
γ̂
(k)
j

}rk

j=1
the corresponding eigenvectors of the matrix

M̂ (k)(Y | X). We propose to estimate Ek = span(βk) by the space spanned by
{
γ̂
(k)
j

}d̂k

j=1
,

where d̂k is the estimated dimension that we discuss later. We note that the computation is

fast, as it only involves matrix spectral decompositions.

Let
{
λ
(k)
j

}rk

j=1
denote the eigenvalues in the descending order, and

{
γ
(k)
j

}rk

j=1
the corre-

sponding eigenvectors of M (k)(Y | X). From Section 2.2, we have that λ(k)
1 > λ

(k)
2 > . . . >

λ
(k)
dk

> λ
(k)
dk+1 = . . . = λ

(k)
rk = 0. The next two theorems justify our proposed estimator. The
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first is derived under the setting where the dimension rk is fixed, while the second is derived

when rk diverges and other dimensions dk, p are all fixed.

Theorem 1 Suppose E (∥X∥2 + ∥Y∥2F ) < ∞ and E(∥X − µX∥2∥Y − µ∥2F ) < ∞, where

µX = E(X), µ = E(Y). Suppose rk is fixed, k = 1, . . . ,m. Then,∥∥γ̂(k)
j − γ

(k)
j

∥∥ = Op(n
−1/2), j = 1, . . . , dk, k = 1, . . . ,m.

Theorem 2 Suppose E (∥X∥2 + ∥Y∥2F ) < ∞, E(∥X − µX∥2∥Y − µ∥2F ) < ∞, E(∥X −

µX∥∥Y − µ∥2F ) < ∞, and r2k/n → 0 as n → ∞ for k = 1, . . . ,m. Then,

∥∥γ̂(k)
j − γ

(k)
j

∥∥ →p 0, j = 1, . . . , dk, k = 1, . . . ,m.

Next, we propose to estimate the subspace dimension dk using the approach of Zhu

et al. (2020), i.e.,

d̂k = argmax1≤j≤rk

{
j :

Ŝ∗
j+1 + c2n

Ŝ∗
j + c2n

≤ τ

}
, where Ŝ∗

j =
Ŝ2
j + c1n

Ŝ2
j+1 + c1n

−1, Ŝj =
λ̂
(k)
j

λ̂
(k)
j + 1

,

(2.5)

τ is a thresholding parameter, and d̂k = 0 if
Ŝ∗
j+1+c2n

Ŝ∗
j+c2n

> τ for all j = 1, . . . , rk. The next

theorem shows that the estimated dimension is consistent.

Theorem 3 Suppose E (∥X∥2 + ∥Y∥2F ) < ∞, E(∥X−µX∥2∥Y−µ∥2F ) < ∞, and c1n → 0,

c2n → 0, c1nc2nn → ∞, and 0 < τ < 1. Then, P(d̂k = dk) → 1, k = 1, . . . ,m, as n → ∞.

Following the recommendation of Zhu et al. (2020), we choose c1n = 0.1log(n)/
√
n,

c2n = 0.2log(n)/
√
n, and τ = 0.8. We also comment that, there are alternative ways to

estimate the dimension dk, e.g., Zhu et al. (2006), Luo et al. (2009), Xia et al. (2015).

9

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0075



2.4 Sparse subspace estimation

To further improve the interpretability of our dimension reduction method, we introduce

sparsity on the elements of the basis {span(βk)}mk=1, and propose to apply the sparse prin-

cipal component analysis (Zou et al. 2006) to obtain a sparse estimate. The algorithm it-

erates between two key steps. In the first step, given an estimate α̂k ∈ Rrk×dk , we seek

β̂k ∈ Rrk×dk , whose lth column β̂kl is obtained from

β̂kl = argminβ∈Rrk (α̂kl − β)TM̂ (k)(Y | X)(α̂kl − β) + λ∥β∥2 + λ1∥β∥1, (2.6)

where α̂kl is the lth column of α̂k, l = 1, . . . , dk, ∥ · ∥1 is the L1 norm, and λ, λ1 are the

tuning parameters. After obtaining β̂kl, we normalize the vector. In the second step, given

the estimate β̂k, we update α̂k = ÛkV̂
T
k , where Ûk, V̂k are the left and right singular vec-

tor matrices of M̂ (k)(Y | X)β̂k. We stop the algorithm when some convergence criterion

is met, e.g., when the difference of two consecutive estimates is below a threshold, e.g.,

10−3. We remark that (2.6) is a direct modification of the sparse principal component anal-

ysis method of Zou et al. (2006), where we replace the sample covariance matrix of X

in the objective function with the tensor MDD M̂ (k). This way, it takes into account the

mean dependence between Y and X , and also allows us to search for sparse {βk}mk=1 under

model (2.2). One may adopt other methods similar to sparse principal component analysis,

e.g., Yuan & Zhang (2013). We choose Zou et al. (2006) for its simplicity and competitive

empirical performance. For the tuning parameters, we follow a similar strategy as the im-
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plementation of (Zou et al. 2006). That is, we choose the number of nonzero elements s

using the BIC criterion of Sun & Li (2017), while we fix the ridge penalty λ = 10−6. We

further carry out a sensitivity analysis in Section B.2 of the Supplementary Materials.

