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Abstract:

High-dimensional inference based on matrix-valued data has drawn increasing

attention in modern statistical research, yet not much progress has been made

in large-scale multiple testing specifically designed for analyzing such data sets.

Motivated by this, we consider in this article an electroencephalography (EEG)

experiment that produces matrix-valued data and presents a scope of developing

novel matrix-valued data based multiple testing methods that are of importance

in such an experiment. The row-column cross-dependency of observations appear-

ing in a matrix form, referred to as cross-dependency, is one of the main challenges

in the development of such methods. We address this challenge by assuming ma-

trix normal distribution for the observations at each of the independent matrix

data-points. This allows us to capture the underlying cross-dependency informed

through the row- and column-covariance matrices and develop methods that are

potentially better than the corresponding one obtained by vectorizing each data

point and thus ignoring the cross-dependency. Given a fixed thresholding proce-
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dure with unknown cross covariance matrices, we consider approximating the false

discovery proportion capturing the underlying cross-dependency with statistical

accuracy and propose two methods of doing so. While one of these methods is a

general approach under cross-dependency, the other one provides more computa-

tional efficiency for higher dimensionality. Extensive numerical studies illustrate

the superior performance of the proposed methods over the principal factor ap-

proximation method of Fan and Han (2017). The proposed methods have been

further applied to the aforementioned EEG data.

Key words and phrases: matrix-valued data, large-scale multiple testing, false

discovery proportion, cross dependency, electroencephalogram

1. Introduction

Large-scale multiple testing is an integral part of statistical investigations in

the modern era of Big Data-driven scientific research with statisticians/data

scientists frequently encountering simultaneous testing of tens of thousands

or even hundreds of thousands of hypotheses in such research. Despite sub-

stantial growth of research in multiple testing over the past few decades

(see, for instance, Benjamini and Hochberg (1995), Benjamini and Yeku-

tieli (2001), Sarkar (2002), Storey (2002), Efron (2007), Fan, Han and

Gu (2012), Fan, Ke, Sun and Zhou (2019), etc), development of multiple

testing methods specifically designed for matrix-valued data under row-
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column cross dependency has not yet received much attention, even though

such data have been increasingly seen to occur in various applications, for

instance, in brain imaging, electroencephalography (EEG), environmental

science, economics and many others.

The row-column cross-dependency of observations appearing in a matrix-

structured form at each data point, which we refer to as cross-dependency

in this article, is a newer challenge in developing a multiple testing method

specifically designed for matrix-valued data. One can, of course, mitigate

this challenge by vectorizing each data point and considering to use an ap-

propriately chosen method, depending on the problem under consideration,

from the abundant literature on vector-valued data-based multiple testing

methods. However, such a method does not utilize the original matrix

structure of the data, and so would be less desirable and potentially less

powerful than the one that can be developed by capturing the underlying

cross-dependency. So, there seems to be an urgent need to develop such

matrix-valued data-based multiple-testing methods.

Driven by the aforementioned need, we revisit the matrix-valued data

set from an EEG experiment, used by Li, Kim and Altman (2010) and many

other researchers while developing newer statistical theories and methodolo-

gies for such data sets (see also Nandi, Sarkar and Chen (2021)). This data
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set presents an opportunity for us to develop our desired novel multiple-

testing tools, at least in the context of such an important scientific investiga-

tion. The EEG experiment involved a control group and a treatment group

comprising alcoholic subjects. Ten trials were performed on each subject

and a picture was presented to the subject during each trial, while EEG

activity in the form of voltage fluctuations (in microvolts) was recorded at

256 time points from 64 electrodes placed on the subject’s scalp. Figure

1 in Li, Kim and Altman (2010) shows an example of the EEG pattern,

averaged over measurements obtained from ten trials, for two subjects, one

each from the control and alcoholic groups. This figure indicates a dif-

ference in the voltage fluctuation patterns for the two subjects over time

and electrodes, sparking our interest in developing novel multiple testing

methods for comparing two groups that can potentially be applied to gain

a deeper understanding of brain dysfunction and regions impacted by alco-

holism. We develop such methods in the framework of approximating false

discovery proportion (FDP) given a fixed threshold-based multiple testing

procedure.

Substantial challenges do arise in developing multiple testing methods

for the aforementioned type of matrix-valued data. First of all, the number

of hypotheses is often excessively large, relative to the sample size, even
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when each dimension of the matrix is not very high, since the product of

the two dimensions can be “quadratically high”. In the EEG data, for

example, there are 64 × 256 = 16384 hypotheses to be tested when com-

paring the two groups. One naive way to handle this challenge would be to

vectorize the matrix data by stacking the columns and apply the Principal

Factor Approximation (PFA) method in Fan and Han (2017) to the vector-

ized data assuming vector-variate multivariate normal. That is, suppose we

have a matrix format data Yp×q, vectorizing the matrix data and assuming

the multivariate normal distribution on vec(Y)pq×1 ∼ N (vec(µ),Σ). The

PFA relies on an estimate of the unknown covariance matrix Σ, particu-

larly through the eigenvalues and eigenvectors of this matrix. When the

dimensionality is quadratically high and the sample size is relatively small,

the performance of PFA in approximating the FDP will deteriorate. We

will illustrate this issue in the numerical studies. The second challenge, as

noted above, is the cross-dependency and its effective full utilization into

our methods.

We will handle this challenge by assuming that the underlying random

matrix of voltage observations, say X, follows a matrix normal distribu-

tion; i.e., X ∼ MN (µp×q,Up×p,Vq×q), where µp×q is the location matrix

parameter, U and V are, respectively, the common covariance matrices of
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the column and row vectors. The matrix normal is theoretically amenable

to newer methodological developments specifically for matrix-valued data

and so has been a commonly used distribution for analyzing such data sets;

see, i.e., Li, Kim and Altman (2010) and Xia and Li (2017), respectively,

for the development of multivariate regression with dimension folding and

for brain connection testing. The matrix normal has also been used for ana-

lyzing microarray data (Allen and Tibshirani , 2012) and mRNA expression

data (Horenstein, Fan, Shedden and Zhou , 2019). More importantly for our

research, the underlying cross-dependency can be effectively parameterized

through the row- and column-covariance matrices in this distribution.

