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Abstract: We propose a new spectral-based approach to hypothesis testing for

populations of networks. The primary goal is to develop a test to determine

whether two given samples of networks come from the same random model or

distribution. Our test statistic is based on the trace of a centered and scaled

adjacency matrix to the third power, which we prove converges to the standard

normal distribution as the number of nodes tends to infinity. We also provide the

asymptotic power guarantee of the test. We explore the relationship between the

number of networks and the number of nodes in each network when characterizing

the theoretical properties of the proposed test statistic. Our test can be applied

to both binary and weighted networks, operates under a very general framework

in which the networks are allowed to be large and sparse, and can be extended

to multiple-sample testing. We present a simulation study that demonstrates the

superior performance of our tests over that of existing methods, and apply our

tests to three real data sets.
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1. Introduction

In this work, we consider an inference problem related to populations of

networks in which each sample or data point is a network. Most existing

works on statistical network analysis focus on models and algorithms that

can be used to analyze a single network. However, the increasing prevalence

of multiple-network data sets, in which the network is the fundamental data

object, has motivated the need for statistical inference methods for popula-

tions of networks, from which we can extract useful scientific information.

For example, in the brain network data examined in Section 5, one may

be interested in testing whether a brain network structure from a group

of individuals with schizophrenia differs from that of a group of healthy

controls. Given a collection or sample of such networks, one might also be

interested in estimating some mean network feature, which would enable

us to average networks or cluster networks into groups (Mukherjee et al.,

2017). These are all inference tasks for one or two samples of network

objects, both of which have been explored in the literature.

Ginestet et al. (2017) consider two-sample testing for networks, with
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applications to functional neuroimaging. Kolaczyk et al. (2020) extended

this work using a geometric and statistical framework for inference on pop-

ulations of unlabeled networks. They did so by providing a geometric char-

acterization of the space of unlabeled networks and deriving a central limit

theorem for the sample Fréchet mean. Supervised and unsupervised learn-

ing, such as clustering, regression, and classification for network objects,

have also been considered in the literature. See, for example, Arroyo Relión

et al. (2019) and Josephs et al. (2020); the former consider network classi-

fication in neuroimaging, and the latter use Bayesian methods for classifi-

cation, anomaly detection, and survival analysis.

Here, we focus on the problem of two-sample hypothesis testing for

populations of networks. There are several such hypothesis tests in the lit-

erature, but these typically make assumptions on the network model. For

example, Tang et al. (2017) study whether or not two networks (m = 2)

defined on different vertex sets are generated from the same random dot

product graph model. Ghoshdastidar et al. (2020) study two-sample prob-

lems from a minimax perspective that test whether two samples of binary

networks of n nodes are generated from the same link probability matrix,

against an alternative that the two link probability matrices are ρ apart with

respect to some matrix norm. Their work focuses on a theoretical charac-
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terization of minimax separation with respect to the number of networks

m, the number of nodes n, and different matrix norms. Ghoshdastidar and

von Luxburg (2018) apply the same test statistic, and prove that it con-

verges to a normal distribution asymptotically. Recently, Yuan and Wen

(2021) modified the test statistic in Ghoshdastidar and von Luxburg (2018),

proposing a new test for weighted graph two-sample hypothesis testing.

One straightforward alternative to two-sample testing for networks is

to convert the networks into vector values, and then to apply a two-sample,

high-dimensional mean test. This strategy has been widely studied in the

literature (Chen and Qin, 2010; Cai et al., 2014; Xu et al., 2016). Although

this approach is model free, it may lose information in the conversion pro-

cess, which essentially ignores the interconnectedness that defines the net-

work data. We return to this discussion in Section 4.

In contrast to most existing works, such as Ginestet et al. (2017), in

which the number of nodes is fixed, we consider a general framework that

allows both the number of nodes and the sample size (the number of net-

works) to grow. Our test statistics are spectral based and not restricted to

a given network structure. We use the trace of the third power of a centered

and scaled adjacency matrix, which is proven to converge to the standard

normal distribution as the number of nodes tends to infinity. In addition,
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we show that the asymptotic power tends to one as the number of nodes

increases. Because we also want to understand the limiting behavior as the

sample size increases, we explore the relationship between the asymptotics

in the number of networks and in the number of nodes for each network

when characterizing the theoretical properties of our proposed test statis-

tics. These statistics are conceptually simple and computational friendly,

and we discuss an extensive simulation study that we conducted under var-

ious models to demonstrate the superior performance of our test over that

of existing methods. In almost all cases we examine here, the proposed test

statistics achieve the nominal rejection rate under the null, and a power

close to one under the alternative. We also apply our test to three real data

sets of weighted and binary networks.

The idea of applying a spectral method based on random matrix theory

to network data is a natural one, because network data (e.g., the adjacency

or Laplacian matrix) can naturally be viewed as a random matrix. Our

method is motivated by Dong et al. (2020), who propose a spectral-based

hypothesis test for testing the community structure within a single net-

work. The authors prove that their test statistic, which is similar to that

in Bickel and Sarkar (2016), converges quickly to the normal distribution.

However, it is limited to testing the presence of a community structure in a
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single network versus the null Erdős–Rényi model. In our work, we extend

the statistic to test the difference between arbitrary network models. The

proposed statistic can be applied to either binary or weighted networks in

both two-sample and multiple-sample frameworks. A spectral-based test

based on a Tracy–Widom law for hypothesis testing of populations of net-

works and change-point detection in networks can also be found in Chen

et al. (2020) and Chen et al. (2021). Compared with these two works,

our spectral-based test has an asymptotic standard normal distribution,

and a much faster convergence rate under the null compared with the slow

convergence of tests based on a Tracy–Widom law. Furthermore, our test

statistics require much milder conditions for the theoretical performance

guarantees: we need an error estimate of the link probability estimates of

op(1), compared with the error condition of op(n
−2/3) required by Chen

et al. (2020).