3. Testing Mean Independence

In addition to dimension reduction estimation, another related but crucial question is to test

if the mean of some linear dimension reduction of the response is invariant to the changes

in the predictor. Toward that end, we study the mean independence testing problem. That

is, for a given matrix αk ∈ Rrk×qk , qk < rk, we aim to test the null hypothesis, without

imposing any parametric assumptions, that

H0 : E
(
Y ×(k) α

T

k | X
)
= E

(
Y ×(k) α

T

k

)
almost surely, (3.1)

We test (3.1) again using the tensor MDD M(Y | X), based on the following obser-

vation. When the null (3.1) holds, trace
{
αT
kM

(k)(Y | X)αk

}
= 0, and when the null does

not hold, trace
{
αT
kM

(k)(Y | X)αk

}
> 0. This suggests the following test statistic,

Tn = ntrace
{
αT

kM̃
(k)(Y | X)αk

}
,

where M̃ (k) = 1
n(n−3)

∑
h̸=l ÃhlB̃hl, Ãhl = ahl − a·l − ah· + a··, ahl = ∥Xh − Xl∥, a·l =

1
(n−2)

∑n
h=1 ahl, ah· =

1
(n−2)

∑n
l=1 ahl, a·· =

1
(n−1)(n−2)

∑
h̸=l ahl, and B̃hl is defined simi-

larly as Ãhl with bhl =
1
2

{
(Yh)(k) − (Yl)(k)

}{
(Yh)(k) − (Yl)(k)

}T. Here, we use a different

estimator M̃ (k) of M (k) than the estimator M̂ (k) in (2.4). This is because M̂ (k) is a biased es-
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timator with an asymptotically negligible bias, but M̃ (k) is an unbiased estimator, which can

be shown following Székely & Rizzo (2014). This is crucial for our subsequent bootstrap-

based testing procedure. Relatedly, it is possible to use M̃ (k) for the subspace estimation

in Section 2.3. Nevertheless, we choose M̂ (k) for subspace estimation, mainly because it is

positive semi-definite, which allows us to apply the thresholding double ridge ratio approach

of Zhu et al. (2020) to estimate the dimensions {dk}mk=1.

Theorem 4 Suppose E (∥X∥2 + ∥Y∥2F ) < ∞, and E(∥X − µX∥2∥Y − µ∥2F ) < ∞.

(i) When H0 holds, we have,

Tn
d→

∞∑
l=1

νl(G
2
l − 1),

where {Gl}+∞
l=1 are a sequence of independent standard normal variables, {νl}+∞

l=1 ,

{ϕl(x)}+∞
l=1 are eigenvalues and eigenfunctions, such that J(z, z′) =

∑∞
l=1 νlϕl(z)ϕl(z

′),

z = {x, y} is a sample from the joint distribution of X and Y , J(z, z′) = U(x, x′)

V (y, y′), U(x, x′) = ∥x − x′∥ + E(∥X − X ′∥) − E(∥x − X ′∥) − E(∥X − x′∥),

V (y, y′) = −⟨αT
k (y(k)−µ(k)), α

T
k (y

′
(k)−µ(k))⟩F , ⟨·, ·⟩F is the Frobenius inner product of

two tensors, and ϕk is an orthonormal sequence in that E{ϕh(Z)ϕl(Z)} = I{h = l},

Z = {X,Y} is a random variable from the joint distribution of X and Y .

(ii) When H0 does not hold, we have,

√
n
[
n−1Tn − trace

{
αT

kM
(k)(Y | X)αk

}] d→ Normal(0, 4σ2),

where σ2 = var(K(Z)), K(z) = E[U(x,X)V (y,Y)] ∈ R.
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Noting that the limiting null distribution of Tn involves an infinite sum, we next develop

a wild bootstrap procedure following Lee et al. (2020).

Step 1: Generate the bootstrap statistic, T ∗
n,b = trace

{
1

(n−3)

∑
h̸=l η

(b)
h

(
αT
k ÃhlB̃hlαk

)
η
(b)
l

}
,

where η
(b)
h , h = 1, . . . , n, are i.i.d. random variables with zero mean and unit vari-

ance, e.g., standard normal random variables.

Step 2: Repeat Step 1 for B times, collect {T ∗
n,b}Bb=1, and obtain the (1 − α)th quantile

Q∗
(1−α),n of {T ∗

n,b}Bb=1 under the significance level α.

Step 3: Reject the null hypothesis H0, if Tn is greater than the critical value Q∗
(1−α),n.

The next theorem establishes the asymptotic validity of our bootstrap test, and shows

that it provides a consistent approximation of the limiting null distribution of the test statis-

tic. Recall the definition of the bootstrap consistency (Chang & Park 2003, Li et al. 2003);

i.e., for a bootstrap statistic T ∗
n that depends on the random samples {Zi}ni=1, Zi = {Xi,Yi},

we say T ∗
n converges to T in distribution almost surely (a.s.), if T ∗

n converges to T in distri-

bution for almost every sequence (Z1,Z2, . . .). We denote it as T ∗
n

d∗→ T a.s.

