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Abstract: Computer experiments can build computationally cheap statistical

models to study complex computer models. These experiments are commonly

conducted using maximin distance Latin hypercube designs (LHDs), generated

using heuristic algorithms or algebraic methods in the literature. However, the

performance of these algorithms deteriorates as the number of factors increases,

and the algebraic methods work only for numbers of runs that are of a special

kind, say, a prime number. To overcome these limitations, we introduce an in-

teger programming algorithm to construct maximin distance LHDs of flexible

sizes. Our algorithm leverages recent advances in the field of optimization, as

implemented in commercial optimization solvers. Moreover, it benefits from the

attractive algebraic structures given by good lattice point sets and the Williams

transformation. Using comprehensive numerical experiments, we show that, with

a few exceptions, our proposed algorithm outperforms benchmark algorithms and

methods for constructing LHDs with up to 113 runs.

Key words and phrases: Exact algorithm, Gaussian process, Gurobi, L1-distance,

level permutation, space-filling design.
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1. Introduction

Computer experiments enable us to the study complex systems that are

simulated using computer models (Fang et al., 2006; Santner et al., 2018).

A computer model uses algorithms and sets of mathematical equations to

provide the best representation possible of the link between the input fac-

tors and the responses of the system. However, many of these models are

computationally expensive, because they require solving complicated par-

tial differential equations numerically. Therefore, one of the main goals of a

computer experiment is to build an efficient, computationally cheap surro-

gate model that approximates the computer model well. To this end, they

demand cost-effective experimental designs that gather high-quality data

from the computer model, using a limited number of runs.

Space-filling designs are attractive for computer experiments because

their runs are conducted at points that fill the experimental region evenly.

A space-filling design can be constructed by maximizing the minimum dis-

tance between its points or, alternatively, by minimizing the maximum dis-

tance between its points and all other points in the region (Johnson et al.,

1990). Designs that achieve the former and latter objectives are called max-

imin and minimax distance designs, respectively. A different construction

method for space-filling designs involves minimizing a discrepancy function,
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that measures the distance between the empirical distribution of the design

points and the uniform distribution over the entire region (Fang et al.,

2000). Another construction method minimizes the so-called total poten-

tial energy function, yielding design points that are as apart as possible,

but that follow a user-specified distribution (Joseph et al., 2015). Pronzato

and Müller (2012) provide a comprehensive review of space-filling designs

generated in other ways. Here, we adopt the maximin distance criterion and

construct space-filling designs for computer experiments with many input

factors.

The surrogate for a computer model commonly involves a (stationary)

Gaussian process. The key component of this process is the covariance

function describing the covariance between any two responses in terms of

the distance between their corresponding design points. Johnson et al.

(1990) show that, when these covariances decrease rapidly as the distance

between the points increases, maximin distance designs are asymptotically

D-optimal under a Gaussian process.

To construct maximin distance designs, it is attractive to restrict to the

class of Latin hypercube designs (LHDs), because they fill the domain of

each individual factor uniformly. This class also reduces the search space

of maximin distance designs. Several algorithms construct LHDs using
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metaheuristics, such as simulated annealing (Morris and Mitchell, 1995; Ba

et al., 2015), particle swarm optimization (Chen et al., 2013), iterated local

search (Grosso et al., 2009), genetic algorithms (Liefvendahl and Stocki,

2006), evolutionary methods (Jin et al., 2005), and multi-start methods

(Ye et al., 2000; Moon et al., 2011). Although these algorithms do not

guarantee the optimality of the LHDs, they can generate attractive designs

with up to 300 runs and up to 30 factors. However, for larger numbers of

factors or runs, their performance deteriorates in terms of design quality or

computing time, because these problems are challenging.

To overcome the limitations of these algorithms, several authors have in-

troduced algebraic methods for constructing large maximin distance LHDs

that use combinatorial structures, such as orthogonal and nearly ortho-

gonal arrays (Xiao and Xu, 2018), good lattice point (GLP) sets (Zhou and

Xu, 2015), and Costas arrays (Xiao and Xu, 2017). To further improve the

LHDs obtained from these structures, we can use linear permutations (Zhou

and Xu, 2015) and the Williams transformation (Wang et al., 2018). How-

ever, the algebraic construction methods apply only for specific numbers of

runs and factors, preventing them from being flexible.

Computer models with a large number of factors are common in prac-

tice. For example, McKay (1995) describes an 84-factor simulator for the
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flow of a material in an ecosystem, and a 36-factor simulator for the environ-

mental impact of severe accidents at nuclear power plants. Houston et al.

(2001) discuss a 65-factor simulator for the management dynamics in soft-

ware development. It is therefore important to develop good construction

methods for maximin distance LHDs that can address these situations.

In this article, we introduce an elegant algorithm rooted in integer pro-

gramming (Wolsey, 2020) that can be used to construct flexible LHDs that

optimize the maximin distance criterion. Our algorithm, called IP, has two

key elements. The first is a candidate set of attractive columns from which

to obtain the designs. We generate this set by concatenating the LHDs con-

structed by Wang et al. (2018), and then removing fully correlated columns,

as identified by novel theoretical results. We choose these LHDs because

they exhibit good performance in terms of the maximin distance criterion.

The second element of the IP algorithm is a problem formulation that, when

supplied to state-of-the-art optimization solvers such as Gurobi, CPLEX,

or MOSEK, identifies the candidate columns that form the optimal LHD.

Using optimization solvers allows our algorithm to leverage recent advances

in the theory and practice of integer programming; see Bixby (2012) and

Achterberg and Wunderling (2013). For a given candidate set, the solvers

not only provide probably optimal LHDs, but also an upper bound on the
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maximin distance criterion.