The remainder of the paper is organized as follows. In Section 2, we

describe our proposed spectral-based test statistic, and derive its asymptotic

null distribution and an asymptotic power result. We extend our test for

weighted networks and multiple-sample testing in Section 3. In Section 4,

we report the results of extensive simulation studies, and in Section 5, we

analyze three real network data sets. We conclude the paper in Section 6.
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2. A new spectral-based test for binary networks

In this section, we first propose a new spectral-based test for testing the

difference between distributions of two samples of binary networks. Specifi-

cally, we consider two samples of networks on the same n nodes with possi-

bly different sample sizes’ m1 and m2, respectively. We assume that we ob-

serve the independent and identically distributed (i.i.d.) symmetric binary

adjacency matrices A
(1)
1 , . . . , A

(m1)
1 , with conditionally independent entries

generated from a symmetric link probability matrix P1, that is,

A
(k)
1,ij ∼ Bernoulli(P1,ij),

for k = 1, 2, . . . ,m1 and i, j = 1, 2, . . . , n. Similarly, we observe a second

sample of adjacency matrices A
(1)
2 , . . . , A

(m2)
2 with

A
(k)
2,ij ∼ Bernoulli(P2,ij),

generated from the same model with link probability matrix P2. Assume

that there are no self-loops, that is, A
(k)
u,ii = 0, for u = 1, 2, i = 1, . . . , n,

and k = 1, . . . ,mu. Our goal is to test whether the two samples of networks

have the same graph structure, which is equivalent to testing

H0 : P1 = P2 versus H1 : P1 ̸= P2. (2.1)
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2.1 New spectral test for binary networks

To address this, we propose a new statistic that uses results from ran-

dom matrix theory. For some background on the spectral properties of

inhomogeneous networks, which are used heavily in this work, see the on-

line Supplementary Material.

2.1 New spectral test for binary networks

Given two samples of networks {A(k)
1 }m1

k=1 and {A(k)
2 }m2

k=1, sampled from the

link probability matrices P1 and P2, respectively, we introduce the normal-

ized matrix with elements as follows:

Zij =


Ā1,ij−Ā2,ij√

n
(

1
m1

P1,ij(1−P1,ij)+
1

m2
P2,ij(1−P2,ij)

) if i ̸= j

Bij if i = j

, (2.2)

where Āu is the sample average of the adjacency matrices in the uth group,

for u = 1, 2,

Āu =
1

mu

mu∑
k=1

A(k)
u , (2.3)

and B is an n×n diagonal matrix with, Bii given by i.i.d. random variables

such that

P (Bii = −1/
√
n) = P (Bii = 1/

√
n) = 1/2, (2.4)

for i = 1, . . . , n.
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2.1 New spectral test for binary networks

Consider the test statistic

θ =
1√
15

Tr(Z3), (2.5)

where Tr(·) represents the trace operator. This statistic is an extension

of that in Dong et al. (2020), which was inspired by a result in Bai and

Silverstein (2010). Under the null hypothesis, we have the following theorem

on the asymptotic distribution of θ.

Theorem 1. Let Z be given as in (2.2). Assume the sample size satisfies

mu = O(nαu), for some αu > 0, u = 1, 2. Then, under the null hypothesis

P1 = P2, for the scaled test statistic θ = 1√
15
Tr(Z3), we have

θ
d→ N (0, 1) as n → ∞, (2.6)

where
d→ denotes weak convergence.

We defer the details of the proof to the Supplementary Material. How-

ever, an overview of the argument is as follows. First, under the null hy-

pothesis of P1 = P2, Z is a Wigner matrix satisfying E(Zij) = 0 and

Var(Zij) = 1/n. Then, we verify that X =
√
nZ satisfies conditions (1)–(3)

of Lemma 1 in the Supplementary Material, after which, the asymptotic

normality of θ follows. Lastly, we obtain the mean and variance following

Dong et al. (2020).
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2.1 New spectral test for binary networks

To formalize a testing framework using θ in (2.5), we need to account

for the fact that the diagonal matrix B in (2.4) is random. We do so by

employing a Monte Carlo procedure, which we describe in Algorithm 1. Our

output is an empirical significance level, which is the rejection rate based

on the test statistics computed from the Monte Carlo samples of B.

New Spectral-Based Hypothesis Test
(
{A(k)

1 }m1
k=1, {A

(k)
2 }m2

k=1, α,Q
)
;

Input : Adjacency matrices {A(k)
1 }m1

k=1 and {A(k)
2 }m2

k=1 for groups 1
and 2
Significance level α
Number of Monte Carlo samples Q

Output: Empirical significance level rej rate
Compute Āu for u = 1, 2 using (2.3) ;
for q = 1, . . . , Q do in parallel

Sample B(q) satisfying (2.4) ;

Compute Z(q) in (2.2) using B(q) ;

Compute θ(q) in (2.5) using Z(q) ;

end

rej rate = 1
Q

∑Q
q=1 I

(
|θ(q)| > µα/2

)
Algorithm 1: Procedure for testing using the statistic in (2.5). The
output is an empirical significance level based on Monte Carlo test
statistics, where I(·) is an indicator function and µα/2 is the α/2
upper quantile of N (0, 1).

Remark 1. In Algorithm 1, we deliberately do not output a p-value. For

Q = 1, we can obtain a p-value using 2P
(
θ > |θ(Q=1)

obs |), as in Bickel and

Sarkar (2016) and Dong et al. (2020), where θ
(Q=1)
obs is the sample test statis-

tic and θ follows the null distribution of the test statistic. However, in this
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2.2 Test statistic based on estimated link probability matrices

case, the p-value is implicitly conditional on B, and the authors’ simula-

tions reveal that the randomness of B leads to highly variable p-values.

Instead, for our test, we propose computing many θ
(q)
obs in parallel to reduce

the noise induced by B. The analogous p-value estimate combining these

Monte Carlo test statistics is 2P
(
θ > |θ̄obs|

)
, where θ̄obs =

1
Q

∑Q
q=1 θ

(q)
obs.

Remark 2. The rejection rate from our Monte Carlo estimator has the

property that its expectation under the null is the nominal significance

level:

E
( 1

Q

Q∑
q=1

I
(
|θ(q)| > µα/2

))
= P

(
|θ(q)| > µα/2

)
= α.

2.2 Test statistic based on estimated link probability matrices

Theorem 1 assumes that the true link probability matrices P1 and P2 are

known, which is not the case in practice. Therefore, θ cannot be used

directly as a test statistic. A natural alternative is to plug in appropriate

estimates of P1 and P2, with the hope that the plug-in estimator for the

test statistic retains its asymptotic normality.

We denote the plug-in estimates of P1 and P2 by P̂1 and P̂2, respectively.

Then, the empirical version of the normalized matrix Z in (2.2) can be
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2.2 Test statistic based on estimated link probability matrices

written as

Ẑij =


Ā1,ij−Ā2,ij√

n
(

1
m1

P̂1,ij(1−P̂1,ij)+
1

m2
P̂2,ij(1−P̂2,ij)

) if i ̸= j

Bij if i = j

. (2.7)

The resulting test statistic is

θ̂ =
1√
15

Tr(Ẑ3), (2.8)

which has the following limiting law.