Theorem 5 Suppose E(∥X∥4+∥Y∥8F ) < ∞, E(∥X−µX∥4∥Y −µ∥4F ) < ∞, and E(η4) <

∞. Then, under the null hypothesis H0, we have,

T ∗
n

d∗→
∞∑
l=1

νl(G
2
l − 1) a.s.,

where {νl, Gl}+∞
l=1 are as defined in Theorem 4.
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We make a few remarks. First, our mean independence test can be applied sequentially

to select the dimension dk of the dimension reduction subspace Ek = span(βk). Second,

it is possible to extend the test to assess the mean independence between X and Y by si-

multaneously considering more than one fixed αk. That is, for a set of αkj ∈ Rrkj×qkj ,

H0 : E(Y ×(k1) α
T
k1

×(k2) . . . ×(kw) α
T
kw

| X) = E(Y ×(k1) α
T
k1

×(k2) . . . ×(kw) α
T
kw
) a.s,

for j = 1, . . . , w, w ≤ m, qkj < rkj . Third, our test is built upon and extends Park et al.

(2015), Lee et al. (2020) from vector-valued data to tensor data. This extension, however,

is highly nontrivial. Park et al. (2015) focused on the partial mean independence test be-

tween two vectors controlling for the third vector and developed a permutation test, while

we assess the mean independence between a tensor and a vector and employ bootstrap. Lee

et al. (2020) studied the mean independence for functional data and used a metric defined

specifically for the functional data, whereas we develop a new tensor MDD metric designed

for the tensor data. Besides, our theoretical analysis is utterly new. Considering that there

is a relative paucity of testing methods for tensor data, we view our test a useful addition to

the toolbox of tensor data inference.

4. Simulations

4.1 Non-sparse coefficient tensor

We first examine the finite-sample performance of our dimension reduction method when

the coefficient tensor B is non-sparse. We consider three models,
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Linear model: Y = B ×(m+1) X + 0.1ε,

Nonlinear model I: Y = B ×(m+1) exp|X|+ 0.1ε,

Nonlinear model II: Y = B ×(m+1) X
2 + 0.1ε,

where m = 2, B = JΘ; β1, β2, IpK, the entries of Θ ∈ Rd1×d2×p are randomly generated from

Uniform(0, 1), β1 ∈ Rr1×d1 and β2 ∈ Rr2×d2 are randomly generated from Uniform(−1, 1)

and orthogonalized. The predictors X ∈ Rp are generated from a standard normal distribu-

tion, and the errors vec(ε) are generated from Normal(0, Ir2 ◦ Ir1). We set r1 = r2 = 100,

(d1, d2) = (5, 5), p = 5, and vary the sample size n = {10, 50, 100}.

We apply the proposed method, where we set the reduced dimension at the truth first,

then study the dimension estimation by (2.5) later. We also compare with two alternative ten-

sor response regression methods, the tensor envelope method of Li & Zhang (2017), and the

sparse tensor response regression method of Sun & Li (2017), both of which have assumed

the tensor response linear model. We evaluate the dimension reduction estimation accu-

racy by D(βk, β̂k) = ∥Pk − P̂k∥F = ∥γ(k)(γ(k))T − γ̂(k)(γ̂(k))T∥F , γ(k) = (γ
(k)
1 , . . . , γ

(k)
dk

),

γ̂(k) = (γ̂
(k)
1 , . . . , γ̂

(k)
dk

), where a smaller D indicates a more accurate result.

Table 1 reports the results based on 1000 data replications. For the linear model, the

tensor envelope method performs slightly better than our method when n = 50 and 100,

which is not surprising since the data indeed follows their assumed model. However, it is

interesting to see that our method is superior when the sample size is really small n = 10.

For the nonlinear models, our method consistently outperforms the two alternative solutions
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Table 1: Dimension reduction estimation. Reported are the average and standard deviation of D(βk, β̂k)

based on 1000 replications. Three methods are compared: our tensor martingale difference divergence method

(TMDDM), Li & Zhang (2017, T-Envelope), and Sun & Li (2017, STORE).

TMDDM T-Envelope STORE

Linear model

D(β1, β̂1)

n = 10 0.974 (0.222) 1.978 (0.294) 1.735 (0.295)

n = 50 0.335 (0.037) 0.333 (0.038) 1.127 (0.340)

n = 100 0.229 (0.022) 0.226 (0.022) 0.904 (0.375)

D(β2, β̂2)

n = 10 0.975 (0.217) 1.967 (0.300) 1.729 (0.304)

n = 50 0.335 (0.039) 0.332 (0.038) 1.108 (0.348)

n = 100 0.228 (0.022) 0.225 (0.022) 0.875 (0.371)

Nonlinear model I

D(β1, β̂1)

n = 10 0.513 (0.217) 3.022 (0.280) 1.346 (0.438)

n = 50 0.199 (0.047) 2.595 (0.663) 1.096 (0.420)

n = 100 0.143 (0.027) 2.847 (0.482) 1.066 (0.426)

D(β2, β̂2)

n = 10 0.516 (0.226) 2.994 (0.305) 1.357 (0.428)

n = 50 0.198 (0.047) 1.955 (0.878) 1.106 (0.426)

n = 100 0.143 (0.027) 1.575 (1.018) 1.046 (0.408)

Nonlinear model II

D(β1, β̂1)

n = 10 0.912 (0.345) 3.056 (0.199) 1.619 (0.364)

n = 50 0.370 (0.079) 2.588 (0.610) 1.418 (0.383)

n = 100 0.266 (0.044) 2.646 (0.579) 1.382 (0.389)