Using numerical experiments, we demonstrate that the IP algorithm is

computationally effective for design problems with up to 30 runs and up to

29 factors. Moreover, with a few exceptions, it matches or improves upon

the performance of existing benchmark algorithms and algebraic methods

in the literature.

To tackle larger design problems, we modify the IP algorithm in two

ways. First, we use a smaller candidate set with columns that have a prime

number of elements. Second, we implement a systematic method to remove

rows from the optimal LHD obtained from this candidate set, in order to

obtain LHDs with flexible run sizes. We show that these modifications allow

the IP algorithm to outperform benchmark algorithms for design problems

with 34 to 72 factors and 44 to 97 runs, as well as for problems with 10

and 11 factors and 101 to 113 runs. To the best of our knowledge, the IP

algorithm is the first integer-programming-based approach for constructing

maximin distance LHDs of practically relevant sizes.

The rest of the paper is organized as follows. Section 2 introduces back-

ground notation and concepts, and Section 3 reviews the method of Wang

et al. (2018) for constructing LHDs. Section 4 presents the IP algorithm

and a comprehensive comparison with benchmark methods available in the
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literature. Section 5 shows the modifications to the IP algorithm and their

evaluation using numerical experiments. Section 6 concludes the paper with

remarks and directions for future research.

2. Preliminaries

We denote the integer part of x as ⌊x⌋, the set of positive integers as Z+,

and ZN = {0, 1, . . . , N − 1}. For a matrix Y = (yi,j) with yi,j ∈ ZN , the

entries of the linearly permuted matrix Y+b (mod N) are yi,j+b (mod N).

An n-factor N -run LHD X = (xi,j) is an N × n matrix in which each

column is a permutation of the elements in ZN . We denote the ith row and

jth column of X as xi and x(j), respectively.

Let d(xi,u, xj,u) = |xi,u − xj,u|, where xi,u is the ith element of x(u), for

u = 1, . . . , n. For each x(u), we define an N(N − 1)/2× 1 vector of absolute

element-wise distances

a(u) = (d(x1,u, x2,u), d(x1,u, x3,u), . . . , d(xN−1,u, xN,u))
T .

We define the distance matrix as A =
[
a(1); a(2); · · · ; a(n)

]
, which collects

the absolute element-wise distance vectors of all columns in X. Let Aq =

(aqi,j), with ai,j denoting the entries of A and q a positive integer. The Lq-

distances between any two distinct rows in X are given by the element-wise

qth root of Aq1n, where 1n is an n× 1 vector of ones. The distance matrix
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is a key component of our method for generating LHDs.

The Lq-distance of an LHD X, denoted as dq(X), is the minimum Lq-

distance between any two distinct rows of the design. That is,

dq(X) = min


(

n∑
j=1

aqi,j

)1/q

: i = 1, . . . , N(N − 1)/2

 .

When comparing two LHDs, the one with the largest minimum Lq-distance

between any two distinct rows is preferred, according to the maximin dis-

tance criterion. An LHD that maximizes dq(X) is called a maximin Lq-

distance LHD (Johnson et al., 1990). Here, we set q = 1, thereby adopting

the L1-distance. However, our methodology works for other values of q as

well.

Two vectors are fully correlated if the correlation between them is either

1 or −1. The following lemma shows that fully correlated vectors induce

the same absolute element-wise distance vectors.

Lemma 1. Let x and y be N×1 vectors with elements that are permutations

of ZN . Let ax and ay be the N(N − 1)/2 × 1 distance vectors constructed

from x and y, respectively. If y = (N − 1)1N − x, then ax = ay.
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3. Construction methods based on GLP sets and the Williams

transformation

We now review the method of Wang et al. (2018) to construct LHDs using

GLP sets (Zhou and Xu, 2015), linear permutations, and the Williams

transformation (Williams, 1949). We also provide new theoretical results

to characterize these LHDs. Section S1 of the Supplementary Material

contains proofs of these and other results presented in this paper.

3.1 GLP sets and linear permutations

Let H = {h1, . . . , hn} be a set of positive integers smaller than and coprime

to N , such that h1 < h2 < · · · < hn. An N × n GLP set X has elements

xi,j = ihj (mod N), for i = 1, . . . , N and j = 1, . . . , n; see Zhou and Xu

(2015). The last row of X is a vector of zeros. Each column of X is a

permutation of the elements in ZN . Therefore, a GLP set is an LHD. We

can construct an N × n GLP set for any n ≤ ϕ(N), where ϕ(N) is the

number of positive integers smaller than and coprime to N . We assume

that N > 3 and, thus, ϕ(N) must be even. If N is a prime, ϕ(N) = N − 1.

Zhou and Xu (2015) show that linear permutations of the columns

of a GLP set X may produce a better LHD in terms of the L1-distance.

More specifically, they prove that Xb = X + b (mod N) is an LHD with
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3.2 The Williams transformation and some theoretical results

d1(Xb) ≥ d1(X), for b ∈ ZN . When N is a prime and n = N − 1, the LHDs

Xb with the optimal value of b are competitive with those obtained using

the simulated annealing (SA) algorithm of Ba et al. (2015) in terms of the

L1-distance. Moreover, the former are computationally cheaper to generate

than are the latter.

3.2 The Williams transformation and some theoretical results

Wang et al. (2018) show that the performance of the linearly permuted GLP

sets can be further improved using the Williams transformation (Williams,

1949). For an integer N and y ∈ ZN , the Williams transformation is

W (y) =

{
2y for 0 ≤ y < N/2;

2(N − y)− 1 for N/2 ≤ y < N.