Theorem 2. Under the two-sample framework of binary networks, let Ẑ

be given in (2.7). As before, assume the sample size mu = O(nαu), and P̂u

is some estimate of Pu, for some αu > 0, u = 1, 2. If maxi,j |P̂u,ij −Pu,ij| =

op(1), then, under the null hypothesis P1 = P2, we have the following asymp-

totic distribution of the scaled test statistic θ̂ = 1√
15
Tr(Ẑ3):

θ̂
d→ N (0, 1) as n → ∞.

Again, we defer the proof to the Supplementary Material, which relies

on rewriting

Tr(Ẑ3) = Tr(Z3) + 3Tr
(
Z2(Z ◦H)

)
+ 3Tr

(
Z(Z ◦H)2

)
+ Tr

(
(Z ◦H)3

)
,

where ◦ denotes the Hadamard product, and H is an n × n matrix with
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2.3 Estimating link probability matrices

entries Hij = op(1). Each term on the right-hand side of this equality can

be proven to be op(1).

2.3 Estimating link probability matrices

As it is, our test statistic in (2.8) is really for a two-sample matrix testing

problem for a difference of means. However, this becomes a network test

when we estimate the link probability matrices. Here, we propose three

methods that satisfy the conditions in Theorem 2, which require that the

sample sizes of the observed networks grow with n at a rate of nα, for any

α > 0, and maxi,j |P̂u,ij − Pu,ij| = op(1).

The simplest estimator of Pu,ij is the sample mean of all (i, j) ele-

ments in the adjacency matrices of group u. We refer to this spectral

method based on simple averages as SPE-AVG. It is not difficult to see

that maxi,j |P̂u,ij −Pu,ij| = op(m
−1/2
u log n) by applying Bernstein’s inequal-

ity (Bernstein, 1946). Intuitively, SPE-AVG requires large sample sizes to

achieve good performance. This is confirmed empirically by our extensive

simulation studies, in which SPE-AVG typically yields inferior performance

compared with that of other methods.

Another possible average estimator of Pu,ij is based on the stochastic

block model (SBM). The key idea is to approximate a graph with an SBM,
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2.3 Estimating link probability matrices

which, for large networks, is reasonable, by Szemerédi’s regularity lemma

(Lovász, 2012). The membership vector of nodes can be obtained using

community algorithms, such as the method proposed in Ng et al. (2002).

After the membership vector has been estimated, we can simply approxi-

mate Pu,ij using the sample mean of all entries in the submatrix over all

A
(k)
u , for k = 1, 2, . . . ,mu, restricted to the corresponding block consisting of

the communities of i and j. We refer to this test method based on an SBM

as SPE-SBM. Assuming the true community number is Ku, the estimation

error satisfies maxi,j |P̂u,ij − Pu,ij| = op(Kum
−1/2
u n−1 log n). Thus, the rate

of SPE-SBM is better than that of SPE-AVG as long as Ku < m
1/2
u n1−β,

with β a small positive number, which is very easily satisfied. However,

the property may be limited by the assumption that the network topologies

follow an SBM structure.

Finally, we introduce a new estimation method based on the modified

neighborhood smoothing (MNBS) proposed in Zhao et al. (2019). The

idea is to perform neighborhood smoothing on the matrix Ā, which is the

weighted average of m networks, and then to apply the smoothing proce-

dure to a shrunken neighborhood size. This results in a better bias–variance

trade-off leading to a better estimate of the link probability matrix, with a

smaller error. Note that MNBS is essentially an NBS method applied to Ā
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2.4 Asymptotic power guarantee

instead of to the adjacent matrix of a single network, and with a shrunken

neighborhood size. This reduces the variance due to the multiple networks

available in the each sample. From Lemma 9.3 in Zhao et al. (2019), the

size of a neighborhood is Op((n log n/mu)
1/2) . Using this and Bernstein’s

inequality, the estimation error of the link probability is |P̂u,ij − Pu,ij| =

max
(
Op

(
(mun log n)−1/4

)
, On(n

−1 log n), On((mun/ log n)
−1/2)

)
. For the tech-

nical details, see Section S4.1 in the Supplementary Material. We refer to

this test method based on MNBS as SPE-MNBS. Note that SPE-MNBS

places no structure conditions on the networks. Therefore, we expect the

method to be generally applicable.

2.4 Asymptotic power guarantee

Next, we consider the power of the test based on θ̂ in (2.8), which we

summarize in the following theorem.

Theorem 3. Consider the alternative model of P1 ̸= P2 under the assump-

tions of Theorem 1. Let Z ′′ be an n×n matrix with zero diagonals and, for

any i ̸= j,

Z ′′
ij =

P1,ij − P2,ij√
n
(

1
m1

P1,ij(1− P1,ij) +
1
m2

P2,ij(1− P2,ij)
) . (2.9)

Define the partition {1, . . . , n}3 = Sa ∪ Sb ∪ Sc, where (i, k, l) ∈ Sa, Sb,
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2.4 Asymptotic power guarantee

and Sc indicates that Z ′′
ikZ

′′
klZ

′′
li > 0, Z ′′

ikZ
′′
klZ

′′
li < 0, and Z ′′

ikZ
′′
klZ

′′
li = 0,

respectively. Let |Sa| = an3, |Sb| = bn3, and |Sc| = cn3, with a, b, c ∈ [0, 1]

satisfying a+ b+ c = 1. If either

(i) an3 min
(i,k,l)∈Sa

(Z ′′
ik)

3 + bn3 min
(i,k,l)∈Sb

(Z ′′
ik)

3 > 0 or

(ii) − an3 max
(i,k,l)∈Sa

(Z ′′
ik)

3 − bn3 max
(i,k,l)∈Sb

(Z ′′
ik)

3 > 0

is satisfied, then

lim
n→∞

P (|θ̂| > µα/2) = 1, α > 0.

The proof is given in the Supplementary Material.

Remark 3. Note that there is a slight abuse of notation in our conditions

(i) and (ii), where the minimum or maximum operator is taken over all

pairs of indices among (i, j, k). These conditions characterize the minimum

signal difference between P1 and P2 required for Theorem 3 to hold, which

implies that the power is asymptotically one when either of the sets Sa or

Sb is sufficiently large. For a better understanding of this, consider the case

in which P1,ij ≥ P2,ij, for all i and j, that is, Z ′′
ij ≥ 0, and Theorem 3 holds

as long as a > O((mun)
−3/2), which is a very mild condition.

Remark 4. The separation conditions in Theorem 3 arise in our proof

as a characterization of the signal difference between two link probability
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matrices. Importantly, this characterization is on the whole network, rather

than on the method of network moments or on motifs for network data (the

frequencies of particular patterns such as triangles, stars, or wheels), which

are studied in Gao and Lafferty (2017), Banerjee and Ma (2017), Jin et al.

(2021), Zhang and Xia (2020), and Bhattacharya et al. (2020).