In this paper, we propose two methods of approximating FDP for a fixed

thresholding procedure based on matrix normal data assuming that the row-

and column-covariance matrices are completely unknown with general de-

pendence structures. In particular, we will present two types of extension

of the work of Fan and Han (2017) from vector-valued to matrix-valued

data. The first method, called the noodle method, utilizes the property of

matrix normal distribution through the Kronecker product. More specif-

ically, the vectorized matrix normal, having a multivariate normal distri-

bution with the covariance matrix as the Kronecker product of the row-

and column-covariance matrices, provides structural information about the
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underlying cross-dependency and thus provides a dimension reduction ad-

vantage. This not only allows full capture of the cross-dependency informed

through these covariance matrices but also facilitates the estimation of FDP

in a large-scale multiple-testing setup. Instead of estimating a (pq) × (pq)

dimensional covariance matrix for the vectorized data, we are estimating

two smaller matrices: p×p dimensional column correlation matrix of U and

q×q dimensional row correlation matrix of V. Kronecker product has been

considered an effective tool for dimension reduction. See other applications

of Kronecker product in Liu et al. (2019) and Chen et al. (2023)

Although the noodle method shows superior performance for matrix

data in comparison with the PFA procedure, it suffers from some com-

putational complexity issues. More specifically, in the first method, we

need to calculate any pair of the eigenvalues and eigenvectors from the

two estimated correlation matrices of U and V. When p and q are large,

the noodle method is computationally intensive. To circumvent this issue,

we propose the second method, the sandwich method, which involves the

first few principal components from the correlation matrices of U and V,

respectively, mostly capturing the underlying dependence structure. The

sandwich method is developed to handle a large number of tests, much

larger than when the noodle method can be used. Our simulation studies
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will show that the sandwich method can be applied to a more ambitious

setting where p× q = 500× 500 = 250000, where the noodle method fails.

The rest of the paper is organized as follows. In Section 2, we describe

the two proposed methods and their theoretical underpinnings. Section 3

provides the results of simulation studies we conducted to compare these

methods with the PFA method in Fan and Han (2017) under various sce-

narios. Section 4 presents the results obtained from the analysis of the

EEG data using these methods. All technical proofs are relegated to the

Supplementary Materials.

2. Main Results

Our proposed methods will be presented in this section. First, let us intro-

duce below some of the notations to be used throughout this paper.

• an ≍ bn : 0 < an/bn + bn/an = O(1).

• For a vector x = (x1, · · · , xp)
′, ∥x∥ =

√∑p
i=1 x

2
i , ∥x∥1 =

∑p
i=1 |xi|.

• For a matrixA = (aij) ∈ Rm×n, Frobenius norm: ∥A∥F = {trace(A′A)}1/2;

Operator norm: ∥A∥ = λ
1/2
max(A

TA); l1 norm: ∥A∥1 = max1≤j≤n

∑m
i=1 |ai,j|;

and l∞ norm: ∥A∥∞ = max1≤i≤m

∑n
j=1 |aij|.

• For a matrix A ∈ Rm×n, vec(A) is the mn-dimensional column vector
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2.1 Basic Setup

obtained by stacking its columns.

• For two matrices An×m = (aij) and Bp×q = (bij),

Kronecker product of A and B : A⊗B =


a11B · · · a1mB
...

...

an1B · · · anmB

 .

2.1 Basic Setup

With Y and Z representing the p × q dimensional random matrices as-

sociated with the treatment and control groups, let Y ∼ MN (µy,U,V)

and Z ∼ MN (µz,U,V), with unknown mean matrices µy = (µy,ij) and

µz = (µz,ij) and same but unknown common column- and row-covariance

matrices U and V, respectively, in each of Y and Z. Our problem is to test

H0,ij : µy,ij − µz,ij = 0 against H1,ij : µy,ij − µz,ij ̸= 0, (2.1)

simultaneously for (i, j) = (1, 1), . . . , (p, q), based on independent samples,

{Y1 = (Y1,ij), . . . ,Yn = (Yn,ij)} and {Z1 = (Z1,ij), . . . ,Zm = (Zm,ij)}, of

matrix-valued observations on Y and Z, respectively.

Let Y = n−1
∑n

l=1 Yl and Z = m−1
∑m

k=1 Zk be the sample mean ma-

trices corresponding to the treatment and control groups. If U and V were

known, H0,ij would have been tested marginally against H1,ij using the
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2.1 Basic Setup

(i, j)th entry of the following matrix-valued statistic:

X̃ =

√
nm

n+m
{Diag(U)}−

1
2

(
Y− Z

)
{Diag(V)}−

1
2

∼ MN
(√

nm

n+m
{Diag(U)}−

1
2

(
µy − µz

)
{Diag(V)}−

1
2 ,Σ1,Σ2

)
(2.2)

where Diag(U) and Diag(V) are the diagonal matrices based on the main

diagonals of, and Σ1 and Σ2 are the correlation matrices obtained from, U

and V, respectively.

Suppose the standard deviation of Yl,ij or Zl,ij is σij, denote Σ = (σ−1
ij )

as a matrix with the (i, j)th element as σ−1
ij , then equivalently we can

express X̃ as

X̃ =

√
nm

n+m
(Y− Z) ◦Σ ∼ MN (

√
nm

n+m
(µy − µz) ◦Σ,Σ1,Σ2). (2.3)

In (2.3), the notation “◦” is Hadamard product, which means element wise

product for the matrices. However, in practice σij is unknown. Corre-

spondingly, we can use pooled estimator constructed based on the two

groups. More specifically, denote the sample mean Yij = n−1
∑n

l=1Yl,ij,

and Zij = m−1
∑m

k=1 Zk,ij, then

σ̂2
ij =

1

n+m− 2

{ n∑
l=1

(Yl,ij −Yij)
2 +

m∑
k=1

(Zk,ij − Zij)
2
}
. (2.4)

For the unknown marginal variances σij, we denote Σ̂ as a matrix with

the (i, j)th element as σ̂−1
ij , where each σ̂ij is defined in (2.4). We will
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2.1 Basic Setup

consider the p× q dimensional matrix

X ≡
√

nm

n+m
(Y− Z) ◦ Σ̂

for the test statistics in this paper.