This transformation is a permutation of elements in ZN . Therefore, for an

LHD X, W (X) = (W (xi,j)) is also an LHD.

Given a GLP set X, Wang et al. (2018) propose evaluating all LHDs

Zb = W (Xb), for b = 0, . . . , N−1, and selecting the best in terms of the L1-

distance. However, it turns out that not all the designs have to be evaluated.

To see this, we first introduce two lemmas that state a relationship between

the columns in the LHDs Zb when N is even or odd.

Lemma 2. Let N be even, n = ϕ(N), X be an N × n GLP set, Xb =

X+ b (mod N), and Zb = W (Xb), with b ∈ ZN . Let z
(j)
b be the jth column

Statistica Sinica: Preprint 
doi:10.5705/ss.202021.0362



3.2 The Williams transformation and some theoretical results

of Zb, for j = 1, . . . , n. We have that z
(j)
b = (N − 1)1N − z

(j)
N/2+b, for

b = 0, 1, . . . , N/2− 1.

Lemma 3. Let N be odd, Zb be as in Lemma 2, and z
(j)
b be its jth column.

For j = 1, . . . , n, we have the following:

(i) There exists an element b⋆ ∈ ZN such that z
(j)
b⋆ = (N−1)1N−z

(n+1−j)
b⋆ .

If (N − 1)/2 is even, b⋆ = (N − 1)/4. Otherwise, b⋆ = (3N − 1)/4.

(ii) For b ̸= b⋆ and b′ = (N−1)/2−b (mod N), z
(j)
b = (N−1)1N−z

(n+1−j)
b′ .

Lemmas 1 and 2 imply that when the number of runs is even, we only

have to evaluate the LHDs Zb obtained using the first half of the linear

permutations, because the other LHDs have similar distance matrices. We

state this formally below.

Theorem 1. Let N be even and Zb be as in Lemma 2. The distance ma-

trices of Zb and ZN/2+b are the same for b = 0, . . . , N/2− 1.

When the number of runs is odd, Lemmas 1 and 3 imply the next result.

Theorem 2. For N an odd number, let Zb, b
⋆, b, and b′ be as in Lemma 3.

The distance matrix of Zb⋆ has n/2 repeated columns. Moreover, for each

of the (N − 1)/2 pairs (b, b′), the distance matrices of Zb and Zb′ are the

same up to column permutations.

Statistica Sinica: Preprint 
doi:10.5705/ss.202021.0362



3.2 The Williams transformation and some theoretical results

Table 1: L1-distance of Zb for different values of b in Example 1.

b 0 1 2 3 4 5 6 7 8 9 10

d1(Zb) 10 39 31 31 39 10 28 34 30 34 28

LHDs with distance matrices that are the same up to column permutations

have the same Lq-distance. From Theorem 2, we need to evaluate only

one LHD, say Zb, for each pair of linear permutations given by b and b′, in

addition to Zb⋆ . The next example illustrates Lemma 3 and Theorem 2.

Example 1. We considerN = 11, where ϕ(11) = 10 andH = {1, 2, 3, 4, 5, 6,

7, 8, 9, 10}. The GLP set X is an 11 × 10 LHD with elements xi,j =

ij (mod 11), for i = 1, . . . , 11 and j = 1, . . . , 10. For b = 0, . . . , 10, we

obtain Xb = X + b (mod 11) and Zb = W (Xb). Theorem 2 implies that

there are five pairs (b, b′), for which the distance matrices of Zb and Zb′

are the same up to column permutations. To illustrate this, Table 1 shows

the L1-distances of the 10 LHDs Zb. We see that Zb and Zb′ have the same

L1-distance for (b, b
′) = (0, 5), (1, 4), (2, 3), (6, 10), and (7, 9). All these pairs

satisfy b′ = (11−1)/2−b (mod 11). Since (N−1)/2 = 5 is odd, Lemma 3(i)

implies that b⋆ = (3N − 1)/4 = 8. Table 1 shows that this is the case, be-

cause Z8 has an L1-distance of 30, which is different from that of the other

designs. Note that the value of b⋆ does not necessarily result in the best Zb.
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3.3 Strengths and limitations

Lemmas 1, 2, and 3 are relevant to our IP algorithm.

3.3 Strengths and limitations

For N a prime number and n = N − 1, the method of Wang et al. (2018)

outperforms that of Xiao and Xu (2017), which constructs LHDs using the

arrays of Costas (1984). Moreover, with a few exceptions, it outperforms

the SA algorithm of Ba et al. (2015) for n = ϕ(N) and 7 ≤ N ≤ 30 in terms

of the L1-distance. When N is a prime, Wang et al. (2018) gives a formula

to obtain the linear permutation that creates the best N -run (N−1)-factor

LHD in terms of the L1-distance. This LHD is asymptotically optimal in

terms of the maximin distance criterion, because the ratio of its L1-distance

and the theoretical optimum converges to one for large N . Moreover, its

average absolute correlation between two columns is smaller than 2/(N−2).

Thus, the larger the run size, the smaller is its average absolute correlation.

Despite these attractive features, the method of Wang et al. (2018) has

two limitations. First, it is unknown whether it can generate good LHDs

with a prime number of runs and fewer than N − 1 factors in terms of the

L1-distance. Second, when N is not a prime, the largest number of factors

of an LHD obtained using this method is ϕ(N) < N − 1. For example, if N

is 20, 24, or 30, the maximum number of factors is eight. Therefore, LHDs
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with these run sizes and more than eight factors cannot be constructed

using this method. Our IP algorithm, which we introduce next, overcomes

these limitations.