3. Extending our test to other settings

In this section, we extend our test for weighted networks, and for multiple

samples, in a manner analogous to a one-way analysis of variance (ANOVA).

3.1 Extension to weighted networks

We now consider a more general framework that focuses on weighted net-

works. Let F1 = {F1,ij} and F2 = {F2,ij}, for i, j = 1, . . . , n, be two

sequences of distributions defined on bounded intervals and specified by

some parameters. Let A
(1)
1 , . . . , A

(m1)
1

i.i.d.∼ F1 and A
(1)
2 , . . . , A

(m2)
2

i.i.d.∼ F2 be

symmetric weighted adjacency matrices for networks that are undirected

and without self-loops, that is, A
(k)
u,ii = 0, for u = 1, 2, i = 1, . . . , n, and

k = 1, . . . ,mu. Let Σu denote an n × n matrix in which the (i, j) element

is the variance of A
(k)
u,ij. Note that its diagonal elements are zero, because

A
(k)
u,ii = 0. Finally, let Σ̂u,ij be an estimate of Σu,ij.
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3.1 Extension to weighted networks

Our approach for weighted networks is to replace Pu,ij(1 − Pu,ij) in

(2.2) and P̂u,ij(1− P̂u,ij) in (2.7) with Σu,ij and Σ̂u,ij, respectively. Just as

in Section 2.3, the estimates Σ̂u,ij can be obtained using various methods,

which are discussed later. For simplicity, we use the same notation as in

Section 2.3.

For the weighted case, the testing problem in (2.1) is equivalent to

H0 : F1 = F2 versus H1 : F1 ̸= F2. (3.1)

We define the normalized matrix Z as

Zij =


Ā1,ij−Ā2,ij√

n
(

1
m1

Σ1,ij+
1

m2
Σ2,ij

) if i ̸= j

Bij if i = j

, (3.2)

where B is defined as in (2.4). Then, the asymptotic distribution of θ =

1√
15
Tr(Z3) follows a standard normal distribution under the null hypothesis,

as stated in the following theorem.

Theorem 4. Under the two-sample framework of weighted networks, let Z

be given in (3.2). Assume a sample size mu = O(nαu), for some αu > 0,

u = 1, 2. Then, under the null hypothesis F1 = F2, for the scaled test

statistic θ = 1√
15
Tr(Z3), we have

θ
d→ N (0, 1) as n → ∞. (3.3)
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3.1 Extension to weighted networks

The proof is omitted because it is similar to that of Theorem 1.

Remark 5. Although the two-sample testing framework for binary net-

works is a special case of that in (3.1), we discuss the two cases separately.

In the binary case, our test statistic is obtained by plugging in an estimate

of the link probability matrix P , whereas our test statistic for the weighted

networks requires a plug-in estimate of the variance of each edge weight.

Hence, the estimation methods differ for these two cases.

For practical applications, we need to estimate the covariance matri-

ces Σ1 and Σ2, assuming some conditions to ensure that the asymptotic

normality of the new test statistic still holds. For Σ̂1 and Σ̂2, the plug-in

estimates of Σ1 and Σ2, respectively, the empirical normalized matrix of Z

in (3.2) can be written with entries as

Ẑij =


Ā1,ij−Ā2,ij√

n
(

1
m1

Σ̂1,ij+
1

m2
Σ̂2,ij

) if i ̸= j

Bij if i = j

. (3.4)

Therefore, our test statistic is

θ̂ =
1√
15

Tr(Ẑ3). (3.5)

Then, we have the following limiting law.
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3.1 Extension to weighted networks

Theorem 5. Under the two-sample framework of weighted networks, let Ẑ

be given as in (3.4). Assume the sample size mu = O(nαu) and Σ̂u is some

estimate of Σu, for some αu > 0, u = 1, 2. If maxi,j |Σ̂u,ij − Σu,ij| = op(1),

then under the null hypothesis F1 = F2, we have the following asymptotic

distribution of the scaled test statistic θ̂ = 1√
15
Tr(Ẑ3):

θ̂
d→ N (0, 1) as n → ∞.

The proof is similar to that of Theorem 2, so we include only the key

differences in the Supplementary Material; the remainder of the proof can

be completed in a straightforward manner.

We consider two estimates of Σu,ij. The first is obtained simply as the

sample variance of each element over all adjacency matrices in the same

group. For convenience, we still refer to this method as SPE-AVG. Then,

we have

max
i,j

|Σ̂u,ij − Σu,ij| = op(m
−1/2
u logmu). (3.6)

The proof of (3.6) is available in the Supplementary Material (see Sec-

tion S4.6). The order of the error is the same as the binary case, which

implies that SPE-AVG is suitable for large sample sizes.

The second estimate of Σu,ij is obtained similarly to SPE-SBM for un-

weighted networks: assume each network comes from an SBM, approximate
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3.1 Extension to weighted networks

the community membership vector, and compute the sample covariance

within each community as the sample variance of the nodes correspond-

ing to that community block (rather than the sample mean). Again, we

refer to this method as SPE-SBM, as in the binary case. Using a simi-

lar argument to that in the proof in the Supplementary Material, we have

maxi,j |Σ̂u,ij−Σu,ij| = op(Kum
−1/2
u n−1 log n). Therefore, the error condition

in Theorem 5 is satisfied as long as Ku < m
1/2
u n1−β, with β a small positive

number, which should hold for most cases.

The power of the test for weighted networks is presented in the following

theorem.

Theorem 6. Under the assumptions of Theorem 4 and the alternative

model F1 ̸= F2, let Z ′′ be an n × n matrix with zero diagonals, and for

any i ̸= j,

Z ′′
ij =

P1,ij − P2,ij√
n
(

1
m1

Σ1,ij +
1
m2

Σ2,ij

) .
Define Sa and Sb as in Theorem 3, based on the above Z ′′. If either

(i) an3 min
(i,k,l)∈Sa

(Z ′′
ik)

3 + bn3 min
(i,k,l)∈Sb

(Z ′′
ik)

3 > 0 or

(ii) − an3 max
(i,k,l)∈Sa

(Z ′′
ik)

3 − bn3 max
(i,k,l)∈Sb

(Z ′′
ik)

3 > 0
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is satisfied, then

lim
n→∞

P (|θ̂| > µα/2) = 1, α > 0.

Again, the proof is omitted, because it is similar to that of Theorem 3.