The matrix X is the basic ingredient for the development of our pro-

posed methods. Let Pij = 2Φ(−|Xij|) be the p-value corresponding to Xij,

the (i, j)th entry of X, where Φ is the cdf of N (0, 1), and {Pij ≤ t} be

the rejection region for testing H0,ij : µij = 0 against H1,ij : µij ̸= 0, given

a fixed threshold t. Then, our methods are aimed at approximating the

realized value of

FDP(t) =

∑
{(i,j):H0,ij is true}

I(Pij ≤ t)

max{R(t), 1}
,

where I is the indicator function, R(t) =
∑
ij

I(Pij ≤ t) is the total number

of rejections, in a manner that extends the work of Fan and Han (2017)

from vector- to matrix-valued data. More specifically, the methods pro-

vide approximation expressions for FDP(t) extracting out the strong cross-

dependency exhibited through Σ1 and Σ2, before estimating the unknown

quantities involving these correlation matrices in such approximations from

their estimates Σ̂1 and Σ̂2, respectively. We will estimate Σ1 by Σ̂1 and
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2.1 Basic Setup

Σ2 by Σ̂2 as follows:

Σ̂1 = (n+m− 2)−1q−1
[ n∑

l=1

{(Yl −Y) ◦ Σ̂}{(Yl −Y) ◦ Σ̂}T

+
m∑
k=1

{(Zk − Z) ◦ Σ̂}{(Zk − Z) ◦ Σ̂}T
]
,

Σ̂2 = (n+m− 2)−1p−1
[ n∑

l=1

{(Yl −Y) ◦ Σ̂}T{(Yl −Y) ◦ Σ̂}

+
n∑

k=1

{(Zk − Z) ◦ Σ̂}T{(Zk − Z) ◦ Σ̂}
]
.

These are pooled sample correlation estimators. For diverging p and q, Σ̂1

and Σ̂2 are not necessarily consistent estimates of Σ1 and Σ2, respectively.

However, we will show that for FDP approximation, Σ̂1 and Σ̂2 can still lead

to good approximation results. The following two sub-sections elaborate on

the development of these two methods.

It is worth noting that in (2.2), if we have Û and V̂, estimates of U

and V, respectively, then we can also consider

X⋆ =

√
nm

n+m
{Diag(Û)}−

1
2

(
Y− Z

)
{Diag(V̂)}−

1
2

as the test statistics. The conventional procedure in multivariate analysis is

to consider maximum likelihood estimators for Û and V̂ through iterative

algorithms. However, it is difficult to derive convergence results of such Û

and V̂, where the convergence results will be important for our theoretical

analysis of the FDP approximation. The representation in (2.3) and (2.4)
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2.2 Noodle Method

circumvents this issue. Instead of estimating the matrix U and V, we are

estimating σ2
ij, the product of any pair of Uii and Vjj, which are the diagonal

elements of U and V, respectively. For ease of presentation, we assume

that the corresponding covariance matrices for the treatment group and

the control group are the same. We will pursue the more general situation

in our future research.

2.2 Noodle Method

If we vectorize X by stacking the column vectors denoted as vec(X), then

vec(X) = T1/2vec(X̃),

where T1/2 is a (pq) × (pq) dimensional diagonal matrix. The diagonal

elements of T1/2 are a vectorized matrix with the (i, j)th element as σij/σ̂ij.

By the property of matrix normal distribution, based on expression (2.3),

vec(X̃) ∼ N
(√

nm

n+m
vec{(µy − µz) ◦Σ},Σ2 ⊗Σ1

)
, (2.5)

where vec(X̃) is a pq dimensional column vector, the notation “⊗” denotes

the Kronecker product, and Σ2⊗Σ1 is a (pq)× (pq) dimensional covariance

matrix.

For the vec(X̃), since it follows a multivariate normal distribution, it

can be connected with a factor model structure where the random errors
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2.2 Noodle Method

are weakly dependent. More specifically, applying eigenvalue decomposition

to Σ2 ⊗ Σ1, let θ1, · · · , θpq be the non-increasing eigenvalues of Σ2 ⊗ Σ1,

and ρ1, · · · ,ρpq be the corresponding eigenvectors. We further define F =

(
√
θ1ρ1, · · · ,

√
θhρh) for some appropriate positive integer value h, then

vec(X) can be expressed as

vec(X) = T1/2{vec(µ⋆) + FW+ ϵ}, (2.6)

where W ∼ N (0, Ih), µ
⋆ =

√
nm
n+m

(µy −µz) ◦Σ for simplification, and ϵ ∼

N (0,
∑pq

i=h+1 θiρiρ
T
i ). As shown in Fan, Han and Gu (2012), when h satis-

fies some regularity condition, ϵ are weakly dependent. Due to the indepen-

dence between the sample variance and sample mean, conditional on T1/2

andW, vec(X) are weakly dependent because of the covariance structure in

ϵ. Therefore, we expect the proportion of falsely rejected hypothesis among

all tests can be approximated by (pq)−1
∑

l∈{true null} P (Pl ≤ t|T,W). De-

note the diagonal elements of T1/2 as {
√
Tl}pql=1. By plugging the definition

of p-values and note that Tl concentrates on 1 with var(Tl) → 0 as n → ∞,

we propose an approximation formula for FDP(t) by

FDPoracle,1(t) =
1

max{R(t), 1}
∑

l∈{true null}

[
Φ{al(zt/2+ζl)}+Φ{al(zt/2−ζl)}

]
,

where al = (1 − ∥fl∥2)−1/2, ζl = fTl W and fTl is the lth row of F. The

following Proposition 1 shows that FDPoracle,1(t) is a good approximation
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2.2 Noodle Method

to the true FDP(t).

Proposition 1. If (pq)−1(θ2h+1 + · · ·+ θ2pq)
1/2 = O{(pq)−δ} for some δ > 0,

R(t)−1 = Op{(pq)−(1−ζ)} for some ζ ≥ 0, then |FDPoracle,1(t) − FDP(t)| =

Op

[
(pq)ζ{(pq)−δ/2 + (n+m)−1/2}

]
.