4. Integer programming algorithm

We first briefly review integer programming. Next, we present the candidate

set, problem formulation, and implementation of the IP algorithm. We end

the section by using numerical experiments to assess the performance of the

proposed algorithm.

4.1 Background

Integer programming is an optimization method used to determine the val-

ues of a set of discrete or continuous decision variables so as to optimize a

linear objective function, while satisfying a set of linear constraints (Wolsey,

2020). To use integer programming in practice, we need a problem formu-

lation and an optimization solver to find its optimal solution. A problem
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4.1 Background

formulation has the following general form:

max
x

cTx subject to (4.1a)

Gx = b, Hx ≤ d, x ≥ 0n, (4.1b)

xi ∈ Z, ∀i ∈ J , (4.1c)

where x = (x1, x2, . . . , xn)
T is an n × 1 vector of decision variables, c is

an n × 1 vector, G is an m1 × n matrix, H is an m2 × n matrix, b is

an m1 × 1 vector, d is an m2 × 1 vector, 0n is an n × 1 vector of zeros,

and J is a nonempty set of indices. If J = {1, 2, . . . , n}, the problem is

called the integer linear programming problem. Otherwise, it is called the

mixed-integer linear programming (MILP) problem.

Commercial optimization solvers, such as Gurobi, CPLEX, and MOSEK,

can solve the problem formulation in (4.1a)–(4.1c). They use a branch-and-

bound algorithm (Wolsey, 2020, ch. 7) that conducts a systematic explo-

ration of the solution space using an enumeration tree. The nodes of the tree

are subproblems of the problem in (4.1a)–(4.1c) that result from branching

on the integer variables. Using bounds for the objective function’s value

of the subproblems, the branch-and-bound algorithm prunes the branches

(and thus the nodes) of the tree. In this way, the algorithm avoids having to

explore all feasible solutions, which speeds up the computation. To further
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4.1 Background

increase the computational performance, the solvers use other state-of-the-

art optimization techniques, such as disjunctive programming for branching

rules, primal heuristics, linear optimization methods, cutting plane theory,

preprocessing techniques, and symmetry breaking methods (Jünger et al.,

2010).

During the optimization routine, the solvers provide both feasible solu-

tions and bounds for the objective function’s optimal value of the problem

in (4.1a)–(4.1c). As a solver progresses toward the optimal solution, the

bounds improve and provide an increasingly better guarantee of optimal-

ity, which is especially useful if the solver is stopped before it converges

to the global optimum. This feature is not shared by algorithms devel-

oped from metaheuristics, which do not provide certificates of optimality

of their solutions. Integer programming has been used successfully to solve

many optimization problems, such as the bus and driver scheduling problem

(Kang et al., 2019), multi-trip vehicle routing problem (Neira et al., 2020),

and generalized traveling salesman problem (Yuan et al., 2021).

To the best of our knowledge, there are only two integer-programming-

based approaches for constructing LHDs that optimize the maximin dis-

tance criterion. Van Dam et al. (2007) propose an MILP problem to find

LHDs that maximize the L1- and L∞-distances. However, their approach

Statistica Sinica: Preprint 
doi:10.5705/ss.202021.0362



4.2 The candidate set

is limited to LHDs with two factors only. Van Dam et al. (2009) show

an MILP problem to obtain bounds on the L1-, L2-, and L∞-distances of

LHDs with more than two factors. A core component of their problem is a

candidate set of permutations of the elements in ZN . More specifically, this

set comprises N !/2 elements of the full set of permutations of the elements

in ZN . The problem also involves integer variables, one for each column in

the candidate set. A major limitation of their approach is that it is compu-

tationally demanding and often infeasible to solve, which prevents it from

being practically relevant. For example, to construct LHDs with 12 runs or

more, the MILP problem has at least 200 million integer decision variables!

4.2 The candidate set

The initial candidate set C that we consider is constructed by concatenat-

ing LHDs obtained from GLP sets, linear permutations, and the Williams

transformation. More specifically, we first consider C = [Z0,Z1, · · · ,ZN−1],

with Zb as in Section 3.2. This candidate set allows the IP algorithm to

inherit the strengths of the LHDs of Wang et al. (2018). However, from

Lemmas 1, 2, and 3, this set has pairs of fully correlated columns, which

is undesirable because they imply factors with linear effects that are fully

aliased. To overcome this issue, we remove one column from each pair of
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4.2 The candidate set

fully correlated columns from the candidate set. Therefore, when the num-

ber of runs N is even, the final candidate set we use to construct the LHDs

is

C = [Z0,Z1, · · · ,ZN/2−1]. (4.2)

This candidate set has nN/2 columns, with n = ϕ(N).

When N is odd, the final candidate set depends on whether (N − 1)/2

is even or odd, because this defines the structures of (b, b′) and the value of

b⋆ in Lemma 3. To define this set, we need additional notation. Let Yb be

the matrix involving the first n/2 columns of Zb and g(N) = (N −1)/2+1.

The final candidate set we use to construct LHDs with N odd is as follows:

• If (N − 1)/2 is even,

C = [Z0,Z1, · · · ,Zb⋆−1,Zg(N),Zg(N)+1, · · · ,Zw,Yb⋆ ], (4.3)

where b⋆ = (N − 1)/4 and w = ⌊(3N − 1)/4⌋.

• If (N − 1)/2 is odd,

C = [Z0,Z1, · · · ,Zw,Zg(N),Zg(N)+1, · · · ,Zb⋆−1,Yb⋆ ], (4.4)

where b⋆ = (3N − 1)/4 and w = ⌊(N − 1)/4⌋.