3.2 Extension to multiple-sample testing

Finally, we consider the case when S > 2 groups are present. Assume we

observe the symmetric binary adjacency matrices A
(1)
s , . . . , A

(ms)
s that are

generated from a symmetric link probability matrix Ps, that is,

A
(k)
s,ij ∼ Bernoulli(Ps,ij),

for s = 1, . . . , S, k = 1, . . . ,ms, and i, j = 1, . . . , n. Our goal is to test

whether there are any differences in the distributions of the S groups, which

is equivalent to testing

H0 : P1 = P2 = · · · = PS versus H1 : Ps are not all equal. (3.7)

This is analogous to a one-way ANOVA.

We define the pairwise normalized matrices with elements as follows:

Z
(s)
ij =


Ās,ij−Āij√

n

((
1

ms
− 2

m

)
Ps,ij(1−Ps,ij)+

1
m2

∑S
s=1 msPs,ij(1−Ps,ij)

) if i ̸= j

Bij if i = j

, (3.8)
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3.2 Extension to multiple-sample testing

where Ās is the sample average of the adjacency matrices in group s, as in

(2.3), Ā is the overall sample average of all the adjacency matrices,

Ā =
1

m

S∑
s=1

ms∑
k=1

A(k)
s ,

m is the total sample size,

m =
S∑

s=1

ms,

and B is defined as in (2.4).

If θ(s) = 1√
15
Tr

(
(Z(s))3

)
, then, under the null distribution and appro-

priate conditions on ms, Theorem 2 gives

θ(s)
d→ N (0, 1) as n → ∞,

and it follows that

(
θ(s)

)2 d→ χ2(1) as n → ∞.

Unfortunately, θ(1), . . . , θ(S) are not independent, so the sum of their

squares is not χ2(S). However, Ferrari (2019) shows that the sum of depen-

dent χ2 random variables can be approximated by a gamma distribution.

Therefore, we have

θ ≡
S∑

s=1

(
θ(s)

)2 ≈ Γ
(S
u
, u
)

as n → ∞, (3.9)
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where the scale parameter u is given by

u = 2
(
1 +

2
∑S

q ̸=r ρqr

S

)
,

with ρqr the pairwise correlation between the statistics
(
θ(q)

)2
and

(
θ(r)

)2
.

As before, the true link probability matrices Ps are unknown and need

to be estimated. We can estimate each Ps as in Section 2.3, and then substi-

tute these estimates into Z(s) in (3.8). Furthermore, although the pairwise

correlations ρqr are not analytically tractable, they can be estimated easily

using the Monte Carlo simulations in Algorithm 1, which does not add to

the computational complexity. The simulation results in the Supplemen-

tary Material (see Section S1.3) demonstrate that using these estimates in

the approximation in (3.9) is very accurate, even for small m and n.

Moreover, using this setup, it is possible to follow the same development

of Theorem 2 to prove the convergence of the plug-in estimator θ̂ that uses

the estimated link probability matrices and estimated pairwise correlations.

Similarly, (3.8) can be extended to weighted networks, as in Section 3.1.

4. Simulation studies

In this section, we demonstrate the performance of our proposed tests by

means of a simulation study. For binary networks, we evaluate three plug-
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in estimators for the link probability matrices (AVG, SBM, and MNBS),

and compare the results with those of the test proposed in Ghoshdastidar

and von Luxburg (2018). The latter test involves an estimated distance

between two network distributions based on the Frobenius measure for bi-

nary networks that allows n to go to infinity. To evaluate the approach

of conducting a high-dimensional mean test directly on the vectorized net-

works, we compare our method with that of Chen and Qin (2010), which

is based on sum-of-squares-type statistics. We refer to these five tests as

SPE-AVG, SPE-SBM, SPE-MNBS, DFRO, and VEC, respectively. We do

not include the test proposed in Ginestet et al. (2017) in the comparison,

because their results are asymptotic in the sample size with a fixed number

of nodes, and the authors expect that their test will lose power in larger

dimensions, that is, with more nodes.

We evaluate the test performance by estimating the power when the

alternative is true, as well as the null rejection rate (rejection rate under

the null). We also vary the number of nodes, n ∈ {100, 200, . . . , 1000}, and

the sample sizes, m1 = m2 = m ∈ {10, 50}. In each example, we set the

significance level α = 0.05. We follow the procedure described in Algorithm

1, with Q = 1, and report the empirical significance level as the average

rejection rate on 5000 separate samples of networks from the underlying
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distributions. Note that sampling new networks allows us to use Q = 1,

but the results are similar if we use 5000 separate samples of networks with

Q > 1.

Using this design, we consider three types of random graph model for

sampling binary networks. In the Supplementary Material, we also include

additional simulations for weighted networks, networks from an exponen-

tial random graph model that introduce edge dependencies, and multiple-

sample testing. The conclusions are as follows. Overall, it appears that

SPE-MNBS is the most robust to different network structures and sample

sizes. If the networks are drawn from an SBM, then, unsurprisingly, SPE-

SBM is suitable. Throughout, SPE-AVG shows significant improvement as

the sample size increases. Finally, all three plug-in estimates of the link

probability matrices yield superior results for our test compared with those

for DFRO and VEC.

Finally, note that in our simulations, VEC always rejects H0, even

for the null settings. Furthermore, VEC is too computationally expensive

for networks with many nodes, for example, vectorizing a network with

n = 200 results in a dimension of almost 20,000. For these reasons, we

omit the results of VEC from our figures, and conclude that this approach

is inadequate for two-sample testing of nontrivial networks.
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4.1 Stochastic block model (SBM)

4.1 Stochastic block model (SBM)

In the first example, we consider an SBM structure with a block matrix

given as

PSBM =

0.5 + ε1 0.25

0.25 0.5

 , (4.1)

where ε1 depends on our hypothesis. The membership of the ith node is

M(i) = I(1 ≤ i ≤ ⌊n/3⌋) + 2I(⌊n/3⌋+ 1 ≤ i ≤ n),

where ⌊·⌋ is the floor operator.

The first group of networks, {A(k)
1 }m1

k=1, is generated from PSBM with

ε1 = 0. In the null setting, the second group of networks, {A(k)
2 }m2

k=1, is

also generated from PSBM with ε1 = 0, whereas ε1 = 1/(5 logm) in the

alternative setting. The results are shown in the first row of Figure 1.

To investigate the performance of the tests for sparser networks, we

consider the same setting, except now with ε1 = 2/(5 logm) and with the

link probability matrix PSBM scaled by a factor ρ = 10 log(n)/n. The

corresponding results are shown in the second row of Figure 1.