D(β2, β̂2)

n = 10 0.913 (0.348) 3.045 (0.201) 1.626 (0.352)

n = 50 0.369 (0.078) 2.315 (0.706) 1.422 (0.378)

n = 100 0.265 (0.044) 2.045 (0.849) 1.390 (0.389)

across all sample sizes. This example illustrates the advantage of our method when there is

no clear indication that the data actually follows a linear model.
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Table 2: Dimension selection. Reported is the percentage of times of that the dimension is correctly selected,

under-selected, and over-selected, out of 1000 data replications.

d̂1 < d1 d̂1 = d1 d̂1 > d1 d̂2 < d2 d̂2 = d2 d̂2 > d2

Linear model

n = 10 10.1 77.1 12.8 9.8 77.1 13.1

n = 50 0.0 100.0 0.0 0.0 100.0 0.0

n = 100 0.0 100.0 0.0 0.0 100.0 0.0

d̂1 < d1 d̂1 = d1 d̂1 > d1 d̂2 < d2 d̂2 = d2 d̂2 > d2

Nonlinear model I

n = 10 1.0 85.4 13.6 1.3 83.8 14.9

n = 50 0.0 100.0 0.0 0.0 100.0 0.0

n = 100 0.0 100.0 0.0 0.0 100.0 0.0

d̂1 < d1 d̂1 = d1 d̂1 > d1 d̂2 < d2 d̂2 = d2 d̂2 > d2

Nonlinear model II

n = 10 15.3 71.8 12.9 14.0 71.4 14.6

n = 50 0.2 99.8 0.0 0.0 100.0 0.0

n = 100 0.0 100.0 0.0 0.0 100.0 0.0

We next examine the performance of dimension selection via (2.5). Table 2 reports the

percentage of times of that the dimension is correctly selected, under-selected, and over-

selected, out of 1000 data replications. We see that (2.5) selects the true dimension fairly

accurately, especially when the sample size is reasonably large.

4.2 Sparse coefficient tensor

We next examine the finite-sample performance when the coefficient tensor B is sparse. We

consider the same models as in Section 4.1, plus another nonlinear model with m = 3,
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Nonlinear model III: Y ∈ Rr1×r2×r3 is generated from nonlinear model I,

but with B following a CP decomposition.

For the first three models with m = 2, we set r1 = r2 = 100, and generate B = JΘ; β1, β2, IpK,

the entries of Θ ∈ Rd1×d2×p are randomly generated from Uniform(0, 1), βk = (bk, 0dk×rk/2)
T,

bk ∈ Rdk×rk/2, k = 1, 2, are generated from Uniform(−1, 1) and orthogonalized. Cor-

respondingly, there are rk/2 nonzero elements in bk, k = 1, 2. For the last model with

m = 3, we set r1 = r2 = r3 = 50, and generate B =
∑5

k=1wkβ1,k ◦ β2,k ◦ . . . ◦ β4,k,

where βk = (bk, 05×rk/2)
T, bk ∈ R5×rk/2, k = 1, 2, 3, are generated from a standard nor-

mal distribution and orthogonalized, β4 is a p × 5 matrix with all entries equal to one, and

(w1, . . . , w5) are generated from a standard normal distribution. We also note that, for this

last model, although B follows a CP decomposition, the β’s are semi-orthogonal, so it is

still of a Tucker form. The semi-orthogonality is to avoid the CP degeneracy; see Zhou et al.

(2021) for more discussion.

We apply the proposed sparse version of our tensor MDD method, where we first fix

λ = 10−6 and s = 50 in this study. We again compare with the tensor envelope method of

Li & Zhang (2017), and the sparse tensor response regression method of Sun & Li (2017).

In addition to the estimation accuracy, we select s adaptively using the BIC criterion of Sun

& Li (2017) and evaluate the selection accuracy by the true and false positive rates,

TPRk =

∑dk
l=1

∑rk
j=1 1{βklj ̸= 0, β̂klj ̸= 0}∑dk

l=1

∑rk
j=1 1{βklj ̸= 0}

, FPRk =

∑dk
l=1

∑rk
j=1 1{βklj = 0, β̂klj ̸= 0}∑dk

l=1

∑rk
j=1 1{βklj = 0}

,

where βklj and β̂klj are the (l, j)th element of βk and β̂k, respectively. We also note that,
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although {βk}mk=1 are not identifiable in terms of nonsingular transformation, the rows in

which all elements are zero would remain all zero after the nonsingular transformation.

This allows us to evaluate the selection accuracy.

Table 3 reports the estimation results and Table 4 reports the selection results, based on

1000 replications. We see that, compared to the alternative solutions, our method produces

a more accurate dimension reduction estimation with a smaller D measure. For the selection

accuracy, our approach also produces an accurate selection with a high TPR and a low FPR.

4.3 Mean independence test

Finally, we study the finite-sample performance of our proposed mean independence test.

We consider the models in Section 4.1, and set r1 = r2 = {50, 100}, and n = {10, 50, 100}.