In both cases, the set has n(N−1)/2+n/2 = nN/2 columns, with n = ϕ(N).
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4.2 The candidate set

The next result shows that when N is an odd prime, the candidate set

is of the highest quality in terms of the L1-distance.

Theorem 3. If N is an odd prime, the candidate set C in (4.3) and (4.4)

is a maximin L1-distance LHD with N runs, N(N − 1)/2 factors, and an

L1-distance equal to N(N2 − 1)/6.

Example 2. Consider a simple case with N = 5, ϕ(5) = 4, and g(5) = 3.

Let X be the 5× 4 GLP set, Xb = X+ b (mod 5), and Zb = W (Xb) be

2 4 3 1

4 1 2 3

3 2 1 4

1 3 4 2

0 0 0 0


,



4 3 1 0

3 0 4 1

1 4 0 3

0 1 3 4

2 2 2 2


,



3 1 0 2

1 2 3 0

0 3 2 1

2 0 1 3

4 4 4 4


,



1 0 2 4

0 4 1 2

2 1 4 0

4 2 0 1

3 3 3 3


,



0 2 4 3

2 3 0 4

4 0 3 2

3 4 2 0

1 1 1 1


,

for b = 0, . . . , 4, respectively. Since (N − 1)/2 = 2 is even, we have that

b⋆ = 1 and w = 3. Indeed, the first and second columns of Z1 are fully

correlated with the fourth and third columns, respectively. This is because

the elements in the first and second columns are equal to four minus the el-

ements in the fourth and third columns, respectively. The first two columns

of Z1 then form the 5 × 2 matrix Y1. Using a similar argument, columns

one, two, three, and four of Z0 are fully correlated with columns four, three,

two, and one, respectively, of Z2. The same is true for Z3 and Z4. The final
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4.3 Problem formulation

candidate set is

C =



2 4 3 1 1 0 2 4 4 3

4 1 2 3 0 4 1 2 3 0

3 2 1 4 2 1 4 0 1 4

1 3 4 2 4 2 0 1 0 1

0 0 0 0 3 3 3 3 2 2


.

Since N is a prime number, Theorem 3 implies that C is a maximin L1-

distance LHD with five runs and 10 factors. Indeed, this design has an

L1-distance of 20, which is equal to the upper bound of Van Dam et al.

(2009).

4.3 Problem formulation

For each column in the candidate set C, we define a binary variable yu

that is equal to one if and only if the uth column of C is in the LHD.

For our problem formulation, the relevant element of the candidate set is

its distance matrix. Consider the r × p L1-distance matrix A1 of C, with

r = N(N − 1)/2 and p = Nϕ(N)/2. The integer programming problem

formulation to construct an N -run k-factor LHD that maximizes the L1-
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distance is

max
y, t

t subject to (4.5a)

1T
p y = k, A1y ≥ t1r, (4.5b)

t ∈ Z+, yu ∈ {0, 1}, u = 1, . . . , p. (4.5c)

This problem formulation has p binary decision variables contained within

y = (y1, y2, . . . , yp)
T , an integer decision variable t, and r + 1 linear con-

straints contained within (4.5b). It is straightforward to recast this for-

mulation in the form of the general integer programming formulation in

(4.1a)–(4.1c).

The linear objective function in (4.5a) is expressed in terms of the

decision variable t only. The first constraint in (4.5b) implies that the final

LHD has exactly k columns, and the other constraints ensure that the L1-

distances between any two distinct rows of the LHD, given by A1y, must

be larger than or equal to t. Maximizing t then maximizes the minimum

L1-distance between two rows of the LHD. The constraints in (4.5c) ensure

that t is a positive integer and that the variables yu are binary.

The rows of A1 define the constraints within (4.5b). Ideally, this matrix

has no repeated rows. Otherwise, some constraints appear more than once

in the problem formulation. These repetitions are thus redundant. The
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next result shows a candidate set with a distance matrix that has repeated

rows.

Theorem 4. For N even, the distance matrix of the candidate set in (4.2)

has N
2
(N
2
− 1) pairs of repeated rows.

In this case, we recommend removing one row from each pair of repeated

rows in the distance matrix, before using the problem formulation. Thus,

when N is even, the number of constraints within (4.5b) is (N/2)2+1.

The problem formulation in (4.5a)–(4.5c) is similar in spirit to that of

Van Dam et al. (2009). However, it has Nϕ(N)/2 binary decision variables

instead of the N !/2 integer variables in the latter study. This is because our

problem formulation is tailored to an attractive candidate set, the columns

of which can be either included once or excluded from the LHD.

After solving the problem formulation (4.5a)–(4.5c) to optimality, the

output is the vector y, where nonzero yu-values indicate the columns of C

that are in the N -run k-factor LHD, that maximizes the L1-distance. This

LHD is optimal among all k-factor subsets of C. In principle, we can obtain

N -run LHDs with a number of factors as large as Nϕ(N)/2, which is the

size of the candidate set. However, we focus on LHDs with up to N − 1

factors, because they are more relevant in practice. Note that LHDs that

optimize the general Lq-distance can be obtained by replacing A1 with Aq
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in (4.5b), for a positive integer q.

4.4 Implementation in Gurobi

To solve the IP problem formulation, we use the solver Gurobi v.9.1.1. We

use the default settings for all the tuning parameters of the solver, except

for the TimeLimit parameter, which controls the maximum time allowed for

the optimization. To ensure that all our experiments are computationally

feasible, we set TimeLimit to 300 seconds. All our numerical experiments

were carried out at the computer cluster of the Department of Statistics

at UCLA. The cluster has 256 GB of RAM and 48 cores, with an Intel(R)

Xeon(R) Platinum 8160 CPU with 2.10 GHz.