In the first row of Figure 1, where the networks are dense, SPE-SBM

and SPE-MNBS are close to the nominal level α = 0.05 under H0, and
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Figure 1: Simulation results for testing networks with an SBM structure
for different network orders and sample sizes. The first and second rows
represent dense and sparse networks, respectively. (a) Null rejection rate.
(b) Power under the alternative.

both achieve good power under H1. Furthermore, SPE-AVG is the most

powerful under H1, but its rejection rates are too high under H0 when

m = 10. However, this issue is mitigated when we increase the sample size

to m = 50, even though this makes ε1 smaller, that is, the underlying SBM

structures are more similar. DFRO has a zero rejection rate under H0, and

increases to unit power more slowly than our proposed tests do.

In the sparser settings, shown in the bottom row, similar results hold for

SPE-SBM and SPE-MNBS, except for small m = 10, which is also difficult

for the other methods. Moreover, DFRO performs comparably with SPE-

SBM and SPE-MNBS, and SPE-AVG suffers a low rejection rate under H0
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with increasing n.

4.2 Graphon

In the second example, we focus on graphon structures, which have found

applications in hierarchical clustering (Eldridge et al., 2016) and link prob-

ability estimation (Zhang et al., 2017). A graphon f is defined as follows.

Definition 1 (Graphon (Zhang et al., 2017)). For any network with a link

probability matrix P and number of nodes n, there exists a function f :

[0, 1]× [0, 1] → [0, 1] and a set of i.i.d. random variables ξi ∼ Uniform[0, 1],

such that

Pij = f(ξi, ξj),

with i, j = 1, . . . , n.

In our simulation, we consider a graphon structure from Zhang et al.

(2017), in which

f(u, v) = (u2 + v2)/3 cos{1/(u2 + v2)}+ 0.15.

We generate {A(k)
1 }m1

k=1 from the probability matrix P1 according to f . For

the second group of networks, under the null hypothesis, we again sample

from f to generate {A(k)
2 }m2

k=1. Under the alternative hypothesis, we first

randomly choose a subset S ⊂ {1, 2, . . . , n}, with |S| = ⌊n/10⌋, and then
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generate {A(k)
2 }m2

k=1 from P2, with P2,ij = P1,ij − ε2, where

ε2 =


1/(8 logm) if i, j ∈ S

0 if i, j ̸∈ S

.

The results are presented in the first row of Figure 2. As before, we set

ε2 = 2/(5 logm), for i, j ∈ S, and scale the link probability matrices P1 and

P2 by ρ = 12 log n/n to yield sparser networks. The results are shown in

the second row of Figure 2.
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Figure 2: Simulation results for testing networks with a graphon structure.
The first and second rows represent dense and sparse networks, respectively.
(a) Null rejection rate. (b) Power under the alternative.

Figure 2 shows that SPE-MNBS outperforms the other tests in terms

of both the null rejection rate and power, except for small m = 10 and a

sparse structure. Furthermore, SPE-SBM exhibits a lower rejection rate
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than the nominal level in the dense case, which suggests that the method is

more sensitive to network topologies that deviate from an SBM. SPE-AVG

and DFRO behave similarly to those in the first example, as we continue

to see subpar performance, especially for small m.

4.3 Correlated Erdős–Rényi model

In the third experiment, we study the robustness of the four tests to de-

pendency. For this, we consider the correlated Erdős–Rényi (ER) model of

Pedarsani and Grossglauser (2011). We begin by sampling two independent

ER networks, A1 ∼ ER(n, p1) and A2 ∼ ER(n, p2). We generate {A(k)
1 }m1

k=1

with a parameter ε3 as follows:

A
(k)
1,ij ∼


Bernoulli(ε3) if A1,ij = 1

0 if A1,ij = 0

.

This yields m1 networks that are marginally ER(n, p1ε3), but whose edge

sets are correlated. We similarly generate {A(k)
2 }m2

k=1 conditional on A2 with

parameter ε4. We set ε3 = ε4 = 0.8 and p1 = 0.9. Under the null hypothesis,

we set p2 = p1 = 0.9, and p2 = 0.83 under the alternative hypothesis. The

results are shown in Figure 3.

DFRO exhibits consistently high power in the alternative setting for the
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Figure 3: Simulation results for testing networks with a correlated ER
structure. (a) Null rejection rate. (b) Power under the alternative.

entire range of n, which is matched only by our tests as n increases, with

SPE-AVG outperforming both SPE-SBM and SPE-MNBS. However, the

rejection rate under the null is below the nominal level for DFRO, whereas

both SPE-SBM and SPE-MNBS are very close to α = 0.05. SPE-AVG

has a higher rejection rate than expected when the sample size is m = 10,

but this improves when m = 50. Overall, it appears that SPE-SBM and

SPE-MNBS are robust to the independence violation when n is large.

5. Real-data examples

In this section, we apply our tests to three real data sets representing three

settings of interest within the biological research community: the StarPlus,

COBRE, and MB data sets. The first two are networks constructed from

fMRI data that represent two distinct streams of fMRI usage, the former
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being task based and the latter being a case/control study. The third data

set is derived from microbial measurements, an area in which network-based

representations have recently emerged as a popular technique for studying

the bacteria present within a microbiome (Layeghifard et al., 2017). A

description of the data sets can be found in the Supplementary Material.

In all three cases, the networks are weighted. Therefore, we present

results from our tests for weighted networks in Section 3.1. To understand

the performance of our tests for binary networks from Section 2.1, we also

present the results as a function of thresholding the weights to binarize the

networks (as often occurs in practice).

5.1 Results for weighted tests

We begin by applying our tests for weighted networks from Section 3.1.

We also include the method of Yuan and Wen (2021), which we refer to as

WRG. We test whether the groups defined by their respective labels, that

is, picture/sentence, schizophrenic/control, preterm/term, are different. To

do so, we specify a null hypothesis that states that the underlying random

distributions are equal against the alternative that states that they are

different. We refer to this as the “alternative setting”, because the two

samples differ with respect to their group label.
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As is, we cannot apply WRG directly, because it requires that the sam-

ple sizes for both groups be the same, which is not true of the COBRE

and MB data sets. We address this by following the authors original solu-

tion, which is to randomly sample m2 networks from group one (assuming

m1 > m2), and then to compare this subgroup with group two.

For α = 0.05 and Q = 1000, we find that for the StarPlus networks,

SPE-AVG, SPE-SBM, and WRG correctly reject the null with rejection

rates of 1, 0.726, and 1, respectively. This is consistent with the findings

of previous research on distinguishing the cognitive states of looking at a

picture and a sentence (Mitchell et al., 2004; Wang et al., 2003; Mitchell

et al., 2003). For the COBRE and MB data sets, we find a rejection rate

of one for both SPE-AVG and SPE-SBM. On the other hand, WRG re-

jects the null with rates of 1 and 0.749 for the COBRE and MB data sets,

respectively.

Next, we perform an in silico experiment using the real data by sub-

sampling within one of the classes. We refer to this as the “null setting.”