When the number of tests increases, the number of total rejections

tends to increase. Suppose ζ = 0, the condition R(t)−1 = Op{(pq)−(1−ζ)}

is simplified to be R(t)−1 = Op{(pq)−1}, i.e., the total rejection number

increases at the order of pq as the total number of hypotheses increases.

The ζ is introduced to allow more flexibility in the growth rate, so that

R(t) does not need to grow in the order of pq. However, the value of ζ

should not be too large, as it will reduce the convergence rate in the FDP

approximation.

Since we do not know which hypotheses are true nulls, FDPoracle,1(t)

can be approximated by

FDPA,1(t) =
1

max{R(t), 1}

pq∑
l=1

[
Φ{al(zt/2 + ζl)}+ Φ{al(zt/2 − ζl)}

]
.

Here FDPA,1(t) is an upper bound of FDPoracle,1(t). When we assume sparse

signals, these two quantities will be close.

Applying eigenvalue decomposition directly to a (pq)×(pq) dimensional

matrix will be challenging. Fortunately, due to the properties of Kronecker
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2.2 Noodle Method

product, the eigenvalues and eigenvectors of Σ2 ⊗Σ1 in (2.3) can be con-

structed based on those of Σ2 and Σ1. Let λ1, · · · , λp be the non-increasing

eigenvalues of Σ1, and ν1, · · · ,νp be the corresponding eigenvectors. Let

ξ1, · · · , ξq be the non-increasing eigenvalues of Σ2 and γ1, · · · ,γq be the

corresponding eigenvectors. Then the eigenvalues of Σ2⊗Σ1 are ξj ×λi for

1 ≤ i ≤ p and 1 ≤ j ≤ q, and the corresponding eigenvectors are γj ⊗ νi.

However, in practice, the correlation matrices Σ1 and Σ2 in (2.3) are

both unknown. Let λ̂1, · · · , λ̂p be the eigenvalues of Σ̂1, and ν̂1, · · · , ν̂p

be the corresponding eigenvectors. Let ξ̂1, · · · , ξ̂q be the eigenvalues of

Σ̂2, and γ̂1, · · · , γ̂q be the corresponding eigenvectors. For the eigenvalues

{λ̂i} and {ξ̂j}, we calculate the product of each possible pair to obtain

the eigenvalues of Σ̂2 ⊗ Σ̂1, and arrange these values in a non-increasing

order, written as {θ̂l}. Correspondingly, the eigenvectors of Σ̂2⊗ Σ̂1 will be

written as {ρ̂l}. For a given integer value h, we define (pq)×h dimensional

matrix F̂ = (θ̂
1/2
1 ρ̂1, · · · , θ̂

1/2
h ρ̂h). Given an experiment, W is a realized but

unobserved vector. We will consider a least squares estimator of W:

Ŵ = (F̂
T
F̂)−1F̂

T
vec(X).

Then we can approximate the FDPA,1(t) by

F̂DP1(t) =
1

max{R(t), 1}

p×q∑
l=1

[
Φ{âl(zt/2 + ζ̂l)}+ Φ{âl(zt/2 − ζ̂l)}

]
,
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2.2 Noodle Method

where âl = (1− ∥̂fl∥2)−1/2, ζ̂l = f̂
T

l (F̂
T
F̂)−1F̂

T
vec(X) and f̂

T

l is the lth row

of F̂.

Theorem 1. Under the conditions in Proposition 1, in addition, θi −

θi+1 ≥ gpq with positive gpq ≍ pq for i = 1, · · · , h, {âl}pql=1 and {al}pql=1

are upper bounded, then |F̂DP1(t)−FDPA,1(t)| = Op

[
(pq)ζ{h(n+m)−1/2 +

(pq)−1/2h(n+m)−1/2∥vec(µ∗)∥}
]
.

In Theorem 1, we require an eigengap condition for the largest h eigen-

values. Fan, Liao and Mincheva (2013) has shown that such condition

can be satisfied for factor model structures. In the FDP approximation,

the convergence rate also depends on the magnitude of signals, ∥vec(µ⋆)∥.

When we consider sparse signals in the mean matrix for the two group

comparison, we expect that (pq)−1/2∥vec(µ⋆)∥ converges to zero since ζ is

a very small positive number.

To determine h, we can use the eigenvalue ratio estimator in Ahn and

Horenstein (2013). The estimator is ĥ = argmax1≤l≤lmax
(θ̂l/θ̂l+1), where

lmax is a pre-determined maximum possible number of factors. Ahn and

Horenstein (2013) has shown that under mild regularity conditions, the

eigenvalue ratio (ER) estimator is consistent for the true number of factors.

However, this ER estimator may end up with selecting ĥ > 0. If the true

h = 0, we may consider to test H0 : Σ2⊗Σ1 = Ipq×pq versus Ha : Σ2⊗Σ1 ̸=
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2.2 Noodle Method

Ipq×pq. If Σ2 ⊗ Σ1 adopts independent or weakly dependent structure,

we can simply assign h = 0 instead of using the estimator ĥ from Ahn

and Horenstein (2013). Correspondingly, the condition in Proposition 1

becomes (pq)−1(θ2h+1 + · · · + θ2pq)
1/2 = (pq)−1/2. Our methods would be

simplified as Storey procedure, where the estimator of FDP is π̂0t/R(t).

In practice, if we have a priori knowledge for the two correlation matri-

ces, Σ1 and Σ2, the regularity condition in Theorem 1 can be substantially

relaxed. For example, if we know thatΣ1 andΣ2 are sparse matrices (Bickel

and Levina , 2008), we can propose consistent thresholding estimators for

Σ1 and Σ2. Correspondingly, the eigengap condition in Theorem 1 can

be relaxed to dpq ≍ d for i = 1, · · · , h where d is a constant. Under such

scenario, we can still achieve the FDP approximation results in Theorem

1. Nevertheless, the FDP approximation that we proposed here is more

general, especially designed for strong dependence scenarios.