The Gurobi solver reports information on the current progress of the

optimization, the most relevant of which is the relative gap. This gap is

equal to (b − o)/o, where o is the objective function value of the current

best solution, and b is the best upper bound of the objective function value

found so far. If the solver is stopped prematurely, a relative gap larger

than zero indicates that the solver did not prove the optimality of the best

solution found. A relative gap of zero means the solver found the optimal

solution.
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4.5 Computational results and comparisons

Here, we discuss numerical experiments to compare the performance of the

IP algorithm with that of algebraic methods and benchmark algorithms in

the literature. Section S2 of the Supplementary Material shows additional

experiments used to validate the components of the IP algorithm. More

specifically, Section S2.1 demonstrates that our candidate set embeds at-

tractive LHDs in terms of the maximin distance criterion. Section S.2.2

shows that the IP problem generates better LHDs than those obtained by

selecting columns at random from the candidate set.

We consider the design problems in Table 2, which we obtained from

Wang et al. (2018). They involve LHDs with seven to 30 runs and four

to 28 factors. For these design problems, Wang et al. (2018) report the

L1-distances of the LHDs obtained using their method, the methods of

Zhou and Xu (2015) and Xiao and Xu (2017), and the SA algorithm of Ba

et al. (2015). The SA algorithm was executed 100 times with its default

parameters values, and we report the best design in terms of the L1-distance.

This algorithm is implemented in the “SLHD” package in the statistical

software R. For completeness, Table 2 reproduces the L1-distances in Wang

et al. (2018) for these methods.

As an additional benchmark algorithm, we consider the genetic algo-
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rithm of Liefvendahl and Stocki (2006), because this and the SA algorithm

are the best algorithms available for constructing good LHDs in terms of the

maximin distance criterion; see Zhou and Xu (2015), Xiao and Xu (2018),

and Wang et al. (2021). For the genetic algorithm, we use its recommended

parameter settings and its implementation in the “LHD” package in R.

To limit its computing time, the R implementation has a tuning parameter

called the number of generations, which we set to 500, following Wang et al.

(2021). Table 2 includes the L1-distances of the genetic algorithm.

Table 2 shows that the IP algorithm matches or improves upon the

benchmark methods for most design problems. More specifically, for 16,

19, 20, 23, 25, 27, and 28 runs, the LHDs obtained using the IP algorithm

outperform all benchmark designs in terms of the L1-distance. For the

other cases, our algorithm generated LHDs that have the same L1-distance

as the best benchmark designs, except for 9, 10, 15, 18, 24, and 29 runs;

see Table 2. The 10-, 15-, 18-, and 24-run LHDs obtained using the genetic

algorithm have an L1-distance that is one or two units larger than our

designs. For 9 and 29 runs, the LHDs obtained using the SA algorithm and

the method of Wang et al. (2018), respectively, have a larger L1-distance

than that of our designs.

Except for LHDs with 19, 23, 25, 27, and 29 runs, the Gurobi solver
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Table 2: L1-distances of N -run k-factor LHDs, with k = ϕ(N).

N k IP SA GA ZX WXX XX N k IP SA GA ZX WXX XX

7 6 16 15 15 13 16 14 19 18 118 108 110 106 115 106

8 4 11 11 10 8 10 20 8 47 43 46 32 42

9 6 17 18 17 15 16 21 12 77 73 77 66 76

10 4 11 11 12 8 11 22 10 68 61 64 60 68

11 10 39 36 38 34 39 34 23 22 172 160 161 154 168 158

12 4 13 13 13 8 10 24 8 53 50 54 32 36

13 12 54 52 52 54 52 48 25 20 163 153 153 147 162

14 6 24 23 24 22 24 26 12 98 87 91 84 98

15 8 36 35 37 29 36 27 18 157 145 147 135 156

16 8 43 37 39 32 36 28 12 104 92 97 72 94

17 16 94 86 89 84 94 86 29 28 270 254 254 250 274 250

18 6 28 28 30 18 28 30 8 63 57 63 40 61

IP: IP algorithm; SA: simulated annealing algorithm; GA: genetic algorithm; ZX: Zhou

and Xu (2015); WXX: Wang et al. (2018); XX: Xiao and Xu (2017). The largest

L1-distance for each design problem is shown in bold.

certified that all LHDs constructed using the IP algorithm have the best

possible L1-distance among those obtained from the candidate set in Sec-

tion 4.2. Therefore, 9-, 10-, 15-, 18-, and 24-run LHDs with L1-distances

larger than those in Table 2 cannot be obtained using our candidate sets.

For the LHDs with 19, 23, 25, 27, and 29 runs, the upper bounds on the L1-

distance are 119, 176, 168, 162, and 280, respectively. This means that the

relative gaps between the best solutions and the upper bounds range from

1.69% to 3.32% in these cases. Therefore, better LHDs may be obtained if

we increase the computing time of the solver.
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Here, we focused on constructing N -run LHDs with ϕ(N) factors, where

N ranges from seven to 30. However, our IP algorithm can construct LHDs

with more or fewer factors than ϕ(N). For instance, it can generate an

LHD with up to N − 1 factors for each value of N in Table 2.

5. A modified IP algorithm for constructing large designs

The integer programming problem in Section 4.3 is a cardinality-constrained

optimization problem that is NP-hard (Bienstock, 1996). However, our

previous computational experiments show that the Gurobi solver can find

good, or even optimal solutions for design problems with up to 30 runs

and up to 29 factors, within five minutes. This renders our IP algorithm

as computationally feasible for constructing LHDs of small and moderate

sizes.