We test three different null hypotheses,

H0,1 : E
(
Y ×(1) α

T

1 | X
)
= E

(
Y ×(1) α

T

1

)
;

H0,2 : E
(
Y ×(2) α

T

2 | X
)
= E

(
Y ×(2) α

T

2

)
;

H0,3 : E
(
Y ×(1) α

T

1 ×(2) α
T

2 | X
)
= E

(
Y ×(1) α

T

1 ×(2) α
T

2

)
,

(4.1)

where, for the null, we set α1 = β1,0 and α2 = β2,0, with β1,0 ∈ Rr1×(r1−d1) and β2,0 ∈

Rr2×(r2−d2) being the matrices orthogonal to β1 and β2, respectively, and for the alternative,

we set (q1, q2) = (3, 3), α1 = (a1, 0q1×r1/2)
T ∈ Rr1×q1 , and α2 = (a2, 0q2×r2/2)

T ∈ Rr2×q2 ,

with a1 ∈ Rq1×r1/2 and a2 ∈ Rq2×r2/2 being randomly generated from Uniform(−1, 1)

and orthogonalized. We set the nominal level at 5%. We set the bootstrap sample size as
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Table 3: Sparse dimension reduction estimation. Reported are the average and standard deviation of

D(βk, β̂k) based on 1000 data replications. Three methods are compared: our sparse tensor martingale differ-

ence divergence method (s-TMDDM), Li & Zhang (2017, T-Envelope), and Sun & Li (2017, STORE).

s-TMDDM T-Envelope STORE

Linear

model

D(β1, β̂1)

n = 10 0.902 (0.214) 1.969 (0.292) 1.866 (0.372)

n = 50 0.332 (0.037) 0.332 (0.038) 1.118 (0.428)

n = 100 0.236 (0.024) 0.226 (0.022) 0.836 (0.405)

D(β2, β̂2)

n = 10 0.909 (0.213) 1.968 (0.299) 1.850 (0.371)

n = 50 0.334 (0.037) 0.333 (0.038) 1.073 (0.426)

n = 100 0.235 (0.024) 0.225 (0.022) 0.800 (0.400)

Nonlinear

model I

D(β1, β̂1)

n = 10 0.495 (0.198) 3.013 (0.301) 1.859 (0.609)

n = 50 0.209 (0.045) 2.597 (0.665) 1.124 (0.471)

n = 100 0.155 (0.028) 2.846 (0.489) 1.004 (0.434)

D(β2, β̂2)

n = 10 0.500 (0.205) 2.997 (0.301) 1.830 (0.600)

n = 50 0.210 (0.046) 1.959 (0.876) 1.102 (0.454)

n = 100 0.156 (0.028) 1.588 (1.008) 0.989 (0.430)

Nonlinear

model II

D(β1, β̂1)

n = 10 0.854 (0.333) 3.052 (0.200) 1.995 (0.523)

n = 50 0.358 (0.068) 2.605 (0.598) 1.430 (0.442)

n = 100 0.268 (0.041) 2.648 (0.582) 1.346 (0.448)

D(β2, β̂2)

n = 10 0.868 (0.347) 3.044 (0.203) 1.986 (0.513)

n = 50 0.361 (0.068) 2.317 (0.691) 1.418 (0.427)

n = 100 0.271 (0.041) 2.039 (0.843) 1.342 (0.433)

Nonlinear

model III

D(β1, β̂1)

n = 10 1.284 (0.681) 2.301 (0.818) 2.093 (0.546)

n = 50 0.836 (0.634) 1.793 (0.987) 1.836 (0.657)

n = 100 0.688 (0.609) 1.687 (1.003) 1.776 (0.673)

D(β2, β̂2)

n = 10 1.273 (0.680) 2.300 (0.820) 2.099 (0.544)

n = 50 0.827 (0.633) 1.816 (0.997) 1.851 (0.661)

n = 100 0.684 (0.608) 1.734 (1.003) 1.786 (0.678)

D(β3, β̂3)

n = 10 1.284 (0.681) 2.300 (0.822) 2.124 (0.562)

n = 50 0.828 (0.631) 1.799 (0.994) 1.866 (0.674)

n = 100 0.687 (0.609) 1.682 (1.026) 1.794 (0.685)
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Table 4: Sparse dimension reduction selection. Reported are the average of the true positive rate (TPR),

and false positive rate (FPR), based on 1000 data replications. Two methods are compared: our sparse tensor

martingale difference divergence method (s-TMDDM) and Sun & Li (2017, STORE).

s-TMDDM STORE s-TMDDM STORE

TPR FPR TPR FPR TPR FPR TPR FPR

Linear

model

n = 10 0.685 0.122 0.561 0.073

Nonlinear

model II

0.752 0.151 0.671 0.047

n = 50 0.913 0.087 0.660 0.060 0.897 0.103 0.620 0.029

n = 100 0.939 0.061 0.740 0.054 0.927 0.073 0.629 0.029

n = 10 0.682 0.105 0.563 0.071 0.749 0.134 0.671 0.046

n = 50 0.916 0.083 0.662 0.058 0.904 0.096 0.621 0.028

n = 100 0.940 0.060 0.743 0.051 0.932 0.068 0.629 0.028

Nonlinear

model I

n = 10 0.866 0.117 0.695 0.036

Nonlinear

model III

0.677 0.251 0.832 0.093

n = 50 0.945 0.055 0.640 0.034 0.816 0.195 0.826 0.102

n = 100 0.959 0.041 0.642 0.025 0.854 0.163 0.845 0.113

n = 10 0.870 0.110 0.695 0.036 0.690 0.253 0.838 0.087

n = 50 0.948 0.052 0.641 0.034 0.830 0.196 0.832 0.096

n = 100 0.960 0.041 0.642 0.025 0.867 0.164 0.852 0.106

0.696 0.254 0.832 0.092

0.829 0.192 0.827 0.101

0.863 0.159 0.846 0.112

B = 499, and the external variables ηj = −(
√
5−1)/2, with probability (

√
5+1)/(2×

√
5),

and ηj = (
√
5+1)/2, with probability 1− (

√
5+1)/(2×

√
5), following Mammen (1993).