The rationale for this setup is that we do not actually know whether the

groups are generated by different underlying distributions, for example, one

for schizophrenic and another for non-schizophrenic. Therefore, we want to

check whether the null rejection rate is close to the nominal level in an
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experiment in which all of the networks are from the same group.

To do so, we test the entire NetP, non-schizophrenic, and term delivery

groups against a subsample (with half of the original sample size) of the

same group for the StarPlus, COBRE, and MB data sets. For WRG, we

test two subsamples of the two groups, both with half of the original sample

size.

After 1000 random subsamples of the networks and Q = 1 for each

subsample, for the StarPlus networks, SPE-SBM fails to reject the null

hypothesis, with a rejection rates of 0.006, which is expected, because the

samples are drawn from the same population. However, SPE-AVG and

WRG reject the null with inflated rates of 0.12 and 0.873, respectively. For

the COBRE networks, we obtain null rejection rates of 0.763, 0.668, and 1

for SPE-AVG, SPE-SBM, and WRG, respectively. The null rejection rates

improve for the MB networks, with 0.655, 0.489, and 0.956 for SPE-AVG,

SPE-SBM, and WRG, respectively. Although SPE-AVG and SPE-SBM

outperform WRG, the null rejection rates are still very inflated compared

with the nominal α = 0.05.

We speculate that this is happening because, even within one class,

there is a lot of variation. That is, one subsample of brain networks with

schizophrenia may look very different to another sample of brain networks
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with schizophrenia, because we are not controlling for potential factors such

as age and sex. We refer to this issue as having too much heterogeneity

within a class. This heterogeneity can lead to inflated null rejection rates,

because the underlying distributions of the two samples are different, but

the difference is not the one we are trying to isolate.

5.2 Results for binary tests

Because the results for the weighted tests showed inflated rejection rates

in our simulated null setting, there is reason to believe that the networks

are too heterogeneous within each class. Furthermore, many of the weights

could represent spurious correlations. Therefore, this is a setting in which

binarizing the weights could improve the signal-to-noise ratio. This idea is

related to a common problem in the neuroscience literature related to the

issue of sensitivity to thresholding edges (Ginestet et al., 2014; Garrison

et al., 2015).

To evaluate this, we apply the binary tests from Section 2.1 by bi-

narizing the weights, which are all correlation values in [−1, 1], based on

thresholding their magnitude. Specifically, we set the adjacency matrix en-

tries to one when the absolute values of the corresponding weights are larger

than the threshold, and zero otherwise. This threshold relates directly to
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the density of the networks. Note that WRG is for weighted networks, and

is therefore excluded. Using the same procedures as in Section 5.1, the

results are given in Figures 4–6. The dashed lines for the null rejection rate

in these figures all indicate the nominal level of 0.05.
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Figure 4: Figures (a) and (b) show the null rejection rate and power, re-
spectively, for different thresholds for binarizing the StarPlus networks.
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Figure 5: Figures (a) and (b) show the null rejection rate and power, re-
spectively, for different thresholds for binarizing the COBRE networks.

The plots illustrate the trade-off between the false positive rate in our

Statistica Sinica: Preprint 
doi:10.5705/ss.202021.0306



5.2 Results for binary tests

0.00

0.25

0.50

0.75

1.00

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Threshold for Edges

N
u
ll

 R
ej

ec
ti

o
n
 R

at
e

(a)

0.00

0.25

0.50

0.75

1.00

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Threshold for Edges

P
o
w

er

(b)

SPE-AVG SPE-SBM SPE-MNBS

Figure 6: Figures (a) and (b) show the null rejection rate and power, re-
spectively, for different thresholds for binarizing the MB networks.

null setting and the true positive rate in our alternative setting, which are

both functions of the threshold. As the threshold for an edge increases, the

network becomes more sparse, resulting in a higher rejection rate in our null

setting. For thresholds above 0.6, some of the networks become too sparse,

even resulting in some null graphs. On the other hand, for a low threshold,

there is less power to detect a difference in our alternative setting. Such

curves as a function of the threshold could provide practitioners with a way

to understand the signal-to-noise ratio of their edge weights.

For the COBRE and MB networks, we have high power for a wide

range of threshold values, which is consistent with our findings using the

weighted networks directly. Moreover, we find a low rejection rate in our

null setting, especially for a threshold of 0.1, which seems to provide the

best trade-off. This suggests that the signal-to-noise ratio in the weights is
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too low, which can be mitigated by using thresholding. For the StarPlus

networks, a threshold between 0.1 and 0.2 seems to provide the best balance

between signal and noise for SPE-AVG, whereas 0.4 is better for SPE-SBM

and SPE-MNBS.

6. Conclusion

In this work, we have proposed new spectral-based statistics for hypoth-

esis testing of populations of networks that applies to both binary and

weighted networks under a very general framework. The test statistics are

simple, computationally friendly, and supported theoretically by our deriva-

tions of the limiting null distribution and the asymptotic power guarantees.

We have demonstrated our method using a simulation study and a real-

data analysis. In future work, we will focus on spectral-based methods

for studying inference problems for networks with additional constraints or

structures, such as directed networks.

Supplementary Material

The online Supplementary Material contains two additional simulations (for

weighted networks and multiple-sample testing), a description of the three

datasets in the applications, background on spectral theory, and the proofs
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doi:10.5705/ss.202021.0306



REFERENCES

for the results in the main text.

Acknowledgement

The work of Li Chen was supported by the China Scholarship Council un-

der Grant 201806240032 and the Fundamental Research Funds for the Cen-

tral Universities, Southwest Minzu University under grant 2021NQNCZ02.

Lizhen Lin acknowledges the generous support from NSF grants IIS 1663870,

DMS Career 1654579 and a DARPA grant N66001-17-1-4041. The work of

Jie Zhou was supported in part by the National Natural Science Founda-

tion of China under grant 11871357 and the Sichuan Science and Technology

Program under grant 2019YJ0122.

References

Arroyo Relión, J. D., D. Kessler, E. Levina, and S. F. Taylor (2019). Network classification with

applications to brain connectomics. The Annals of Applied Statistics 13 (3), 1648–1677.

Bai, Z. and J. W. Silverstein (2010). Spectral Analysis of Large Dimensional Random Matrices.

New York; London: Springer.

Banerjee, D. and Z. Ma (2017). Optimal hypothesis testing for stochastic block models with

growing degrees. arXiv:1705.05305 .

Bernstein, S. (1946). The Theory of Probabilities. Moscow, U.S.S.R.: Gastehizdat Publishing

Statistica Sinica: Preprint 
doi:10.5705/ss.202021.0306



REFERENCES

House. In Russian.