We call the above described procedure as noodle method, as we cut the

“dough” (matrix valued data) into slices (column vectors) and stick into a

long “noodle”.
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2.3 Sandwich Method

2.3 Sandwich Method

In the noodle method, the approximation of FDP relies on the eigenvalues

and eigenvectors of Σ̂2⊗ Σ̂1. Note that we need to calculate the Kronecker

product of each possible pair from {γ̂j} and {ν̂i}. When pq is large, this

step can be very computationally intensive. The question is whether we

can provide an alternative approximation procedure for FDP which is more

computationally efficient. The key idea in the PFA method in Fan, Han

and Gu (2012) is to use the first few principal components to capture the

majority dependence among the test statistics. In our paper, the problem

is somewhat different, because there are two covariance matrices, Σ1 and

Σ2 for modeling the column and row dependence, respectively. If we can

use the first few principal components from Σ̂1 and from Σ̂2 respectively to

capture the majority dependence among the test statistics, the computation

will be substantially simplified, and the corresponding procedure will be

very appealing. This motivates us to propose the following method.

Note that in expression (2.3), X̃ ∼ MN (µ⋆,Σ1,Σ2), where µ⋆ =√
nm
n+m

(µy − µz) ◦ Σ is defined to simplify the notation. Then for some

positive integer values k1 and k2, we can rewrite X̃ as

X̃ = µ⋆ +CW̃D+ ϵ (2.7)
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2.3 Sandwich Method

where C = (
√
λ1ν1, · · · ,

√
λk1νk1), D = (

√
ξ1γ1, · · · ,

√
ξk2γk2)

T , W̃ ∼

MN (0, Ik1 , Ik2), and ϵ ∼ MN (0,
∑p

i=k1+1 λiνiν
T
i ,
∑q

j=k2+1 ξjγjγ
T
j ).

Note that C contains the first k1 principal components from Σ1, and

D contains the first k2 principal components from Σ2. Compared with the

factor model structure in Fan, Han and Gu (2012), we have C and D here

to capture the column and the row dependences, respectively. When k1 and

k2 are appropriately chosen, the covariance matrices in ϵ are both weakly

dependent.

By the properties of Kronecker product, vectorizing expression (2.7)

leads to

vec(X̃) = vec(µ) + (DT ⊗C)vec(W̃) + vec(ϵ). (2.8)

Similar to the discussion in section 2.3, we can propose an approximation

for FDP(t) as

FDPoracle,2(t) =
1

max{R(t), 1}
∑

l∈{true null}

[
Φ{dl(zt/2+ηl)}+Φ{dl(zt/2−ηl)}

]
where ηl = bT

l vec(W̃), bl is the lth row of DT ⊗C, and dl = (1−∥bl∥2)−1/2.

The following Proposition 2 shows that FDPoracle,2 is also a good approxi-

mation for the true FDP.

Proposition 2. If p−1(λ2
k1+1 + · · ·+ λ2

p)
1/2 = O(p−δ1) for some δ1 > 0 and

q−1(ξ2k2+1+ · · ·+ξ2q )
1/2 = O(q−δ2) for some δ2 > 0, R(t)−1 = Op{(pq)−(1−ζ)}
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2.3 Sandwich Method

for some ζ ≥ 0, then |FDPoracle,2(t) − FDP(t)| = Op

[
(pq)ζ{p−δ1/2q−δ2/2 +

(n+m)−1/2}
]
.

Replacing the summation over true nulls in FDPoracle,2(t) by all the

tests, we have an upper bound as

FDPA,2(t) =
1

max{R(t), 1}

pq∑
l=1

[
Φ{dl(zt/2 + ζl)}+ Φ{dl(zt/2 − ζl)}

]
.

If Σ1 and Σ2 are known, we can estimate the realized vec(W̃) by least

squares estimator

{(DT ⊗C)T (DT ⊗C)}−1(DT ⊗C)Tvec(X).

For unknown Σ1 and Σ2, we use Σ̂1 and Σ̂2 for the estimation. Corre-

spondingly, we replace C andD by Ĉ and D̂ respectively, where eigenvalues

and eigenvectors are replaced by their estimates. Furthermore, we consider

the FDP approximation formula:

F̂DP2(t) =
1

max{R(t), 1}

pq∑
l=1

[
Φ{d̂l(zt/2 + η̂l)}+ Φ{d̂l(zt/2 − η̂l)}

]
where d̂l = (1 − ∥b̂l∥2)−1/2, b̂l is the lth row of D̂

T
⊗ Ĉ, and η̂l is the lth

element of {(
∑k2

i=1 γ̂iγ̂
T
i )⊗ (

∑k1
j=1 ν̂jν̂

T
j )}vec(X).

It is worth mentioning in F̂DP2(t), we only need to calculate the Kro-

necker product of the first few eigenvectors from Σ̂1 and Σ̂2. This can avoid

the computational issue in noodle method for large values of p and q, where

Kronecker product has to be calculated for all possible pairs.
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2.3 Sandwich Method

Theorem 2. Under the conditions in Proposition 2, in addition, λi−λi+1 ≥

gp with gp ≍ p for i = 1, · · · , k1 and ξj − ξj+1 ≥ gq with gq ≍ q for

j = 1, · · · , k2, {d̂}pql=1 and {dl}pql=1 are upper bounded, then

|F̂DP2(t)− FDPA,2(t)| = Op

[
(pq)ζ

{
k1k2(n+m)−1 + (k1 + k2)(n+m)−1/2

+(pq)−1/2∥vec(µ⋆)∥
}]

.

To determine k1 and k2, we consider the eigenvalue ratio estimator:

k̂1 = argmax1≤l≤lmax
(λ̂l/λ̂l+1), k̂2 = argmax1≤l≤lmax

(ξ̂l/ξ̂l+1).

As discussed in section 2.2, if we have a priori knowledge for the two

correlation matrices, the eigengap condition in Theorem 2 can be relaxed.

Also, both methods proposed above simply adopt the pooled sample corre-

lation estimators, other estimators such as MLE-type estimators could also

been used in practice, even though the theoretical results of convergence

rate are difficult to be derived. The MLE algorithm for the matrix normal

distribution has been well described in Dutilleuel (1999), we will show in

simulations that how those two proposed methods perform by using differ-

ent estimators of the correlation matrices in Supplementary Materials.