Table 5 summarizes the empirical size and power of our test based on 1000 data repli-

cations. We see that, as the sample size n increases, the empirical size of the test is close to

the nominal level, and the empirical power is high, demonstrating the efficacy of the test.
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Table 5: Empirical size and power of the mean independence test.

H0,1 H0,2 H0,3

Size n = 10 n = 50 n = 100 n = 10 n = 50 n = 100 n = 10 n = 50 n = 100

r1 = r2 = 50 9.9 7.3 4.2 9.3 7.0 5.3 9.3 7.5 5.0

r1 = r2 = 100 8.5 5.7 5.8 8.5 6.0 5.7 8.1 5.3 5.1

H0,1 H0,2 H0,3

Power n = 10 n = 50 n = 100 n = 10 n = 50 n = 100 n = 10 n = 50 n = 100

Linear model
r1 = r2 = 50 91.8 100.0 100.0 95.5 100.0 100.0 78.9 100.0 100.0

r1 = r2 = 100 95.0 100.0 100.0 95.3 100 100 42.7 99.8 100.0

Nonlinear model I
r1 = r2 = 50 20.1 81.8 99.7 19.3 81.1 99.8 17.0 78.2 99.7

r1 = r2 = 100 19.9 81.2 99.7 17.8 75.8 99.5 12.8 54.4 94.4

Nonlinear model II
r1 = r2 = 50 20.3 89.1 100.0 19.8 89.8 100.0 17.8 83.3 100.0

r1 = r2 = 100 20.3 88.4 100.0 17.9 82.4 100.0 11.6 43.0 88.5

5. Data Applications

5.1 OECD data

We first illustrate our method with a macroeconomic study from the Organization for Eco-

nomic Co-operation and Development (OECD). It is important to understand how the macroe-

conomic indices of foreign countries interact with the economic indices of the United States

to produce accurate and meaningful forecasting. We analyze the transformed quarterly data

(Chen et al. 2020, Liu & Chen 2019) with n = 105 observations. We choose 8 macroeco-

nomic indices of the US as the predictor vector, and 8 macroeconomic indices of 13 coun-

tries as the response matrix, which results in X ∈ R8 and Y ∈ R13×8. Since the response
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has a moderate dimension, we apply the non-sparse version of our tensor MDD method.

First, we access the dimension of mean dimension reduction. We apply the dimension

estimation criterion (2.5) to the entire data, which yields d̂1 = 1, d̂2 = 2. We then further

carry out the mean independence testing. Toward that end, we randomly divide the data

into a training set of 85 data observations and a testing set of the remaining 20 observations.

We obtain the estimates β̂1, β̂2 from the training samples, and based on those estimates, we

further test the three null hypotheses in (4.1), with α1 = β̂1,0 ∈ R13×12, α2 = β̂2,0 ∈ R8×6

using the testing samples. Table 6, top section, reports the testing results. We see that,

the test rejects the null H0,2 when d2 = 2. We thus further test H0,2 with d2 = 3, 4 and

α2 = β̂2,0 ∈ R8×(8−d2), where the test rejects H0,2 with d2 = 3, but not d2 = 4, which in

turn suggests that d2 = 4 seems sufficient for the OECD data. We also remark that, the

difference between the dimension selected by (2.5) and the mean independence test is likely

due to the sample splitting.

Next, we investigate the prediction performance based on (d1, d2) = (1, 2), (1, 3), (1, 4).

We also compare with the tensor envelope method of Li & Zhang (2017), and the method

of Sun & Li (2017). Recall that Sun & Li (2017) only considered a special version of the

Tucker decomposition, i.e., the CP decomposition, which in effect requires d1 = d2. As

such, we set d1 = d2 = 1 for Sun & Li (2017). We again randomly divide the data into a

training set of 85 observations and a testing set of 20 observations. We first obtain the es-

timated β̂1, β̂2 based on the training data by the three methods, respectively. We then build
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Table 6: Mean independence test and prediction accuracy for the OECD data.

d1 = 1, d2 = 2 d1 = 1, d2 = 3 d1 = 1, d2 = 4

H0,1 H0,2 H0,3 H0,2 H0,3 H0,2 H0,3

0.417 0.018 0.231 0.018 0.096 0.962 0.980

TMDDM Tensor Envelope STORE

d1 = 1, d2 = 2 0.0761 (0.0049) 0.1020 (0.0049) 0.0829 (0.0049)

d1 = 1, d2 = 3 0.0760 (0.0049) 0.1021 (0.0049) 0.0829 (0.0049)

d1 = 1, d2 = 4 0.0760 (0.0049) 0.1022 (0.0049) 0.0829 (0.0049)

a nonparametric regression estimator for the reduced-dimensional response JY ; β̂T
1 , β̂

T
2 K ∈

Rd̂1×d̂2 using a Gaussian smoothing kernel, i.e.,
∑

i Kh(x− xi)JYi; β̂
T
1 , β̂

T
2 K/

∑
i Kh(x− xi),

where Kh is a Gaussian kernel, and h is the bandwidth chosen by the Akaike information

criterion. We transform the predicted response into the original scale, by multiplying β̂1, β̂2

to the prediction of JY ; β̂T
1 , β̂

T
2 K to compute Ŷ . We evaluate the prediction accuracy by the

mean squared prediction error, MSPE = (ntestr1r2)
−1

∑ntest

i=1 ∥Yi − Ŷi∥2F based on the test-

ing data. We repeat this process 100 times, and report the average results. Table 6, bottom

section, reports the average and standard error of MSPE. We see that our method produces

a much more accurate prediction, indicating that the underlying regression relation is likely

nonlinear. We note that the improvement in prediction accuracy of our method compared

to the two alternative solutions is mainly due to the proposed tensor MDD method, because

after dimension reduction, we apply the same nonparametric regression procedure for the
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reduced-dimensional response.