Bhattacharya, B. B., S. Das, and S. Mukherjee (2020). Motif estimation via subgraph sampling:

The fourth moment phenomenon. arXiv:2011.03026 .

Bickel, P. J. and P. Sarkar (2016). Hypothesis testing for automated community detection in

networks. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 78 (1),

253–273.

Cai, T. T., W. Liu, and Y. Xia (2014). Two-sample test of high dimensional means under

dependence. Journal of the Royal Statistical Society: Series B: Statistical Methodology ,

349–372.

Chen, L., L. Lin, and J. Zhou (2020). A hypothesis testing for large weighted networks with

applications to functional neuroimaging data. IEEE Access 8, 191815–191825.

Chen, L., J. Zhou, and L. Lin (2021). Hypothesis testing for populations of networks. Commu-

nications in Statistics-Theory and Methods, 1–24.

Chen, S. X. and Y.-L. Qin (2010). A two-sample test for high-dimensional data with applications

to gene-set testing. The Annals of Statistics 38 (2), 808–835.

Dong, Z., S. Wang, and Q. Liu (2020). Spectral based hypothesis testing for community detec-

tion in complex networks. Information Sciences 512, 1360–1371.

Eldridge, J., M. Belkin, and Y. Wang (2016). Graphons, mergeons, and so on! Advances in

Neural Information Processing Systems 29.

Statistica Sinica: Preprint 
doi:10.5705/ss.202021.0306



REFERENCES

Ferrari, A. (2019). A note on sum and difference of correlated chi-squared variables.

arXiv:1906.09982 .

Gao, C. and J. Lafferty (2017). Testing for global network structure using small subgraph

statistics. arXiv:1710.00862 .

Garrison, K. A., D. Scheinost, E. S. Finn, X. Shen, and R. T. Constable (2015). The (in)stability

of functional brain network measures across thresholds. NeuroImage 118, 651–661.

Ghoshdastidar, D., M. Gutzeit, A. Carpentier, and U. V. Luxburg (2020). Two-sample hypoth-

esis testing for inhomogeneous random graphs. The Annals of Statistics 48 (4), 2208–2229.

Ghoshdastidar, D. and U. von Luxburg (2018). Practical methods for graph two-sample testing.

arXiv:1811.12752 .

Ginestet, C. E., A. P. Fournel, and A. Simmons (2014). Statistical network analysis for func-

tional MRI: summary networks and group comparisons. Frontiers in Computational Neu-

roscience 8. Article 51.

Ginestet, C. E., J. Li, P. Balachandran, S. Rosenberg, E. D. Kolaczyk, et al. (2017). Hy-

pothesis testing for network data in functional neuroimaging. The Annals of Applied

Statistics 11 (2), 725–750.

Jin, J., Z. T. Ke, and S. Luo (2021). Optimal adaptivity of signed-polygon statistics for network

testing. 49 (6), 3408–3433.

Josephs, N., L. Lin, S. Rosenberg, and E. D. Kolaczyk (2020). Bayesian classification, anomaly

Statistica Sinica: Preprint 
doi:10.5705/ss.202021.0306



REFERENCES

detection, and survival analysis using network inputs with application to the microbiome.

arXiv:2004.04765 .

Kolaczyk, E. D., L. Lin, S. Rosenberg, J. Walters, and J. Xu (2020). Averages of unlabeled

networks: Geometric characterization and asymptotic behavior. The Annals of Statis-

tics 48 (1), 514–538.

Layeghifard, M., D. M. Hwang, and D. S. Guttman (2017). Disentangling interactions in the

microbiome: A network perspective. Trends in Microbiology 25 (3), 217–228.

Lovász, L. (2012). Large Networks and Graph Limits. Providence, RI, USA: American Mathe-

matical Society.

Mitchell, T. M., R. Hutchinson, M. A. Just, R. S. Niculescu, F. Pereira, and X. Wang (2003).

Classifying instantaneous cognitive states from fMRI data. In AMIA Annual Symposium

Proceedings, Volume 2003, pp. 465–469.

Mitchell, T. M., R. Hutchinson, R. S. Niculescu, F. Pereira, X. Wang, M. Just, and S. Newman

(2004). Learning to decode cognitive states from brain images. Machine Learning 57 (1-2),

145–175.

Mukherjee, S. S., P. Sarkar, and L. Lin (2017). On clustering network-valued data. In Advances

in Neural Information Processing Systems, Long Beach, CA, USA, pp. 7071–7081.

Ng, A. Y., M. I. Jordan, and Y. Weiss (2002). On spectral clustering: Analysis and an algorithm.

In Advances in Neural Information Processing Systems 14, Cambridge, MA, USA, pp. 849–

856.

Statistica Sinica: Preprint 
doi:10.5705/ss.202021.0306



REFERENCES

Pedarsani, P. and M. Grossglauser (2011). On the privacy of anonymized networks. In Pro-

ceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, San Diego, CA, USA, pp. 1235–1243.

Tang, M., A. Athreya, D. L. Sussman, V. Lyzinski, and C. E. Priebe (2017). A semiparametric

two-sample hypothesis testing problem for random graphs. Journal of Computational and

Graphical Statistics 26 (2), 344–354.

Wang, X., R. Hutchinson, and T. M. Mitchell (2003). Training fMRI classifiers to detect cogni-

tive states across multiple human subjects. In Advances in Neural Information Processing

Systems 16, pp. 709–716.

Xu, G., L. Lin, P. Wei, and W. Pan (2016). An adaptive two-sample test for high-dimensional

means. Biometrika 103 (3), 609–624.

Yuan, M. and Q. Wen (2021). A practical two-sample test for weighted random graphs. Journal

of Applied Statistics, 1–17.

Zhang, Y., E. Levina, and J. Zhu (2017). Estimating network edge probabilities by neighbour-

hood smoothing. Biometrika 104 (4), 771–783.

Zhang, Y. and D. Xia (2020). Edgeworth expansions for network moments. arXiv:2004.06615 .

Zhao, Z., L. Chen, and L. Lin (2019). Change-point detection in dynamic networks via graphon

estimation. arXiv:1908.01823 .

Statistica Sinica: Preprint 
doi:10.5705/ss.202021.0306


	Introduction
	A new spectral-based test for binary networks
	New spectral test for binary networks
	Test statistic based on estimated link probability matrices
	Estimating link probability matrices
	Asymptotic power guarantee

	Extending our test to other settings
	Extension to weighted networks
	Extension to multiple-sample testing

	Simulation studies
	Stochastic block model (SBM)
	Graphon
	Correlated Erdős–Rényi model

	Real-data examples
	Results for weighted tests
	Results for binary tests

	Conclusion