The key idea in the above procedure is to express the matrix data

in terms of a “sandwich” formula (2.7), where the two matrices C and D

“wrap” the common factor matrixW. Thus, we call the proposed procedure
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in section 2.3 “sandwich method”.

3. Simulation Studies

In our simulation studies, the treatment group data are generated from

Yi ∼ MN (µ,Σ1,Σ2), i = 1, ..., n and the control group data are generated

from Zj ∼ MN (0,Σ1,Σ2), j = 1, ...,m. The signal strength µ equals 1

for the first 8 rows out of p rows, the first 25 columns out of q columns,

and 0 otherwise. We consider sample size n = m = 50, dimensionality

p = q = 100 for both the noodle method and sandwich method unless

stated otherwise, threshold value t = 0.001, and the number of simulation

rounds to be 500. We estimate the unknown number of factors by the

data-driven eigenvalue ratio method for the noodle method and sandwich

method, both with kmax = ⌊0.2(n+m)⌋. We now examine the performance

of our two methods on simulated data sets, which are constructed under

the framework of three models.

• [Model 1: strict factor model] Let B1 be a p × l1 dimensional

matrix with each element generated from a distribution F1, Σu1 be

a p × p dimensional diagonal matrix with all diagonal values being

0.5, then Σ1 is the correlation matrix of B1B
T
1 + Σu1; Similarly, let

B2 be a q × l2 dimensional matrix with each element generated from
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a distribution F2, Σu2 be a q × q dimensional diagonal matrix with

all diagonal values being 0.5, then Σ2 is the correlation matrix of

B2B
T
2 +Σu2. We consider two cases: l1 = l2 = 3, F1 and F2 are both

N (0, 1); l1 = 2, l2 = 4, F1 and F2 are both U(−1, 1). In Model 1,

both Σ1 and Σ2 possess some strict factor model structures.

• [Model 2: approximate factor model]We keep the similar setting

in Model 1, but consider Σu1 to be a p× p dimensional power decay

matrix with ρ1, where the (i, j)th element of Σu1 is defined as ρ
|i−j|
1 .

Similarly, let Σu2 be a q× q dimensional power decay matrix with ρ2.

In Model 2, we consider l1 = l2 = 3, and F1, F2 are both U(−1, 1).

We examine two settings: (ρ1, ρ2) = (0.5, 0.3) and (ρ1, ρ2) = (0.5, 0.8).

In Model 2, both Σ1 and Σ2 possess some approximate factor model

structures, which can be used for testing the robustness of the eigen-

value ratio estimator for the unknown number of factors under the

matrix normal settings.

• [Model 3: normality violated model] We keep the similar set-

ting in model 1, where both F1 and F2 are U(−1, 1). Let (λ1, ..., λp)

and (ν1, ...νp) be the eigenvalues and the corresponding eigenvectors

of Σ1, respectively. Let (ξ1, ..., ξq) and (γ1, ...γq) be the eigenval-
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ues and the corresponding eigenvectors of Σ2, respectively. Define

C̃ = (
√
λ1ν1, ...,

√
λpνp), and D̃ = (

√
ξ1γ1, ...,

√
ξqγq). Then the data

matrixX is generated fromX = µ+C̃WD̃. In our simulation studies,

we consider the following settings: (l1, l2) = (2, 2), (3, 3), (4, 4), (2, 4)

as the choices for B1 and B2; W is a p × q dimensional matrix with

each element randomly generated from
√

2
3
t6 distribution, or expo-

nential distribution with λ = 1. Model 3 is designed to test the

performance of our proposed methods when the matrix normality as-

sumption is violated.

We will compare our newly proposed methods with the PFA method in Fan

and Han (2017). The PFA method was originally designed for vector data

from multivariate normal distribution. In the current paper, we are dealing

with matrix variated dataY and Z. To apply the PFA method, we vectorize

Y and Z to obtain vec(Y) and vec(Z), and assume vec(Y) ∼ N (vec(µ),Σ),

vec(Z) ∼ N (0,Σ). We need to estimate the (pq)× (pq) dimensional covari-

ance matrix Σ based on the sample data {vec(Yi)}ni=1 and {vec(Zj)}mj=1.

Suppose we consider the pooled sample covariance matrix as our estimator,
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then

S =
1

n+m− 2

[ n∑
i=1

{vec(Yi)− vec(Y)}{vec(Yi)− vec(Y)}T

+
m∑
j=1

{vec(Zj)− vec(Z)}{vec(Zj)− vec(Z)}T
]

where vec(Y) and vec(Z) are the sample means of vec(Y1), ..., vec(Yn) and

vec(Z1), ..., vec(Zm), respectively. To apply the PFA method, we need to

get the eigenvalues and eigenvectors of S. However, since p × q is large,

it will be time-consuming to directly apply eigenvalue decomposition to S.

Instead, we consider

F = (n+m− 2)−1/2(Yν
1 , ...,Y

ν
n,Z

ν
1, ...,Z

ν
m) (3.1)

whereYν
i = vec(Yi)−vec(Y) and Zν

j = vec(Zj)−vec(Z) for i = 1, ..., n, j =

1, ...,m. Then clearly, S = FF T . Eigenvalue decomposition of F will

provide the eigenvalues and eigenvectors of S. Such construction would

reduce the computation complexity.

Statistica Sinica: Preprint 
doi:10.5705/ss.202021.0406



FDP

E
st

im
at

ed
 F

D
P

0 0.2 0.4 0.6 0.8 1

0
0.

2
0.

4
0.

6
0.

8
1

FDP
E

st
im

at
ed

 F
D

P

0 0.2 0.4 0.6 0.8 1

0
0.

2
0.

4
0.

6
0.

8
1

FDP

E
st

im
at

ed
 F

D
P

0 0.2 0.4 0.6 0.8 1

0
0.

2
0.

4
0.

6
0.