5.2 Bike sharing data

We next illustrate our method with an e-commerce data from the capital bike share website.

In recent years, bikes are emerging as an encouraging transportation due to traffic, environ-

mental and health concerns, and the bike sharing system is being established. It is useful to

examine how the demand for bike rental is affected by the weather condition, so the system

can predict the demand more accurately and avoid potentially bike rental shortage (Sub-

baswamy et al. 2019). We analyze the data from n = 24 months. We choose the monthly

averages of normalized temperature and windspeed as the predictor vector, and the seven-

day average of the number of casual and registered customers as the response matrix, which

results in X ∈ R2 and Y ∈ R7×2. The averages cannot completely remove the temporal

dependency but can alleviate it. Besides, even though the dimension of the response matrix

is only 7× 2, the sample size is also limited with n = 24, and thus dimension reduction can

still be helpful. We again apply the non-sparse version of our tensor MDD method.

We follow the same procedures as in Section 5.1 to first access the dimension of mean

dimension reduction, then the prediction performance. We apply the dimension estimation

criterion (2.5) to the entire data, which yields d̂1 = 5, d̂2 = 1. We then carry out the mean

independence testing, with a randomly split of a training set of 19 data observations and a

testing set of the remaining 5 observations. Table 7, top section, shows that the selected
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dimensions are appropriate for this data. We compute the proportions explained by the first

five components for mode 1 and the first component for mode 2, and both account for over

97% of the mean dependence between Y and X , suggesting that they capture most of the

regression mean information. In addition, for mode 2, the estimate of β2 is (0.42, 0.91)T,

which indicates that this component is a weighted average of the number of casual and

registered users, with more weight loaded to the registered customers. For mode 1, the

estimate of the first two columns of β1 is 0.38 0.36 0.36 0.41 0.39 0.36 0.38

−0.56 0.09 0.28 0.36 0.29 0.14 −0.60

 ,

where the seven columns above correspond to the bike usage from Sunday to Saturday. As

such, the first component is a weighted average of the users across seven days of the week,

and the second component corresponds to the difference between the weekday usage and

the weekend usage. We next compare the prediction performance in terms of MSPE. Table

7, bottom section, reports the average and standard error of MSPE. Again we see that our

method yields a smaller MSPE and a more accurate forecasting.

6. Conclusion

We conclude this article with a discussion. First of all, it is generally beneficial to estimate

f(X) after the dimension reduction on tensor response is achieved. One possible solution is

to fit a nonparametric regression with a reduced-dimensional response, as shown in our real
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Table 7: Mean independence test and prediction accuracy for the bike-sharing data.

d1 = 5 d2 = 1 d1 = 5, d2 = 1

H0,1 H0,2 H0,3

0.944 0.932 0.876

TMDDM Tensor Envelope STORE

214.698 (7.844) 251.739 (16.329) 220.253 (7.747)

data applications. The dimension reduction step is expected to help improve the estimation

accuracy of f(X). Moreover, it is possible to utilize our test statistic to analyze the form of

f(X), by computing and comparing trace
{
M (k)(Y | f(X))

}
for different forms of f(X)

under any mode k. Specifically, consider a set of candidate functions, {fi(X)}qi=1, with the

unit variance so there is no scale difference for different functions. Recognizing that the

tensor MDD measures the mean dependence, we choose the function fi(X) that produces

the largest trace
{
M (k)(Y | fi(X))

}
. Moreover, we can test the hypothesis, H0 : E(ε |

f(X)) = E(ε) a.s, where ε is the error term that is mean independent of f(X) under the

true model. We can construct a test statistic of the form, T̃n = ntrace
{
M̃ (k) (ε̂ | f(X))

}
,

where ε̂ = Y−B̂×(m+1)f(X) is the estimated residual. Deriving the limiting distribution of

T̃n is important but highly nontrivial. We report some preliminary simulation results about

choosing f(X) using our test statistic in Section B.1 of the Supplementary Materials.

Next, we discuss a number of potential extensions. First, it is possible to extend our

method to tensor-on-tensor regression. This requires an extension of the metric that mea-
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sures the dependence between two tensors, which can be achieved by replacing the Eu-

clidean distance between two vectors with the Frobenius norm of the difference between

two tensors. It also requires an updated objective function, along with an the estimation pro-

cedure and its theoretical investigation. Second, while we have established the asymptotic

properties of our dimension reduction estimator, it is of equal interest to derive the proper-

ties of the sparse estimator. Third, there has been recent development on the post dimension

reduction inference (Kim et al. 2020). Along this line, it would be interesting to extend the

bootstrap test to perform diagnostics check, where the estimation effect from {β̂k,0}mk=1 is

expected to affect the corresponding limiting distribution. Finally, we have focused on the

i.i.d. situation, while it would be useful to extend our dimension reduction approach to the

tensor time series data (Wang et al. 2019, Chen et al. 2022). Research along some of these

directions are underway.