For larger-sized LHDs, our algorithm inevitably suffers from the com-

plexity of the integer programming problem. To overcome this issue, we

reduce the candidate set and include an extra step in the IP algorithm. We

now present these modifications and a numerical evaluation of the resulting

performance.
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5.1 A reduced candidate set and the leave-one-out method

The reduced candidate set, which we denote asD, is the bestN -run (N−1)-

factor LHD, with N a prime number, from the method of Wang et al.

(2018). More specifically, D is constructed using the N × (N − 1) GLP

set, the Williams transformation, and the linear permutation that results

in the best LHD in terms of the L1-distance; see Wang et al. (2018) for a

formula to obtain this permutation. We choose this candidate set because

it allows us to generate LHDs with up to N − 1 factors. Moreover, D is

asymptotically optimal in terms of the maximin distance criterion and has

small correlations between its columns.

Using D instead of the full candidate set in (4.3) or (4.4) results in a

problem formulation with the same number of constraints, but p = N − 1

binary decision variables; see (4.5a)–(4.5c). Although the resulting prob-

lem formulation is still NP-hard, it has a smaller solution space than the

original formulation, which involves N(N − 1)/2 binary decision variables.

Compared with the latter, the smaller solution space of the former allows

the Gurobi solver to generate LHDs with large N and k values.

With the reduced candidate set, we can construct N -run LHDs with a

number of factors k ≤ N − 1, where N is a prime number. To generate

LHDs with fewer than N runs, we sequentially apply the leave-one-out
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method (Fang and Wang, 1981). Let M be the run size of the desired

LHD and assume that M < N . First, we generate N reduced designs by

removing each point in the N -run k-factor LHD. Next, we convert each

reduced design into an LHD by rearranging its entries. To this end, we

rearrange the entries of a reduced design column by column. If the entry

with value x ∈ ZN is removed from a column, the entries larger than x are

decreased by one. After that, we evaluate the N resulting LHDs with N−1

runs and k factors, and select the best one in terms of the L1-distance. To

find an LHD with N − 2 runs, we repeat the whole procedure using the

best (N − 1)-run LHD as a start. Using the newly obtained smaller LHD,

we repeat the procedure again to generate an (N − 3)-run LHD, and so on,

until we obtain an M -run LHD.

5.2 Computational performance

We compare the modified IP algorithm with the SA algorithm of Ba et al.

(2015) and the genetic algorithm of Liefvendahl and Stocki (2006) for con-

structing large LHDs. The computational setup of the algorithms is the

same as before. However, preliminary experiments (not shown here) re-

vealed the benchmark algorithms are computationally demanding for large

numbers of runs or factors. Therefore, we imposed an additional stopping
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rule: we set their maximum computing time to that of the Gurobi solver.

For each design problem, we executed the SA algorithm 100 times, and

reported the best LHD obtained among all iterations that were completed

within 300 seconds. Similarly, we used 500 generations of the genetic algo-

rithm, and recorded the best LHD obtained within this time frame.

5.2.1 Large LHDs with a prime number of runs

We begin with design problems involving 31, 47, 71, and 97 runs, all of

which are prime numbers. For each run size N , we consider five numbers

of factors: ⌊(N − 1)/4⌋, ⌊(N − 1)/3⌋, ⌊(N − 1)/2⌋, ⌊2(N − 1)/3⌋, and

⌊3(N − 1)/4⌋. We chose these numbers of factors because they range from

small to large, relative to the run size. These design problems allow us

to assess the quality of the LHDs obtained from subsets of columns of the

N -run (N −1)-factor LHDs of Wang et al. (2018), with N a prime number.

Table 3 shows the L1-distances of the LHDs obtained using the modified

IP (M-IP), SA, and genetic algorithms. The M-IP algorithm outperforms

the SA and genetic algorithms in 13 of the 20 design problems in the table.

In general, the proposed algorithm outperforms the others for large run

sizes.

In Table 3, all 31-run LHDs of our algorithm are optimal among the
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Table 3: L1-distances of N -run k-factor LHDs, with N a prime number.

N k M-IP SA GA N k M-IP SA GA

31 7 46 49 54 71 17 303 299 300

10 77 80 85 23 448 437 422

15 129 131 134 35 725 710 670

20 187 182 185 46 999 971 890

22 207 204 208 52 1149 1104 1029

47 11 120 122 134 97 24 613 600 538

15 184 183 190 32 846 847 779

23 310 306 303 48 1386 1338 1190

30 425 418 405 64 1904 1843 1630

34 492 476 462 72 2199 2099 1872

M-IP: modified IP algorithm; SA: simulated annealing algorithm; GA: genetic algorithm.

LHDs obtained from subsets of columns of the initial 31-run 30-factor LHD.

For all other combinations of numbers of runs and numbers of factors in

the table, the Gurobi solver did not finish the search for the optimal LHD

within 300 seconds. For 47, 71, and 97 runs, the relative gaps given by

the solver ranged from 1.0% to 5.8%, 5.1% to 22.4%, and 5.4% to 20.7%,

respectively.

5.2.2 Large LHDs with general run sizes

Here, we consider the design problems shown in Table 4, which involve 44

to 96 runs and 23 to 72 factors. In these cases, the number of runs is not
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a prime, and thus the M-IP algorithm uses the leave-one-out method. The

starting designs for this step are the LHDs in Table 3.

Table 4 shows the L1-distances obtained using the M-IP, SA, and ge-

netic algorithms. For all design problems, the M-IP algorithm outperforms

the benchmark algorithms. The proposed algorithm performs particularly

well for LHDs with 68 runs or more, and 46 factors or more. This is because

the L1-distances of these designs are larger than those of the benchmark

algorithms by at least 24 units.