8
1

(a) f(2, 4),B ∼ U(−1, 1) (b) f(2, 4),B ∼ U(−1, 1) (c) f(2, 4),B ∼ U(−1, 1)

FDP

E
st

im
at

ed
 F

D
P

0 0.2 0.4 0.6 0.8 1

0
0.

2
0.

4
0.

6
0.

8
1

FDP

E
st

im
at

ed
 F

D
P

0 0.2 0.4 0.6 0.8 1

0
0.

2
0.

4
0.

6
0.

8
1

FDP
E

st
im

at
ed

 F
D

P
0 0.2 0.4 0.6 0.8 1

0
0.

2
0.

4
0.

6
0.

8
1

(e) (ρ1, ρ2) = (0.5, 0.3) (f) (ρ1, ρ2) = (0.5, 0.3) (g) (ρ1, ρ2) = (0.5, 0.3)

FDP

E
st

im
at

ed
 F

D
P

0 0.2 0.4 0.6 0.8 1

0
0.

2
0.

4
0.

6
0.

8
1

FDP

E
st

im
at

ed
 F

D
P

0 0.2 0.4 0.6 0.8 1

0
0.

2
0.

4
0.

6
0.

8
1

FDP

E
st

im
at

ed
 F

D
P

0 0.2 0.4 0.6 0.8 1

0
0.

2
0.

4
0.

6
0.

8
1

(h) f(3, 3),W ∼ Exp(1) (i) f(3, 3),W ∼ Exp(1) (j) f(3, 3),W ∼ Exp(1)

Figure 1: The estimated values of FDP obtained by the noodle method (circle), sand-

wich method (triangle), and PFA (crossover) are compared with the true value of FDP.

From top to bottom, each row corresponds to Model 1, Model 2, and Model 3. Here,

n = m = 50, p = q = 100, and t = 0.001.
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We compare the estimated false discovery proportion from both of our

proposed methods and PFA with the true value of the false discovery pro-

portion. The results are summarized in Figure 1, Supplementary Materials

Figures S1-S6, and Table 1. In Figure 1, points closer to the diagonal line

suggest a good approximation. Under various settings, both of our pro-

posed methods produce points slightly above the diagonal line, while the

points from PFA are generally under the diagonal one. This phenomenon

is further confirmed by the results in Table 1, where we calculate the mean

difference between the estimated FDP and the true FDP over the 500 sim-

ulation rounds. Table 1 shows that our new estimator performs better than

the PFA estimator in the sense that, the PFA estimator dramatically under-

estimates the true FDP, while our new method consistently overestimates

the true FDP a little bit. That means, our new estimator can provide an

upper bound for estimating FDP, which is meaningful in practice. It is

worth mentioning that both the noodle method and the sandwich method

perform roughly the same, but the sandwich method is much more com-

putationally efficient. For a much more challenging setting: p = q = 500,

which tests 500× 500 = 250, 000 hypotheses simultaneously, the results are

summarized in Supplementary Materials Figures S7-S12 and Table S1. Note

that the noodle method fails under this setting due to the computational
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complexity. Our sandwich method still performs well for approximating the

true FDP, while PFA underestimates the true value.

Table 1: Mean and standard deviation of F̂DP(t) − FDP(t) are presented in percent,

with n = m = 50, p = q = 100 and t = 0.001.

Results (%) for the following methods:

n = m = 50 Noodle Method Sandwich Method PFA

p = q = 100 Bias Sd Bias Sd Bias Sd

Model 1

f(2, 4), B ∼ U(−1, 1) 0.981 2.640 0.437 2.415 -1.724 2.844

f(3, 3), B ∼ N(0, 1) 1.049 3.732 0.653 3.428 -0.689 2.795

Model 2

(ρ1, ρ2) = (0.5, 0.3) 1.008 2.537 0.481 2.366 -2.064 2.691

(ρ1, ρ2) = (0.5, 0.8) 0.914 3.044 0.372 2.949 -2.150 3.703

Model 3

f(2, 2),W ∼ Exp(1) 0.986 2.556 0.515 2.396 -0.829 2.666

f(2, 2),W ∼
√

2
3 t6 0.734 2.585 0.292 2.462 -0.863 2.603

f(2, 4),W ∼ Exp(1) 1.041 2.950 0.488 2.719 -1.669 2.912

f(2, 4),W ∼
√

2
3 t6 0.808 2.558 0.293 2.456 -1.660 3.015

f(3, 3),W ∼ Exp(1) 0.924 2.861 0.345 2.636 -1.956 2.994

f(3, 3),W ∼
√

2
3 t6 0.910 2.515 0.368 2.344 -1.715 2.712

f(4, 4),W ∼ Exp(1) 1.077 2.639 0.457 2.459 -2.740 3.271

f(4, 4),W ∼
√

2
3 t6 0.995 2.465 0.423 2.285 -2.526 2.963

4. Data Analysis

Electroencephalogram (EEG) has been widely considered as an effective

approach for detecting spontaneous fluctuations in brain activity. We will
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illustrate our newly proposed multiple testing procedures on an EEG data

set from a study to examine EEG correlating of genetic predisposition to

alcoholism. We will compare alcoholic group and control group, to study

the influence of alcohol on the brain. For each subject, the data contains

measurements from 64 electrodes placed on the scalp sampled at 256 Hz

for 1 second, while the subjects were performing a visual object recognition

task. The data set and the more detailed description can be accessed via

kdd.ics.uci.edu/databases/eeg.

In our study, let Y1, ...,Yn, n = 77, denote the voltage (in micro volts)

for the group of alcoholic subjects, and Z1, ...,Zm,m = 45, denote the

voltage for the group of control subjects. Thus, each sample contains

p × q = 64 × 256 = 16384 values of measurements. We further assume

that the voltage of the two groups on each subject are from two matrix

normal distributions with possibly different mean matrix but the same col-

umn covariance matrix U and row covariance matrix V. More specifi-

cally, Yi ∼ MN (µy,U,V) for i = 1, ..., 77 and Zj ∼ MN (µz,U,V) for

j = 1, ..., 45. We applied the empirical bootstrap procedure of Aston et

al. (2017) to check the plausibility of the Kronecker product dependence

decomposition for the covariance structure, the p-values of the test for

alcoholic group {Yl}77l=1 and control group {Zl}45k=1 are 0.872 and 0.394,

Statistica Sinica: Preprint 
doi:10.5705/ss.202021.0406



respectively, thus we could not reject the null hypothesis that the data con-

forms with a Kronecker product structure. We also test the equality of

the Kronecker product of dependencies across two groups using the method

proposed by Cai, Liu and Xia (2013). The details are presented in Supple-

mentary Materials. Furthermore, there are other procedures designed for

matrix-valued data, to test the equality of dependency across two groups,

see Xia and Li (2017), Xia and Li (2019) and Chen et al. (2023).