Supplementary Material

Supplementary materials available online include technical proofs of all the theoretical re-

sults and additional numerical results.

Acknowledgments

The authors thank the Editor, the Associate Editor, and two referees for their constructive

comments and suggestions. Dr. Li’s research is partially supported by NSF grant CIF-

28

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0075



2102227 and NIH grants R01AG061303 and R01AG062542. Dr. Zhang’s research is sup-

ported partly by NSF grants DMS-2053697 and DMS-2113590, and NIH grant R03DE030509.

Dr. Lee’s research is supported by Eugene M. Lang grant.

References

Bi, X., Tang, X., Yuan, Y., Zhang, Y. & Qu, A. (2021), ‘Tensor in statistics’, Annual Review

of Statistics and Its Application 8, 345–368.

Chang, Y. & Park, J. Y. (2003), ‘A sieve bootstrap for the test of a unit root’, Journal of Time

Series Analysis 24(4), 379–400.

Chen, E. Y., Tsay, R. S. & Chen, R. (2020), ‘Constrained factor models for high-

dimensional matrix-variate time series’, Journal of the American Statistical Association

115(530), 775–793.

Chen, H., Raskutti, G. & Yuan, M. (2019), ‘Non-convex projected gradient descent for

generalized low-rank tensor regression’, The Journal of Machine Learning Research

20(1), 172–208.

Chen, R., Yang, D. & Zhang, C.-H. (2022), ‘Factor models for high-dimensional tensor time

series’, Journal of the American Statistical Association 117(537), 94–116.

29

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0075



Ding, S. & Cook, R. D. (2015), ‘Tensor sliced inverse regression’, Journal of Multivariate

Analysis 133, 216–231.

Hao, B., Wang, B., Wang, P., Zhang, J., Yang, J. & Sun, W. W. (2021), ‘Sparse tensor

additive regression’, Journal of machine learning research 22(64), 1–43.

Kim, K., Li, B., Yu, Z., Li, L. et al. (2020), ‘On post dimension reduction statistical infer-

ence’, Annals of Statistics 48(3), 1567–1592.

Kolda, T. G. & Bader, B. W. (2009), ‘Tensor decompositions and applications’, SIAM review

51(3), 455–500.

Lee, C. E. & Shao, X. (2018), ‘Martingale difference divergence matrix and its application

to dimension reduction for stationary multivariate time series’, Journal of the American

Statistical Association 113(521), 216–229.

Lee, C., Zhang, X. & Shao, X. (2020), ‘Testing conditional mean independence for func-

tional data’, Biometrika 107(2), 331–346.

Li, B. (2018), Sufficient Dimension Reduction: Methods and Applications with R, Chapman

& Hall/CRC Monographs on Statistics and Applied Probability, CRC Press.

Li, B., Kim, M. K., Altman, N. et al. (2010), ‘On dimension folding of matrix-or array-

valued statistical objects’, The Annals of Statistics 38(2), 1094–1121.

30

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0075



Li, L. & Zhang, X. (2017), ‘Parsimonious tensor response regression’, Journal of the Amer-

ican Statistical Association 112(519), 1131–1146.

Li, Q., Hsiao, C. & Zinn, J. (2003), ‘Consistent specification tests for semiparamet-

ric/nonparametric models based on series estimation methods’, Journal of Econometrics

112(2), 295–325.

Li, X., Xu, D., Zhou, H. & Li, L. (2018), ‘Tucker tensor regression and neuroimaging

analysis’, Statistics in Biosciences 10(3), 520–545.

Liu, X. & Chen, E. (2019), ‘Helping effects against curse of dimensionality in threshold

factor models for matrix time series’, arXiv preprint arXiv:1904.07383 .

Luo, R., Wang, H., Tsai, C.-L. et al. (2009), ‘Contour projected dimension reduction’, The

Annals of Statistics 37(6B), 3743–3778.

Mammen, E. (1993), ‘Bootstrap and wild bootstrap for high dimensional linear models’,

The annals of statistics pp. 255–285.

Park, T., Shao, X. & Yao, S. (2015), ‘Partial martingale difference correlation’, Electronic

Journal of Statistics 9(1), 1492–1517.

Rabusseau, G. & Kadri, H. (2016), Low-rank regression with tensor responses, in ‘Proceed-

ings of the 30th International Conference on Neural Information Processing Systems’,

pp. 1875–1883.

31

Statistica Sinica: Preprint 
doi:10.5705/ss.202022.0075



Sheng, W. & Yuan, Q. (2020), ‘Sufficient dimension folding in regression via distance co-

variance for matrix-valued predictors’, Statistical Analysis and Data Mining: The ASA

Data Science Journal 13(1), 71–82.

Subbaswamy, A., Schulam, P. & Saria, S. (2019), Preventing failures due to dataset shift:

Learning predictive models that transport, in ‘The 22nd International Conference on Ar-

tificial Intelligence and Statistics’, PMLR, pp. 3118–3127.

Sun, W., Hao, B. & Li, L. (2021), ‘Tensor data analysis’, Wiley StatsRef: Statistics Reference

Online pp. 1–26.

Sun, W. W. & Li, L. (2017), ‘Store: sparse tensor response regression and neuroimaging

analysis’, The Journal of Machine Learning Research 18(1), 4908–4944.
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