5.2.3 LHDs with a large number of runs relative to the number

of factors

We also investigate the performance of the M-IP algorithm when construct-

ing LHDs with run sizes that are considerably larger than the number of

factors. For illustrative purposes, we consider a prime number of runs N ,

ranging from 71 to 113. Following Loeppky et al. (2009), we use the number

of factors k = ⌊N/10⌋ for each of the 11 values of N .

Table 5 shows that, for all design problems with 8, 10, and 11 factors,

the M-IP algorithm produces better LHDs than those of the benchmark

algorithms in terms of the L1-distance. Therefore, the M-IP algorithm can

generate attractive LHDs with a large number of runs relative to the number
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Table 4: L1-distances of N -run k-factor LHDs, with N not a prime number.

N k M-IP SA GA N k M-IP SA GA

44 23 292 291 286 70 35 718 705 654

30 400 390 387 46 987 951 844

34 463 447 434 52 1134 1089 1014

45 23 298 296 295 94 48 1349 1306 1161

30 409 399 392 64 1851 1790 1591

34 473 458 437 72 2132 2037 1846

46 23 304 302 298 95 48 1361 1313 1170

30 416 409 402 64 1870 1817 1637

34 482 471 445 72 2154 2054 1814

68 35 699 687 624 96 48 1374 1348 1172

46 959 935 862 64 1889 1827 1609

52 1104 1060 987 72 2176 2080 1818

69 35 709 693 650

46 972 941 861

52 1120 1071 981

of factors, particularly when the number of factors is at least eight.

6. Conclusion

We have proposed an IP algorithm for constructing LHDs that optimize

the maximin distance criterion, as measured by the L1-distance. The al-

gorithm is rooted in integer programming and uses a candidate set of at-
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Table 5: L1-distances of N -run k-factor LHDs, with k = ⌊N/10⌋.
N k M-IP SA GA N k M-IP SA GA

71 7 83 89 94 101 10 203 191 187

73 87 91 96 103 211 196 190

79 89 95 100 107 211 207 188

83 8 130 123 124 109 212 206 188

89 133 127 128 113 11 244 242 223

97 9 161 163 155

tractive columns to generate the designs. We generated this set from the

LHDs obtained by Wang et al. (2018), and used novel theoretical results to

avoid fully correlated columns in the set. Remarkably, when the run size

is a prime, the candidate set is itself a maximin L1-distance LHD. Using

numerical experiments, we showed that the proposed IP algorithm is com-

putationally effective for small and moderate design problems. For larger

design problems, we modified the algorithm by reducing the candidate set

and using the leave-one-out method to obtain LHDs with any run size. We

demonstrated that the modified IP algorithm outperforms the benchmark

algorithms in 47 of our 58 design problems. Our algorithm is particularly

effective for constructing LHDs with around 100 runs, supporting the idea

that it outperforms the benchmark algorithms for larger run sizes.

For 29 runs and 28 factors, the IP algorithm did not generate a better
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LHD than that of the method of Wang et al. (2018). This may be because

the time allowed for the optimization by the Gurobi solver was not sufficient.

Indeed, additional computations revealed that, after four hours, the solver

found an LHD with an L1-distance of 275, which is larger than all of the

benchmark designs in Table 2. We therefore recommend completing the

optimization of the IP algorithm.

In principle, we could use the modified IP algorithm to generate small-

and moderate-sized LHDs. As a proof of concept, we used this alternative

algorithm to construct LHDs for the design problems in Table 2, involving

a run size that is not a prime number. However, the resulting LHDs were

not better than those of the standard IP algorithm. We therefore recom-

mend the modified IP algorithm for situations in which the standard IP

algorithm is computationally infeasible. We also recommend completing

the optimization of the modified IP algorithm. Only when short computing

times are desired, we suggest imposing a user-specified maximum comput-

ing time for the Gurobi solver, as we did here. In any case, our numerical

experiments show that the standard and modified IP algorithms can gen-

erally obtain good LHDs within five minutes, subject to using a similar

computer hardware and software to ours.

The IP algorithm is general, because it works for any candidate set
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and, with simple modifications, can construct LHDs that maximize other

distances, such as the L2-distance. Although we did not generate LHDs

that optimize this distance, the Cauchy-Schwarz inequality shows that the

L1-distance is a lower bound of the L2-distance. Therefore, we expect our

LHDs to perform well in terms of the L2-distance too.

Using a modified Williams transformation, Wang et al. (2018) construct

maximin L1-distance LHDs with N runs and N factors, subject to 2N +

1 being a prime number. To test whether our IP algorithm can obtain

these designs, we constructed LHDs with N equal to five, six, eight, nine,

11, 14, and 15. The resulting LHDs were optimal, in terms of the L1-

distance, among all comparable LHDs obtained from subsets of columns

of the candidate set. However, they did not match the L1-distance of the

maximin distance LHDs. Therefore, these optimal LHDs are not embedded

in the candidate sets we considered. This calls for alternative candidate

sets for the IP algorithm, which we leave to future research.

Another topic for future research is to extend the problem formula-

tion in Section 4.3 so as to both optimize the maximin distance criterion

and minimize the correlations between the columns of the LHDs. To this

end, we may use the problem formulations of Harris et al. (1995) and Her-

nandez et al. (2012) to construct LHDs that minimize these correlations.
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In contrast, with the heuristic algorithm of Joseph and Hung (2008), this

multi-objective approach would provide certificates of optimality for the

LHDs.

Supplementary Material

The online Supplementary Material includes the proofs of the theoretical

results, additional numerical experiments to validate the IP algorithm, and

Python implementations of its standard and modified versions.
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