In our problem, testing whether EEG correlating of genetic predisposi-

tion to alcoholism can be formulated as a multiple hypothesis testing prob-

lem on H0,ij : µ
y
ij = µz

ij versus H1,ij : µ
y
ij ̸= µz

ij for i = 1, ..., 64, j = 1, ..., 256.

The EEG data reflects the brain’s electric activity in a spatial-temporal

pattern, where the dependence from either direction should not be simply

ignored. The temporal correlation is easier to understand, as the activities

of the same brain regions are recorded through time. The spatial correlation

has a deeper scientific foundation, reflecting the brain functional connec-

tivity (Fox and Raichle , 2007). Figure 2 shows the results of selected

signals, by rejecting the hypotheses where the corresponding p-values are

no greater than a threshold value t. Both the noodle method and sandwich

method return the same results here. By choosing a larger threshold value,

more signals will be detected, whereas a smaller threshold value will lead to
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fewer discoveries. Although channels discovered are different according to

different threshold values, the time when a signal is discovered is relatively

stable. It is also interesting that the time lag between signals may reflect

the causal effect or the direction of influence of the regional brain activities

in response to the task.
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Figure 2: Plots of the selected hypotheses with different threshold values t: (a) 0.2 (b)

0.1 (c) 0.01 (d) 0.001
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5. Concluding Remarks

Our methods have shed some new light on the significance detection for the

large-scale two-sample comparison. Extensions in multiple directions are

possible for future research.

In the current paper, the methods are based on a sample covariance

matrix estimator. This approach applies to a general scenario. When a

priori knowledge of the brain function connectivity is available, we can

choose a better estimator for the covariance matrices, and the corresponding

FDP approximation can be further improved. For the more general non-

normal data, we can also consider the robust covariance estimation in Fan,

Wang and Zhong (2019).

For matrix normal assumption, it may be violated in practice, even if

each element in the matrix data follows a normal distribution. One pos-

sibility is to detect significance by rows, and then by columns. The final

selection can be the intersection of row selection and column selection.

For the distribution of the matrix data, we could also consider relax-

ing the normality assumption but keeping the Kronecker product prop-

erty. For example, we could consider the setting that the matrix data

Yi
iid∼ F(M,Up×p,Vq×q) for some distribution F where U,V characterize

the column-wise and row-wise dependence, respectively. Also, we require
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the distribution F possesses Kronecker product property, i.e., vec(Yi)
iid∼

F ′(vec(M),V⊗U), then we could consider a multivariate CLT under the

condition that E{vec(Yi)
2
j} < ∞, j = 1, ..., p× q:

1√
n

n∑
i=1

[vec(Yi)− E{vec(Yi)}]
d−→ Npq(0,V⊗U) as n → ∞.

The simulation results of Model 3 in Section 4 have shown the robustness

of our methods when the normality assumption is violated.

Furthermore, our methods can be extended to two-sample comparison

for large tensor (multi-dimensional array) data, such as MRI/fMRI data

(Lindquist, 2008). The ideas of extending current methods to tensors are

as follows:

Let A ∈ Rh×p×q be a 3-order tensor that A ∼ NI(MA,Σ1,Σ2,Σ3)

where I := h× p× q. Based on the property of tensor normal distribution,

without loss of generality, Let Y = A[1], which unfolds A along the mode-

1, it’s clear that Y ∼ Nh,pq(MA,Σ1,Σ3 ⊗Σ2), where MA is the unfolding

of MA along mode-1, Σ1 is a h × h matrix, Σ3 ⊗Σ2 is a pq × pq matrix.

Furthermore, we could vectorize the matrix, and by the property of ma-

trix normal distribution, we have vec(Y) ∼ N (vec(MA),Σ3 ⊗ Σ2 ⊗ Σ1),

where vec(Y) is a hpq dimensional column vector, and Σ3 ⊗Σ2 ⊗Σ1 is a

(hpq)× (hpq) dimensional covariance matrix. So to generalize the proposed

methods to tensors (take the 3-order tensor data as an example), suppose
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we have n samples Al
iid∼ NI(MA,Σ1,Σ2,Σ3) for l = 1, ..., n from treat-

ment group, m samples Br
iid∼ NI(MB,Σ1,Σ2,Σ3) for r = 1, ...,m from

control group, where I := h× p× q, A and B have unknown mean tensors

MA = (µA,ijk) and MB = (µB,ijk), i = 1, ..., h, j = 1, ..., p, k = 1, ..., q, but

the same covariances Σ1,Σ2,Σ3. Our problem would be extended to test

H0,ijk : µA,ijk − µB,ijk = 0 against H1,ijk : µA,ijk − µB,ijk ̸= 0.

To apply our proposed methods, we first unfold those two groups of tensor

data into matrix format. It turns out we have n samples Yl
iid∼ MN (µy,

Σ1,Σ3 ⊗ Σ2) for l = 1, ..., n from treatment group, m samples Zr
iid∼

MN (µz,Σ1,Σ3 ⊗ Σ2) for r = 1, ...,m from control group, where µy and

µz are the unfolding of MA and MB along mode-1, respectively. This will

connect the tensor data to our proposed methods for matrix data.

We would like to pursue such generalizations in our future research. By

and large, the current paper provides an effective step for the significance

detection in the large-scale matrix-valued data, which will be useful for

brain related research.

Supplementary Material

Proofs of Theorems 1 & 2 and Propositions 1 & 2 as well as additional figures

displaying results of numerical studies are relegated to the supplementary
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material.
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