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measure.

1. Introduction

Variable screening has become increasingly important in various research

fields. The renaissance of variable screening began with the sure inde-

pendent screening (SIS) method of Fan and Lv (2008), which is based

on the marginal Pearson correlation and is specifically tailored for linear

regressions with Gaussian predictors and responses. Following the pio-

neering work of SIS, many methods have been proposed over the last two

decades, using either model-specific or model-free approaches for ultrahigh-

dimensional data. See Fan and Song (2010), Liu, Li and Wu (2014),

Chang, Tang and Wu (2013), Zhu et al. (2011), Li, Zhong and Zhu (2012),

Mai and Zou (2015), Shao and Zhang (2014), among many others.

In the context of ultrahigh-dimensional survival data analysis, the re-

sponse is the time to an event that is often subject to censoring. Cen-

soring brings more difficulties and challenges for the feature screening of

ultrahigh-dimensional data. To address these complexities, a variety of

ultrahigh-dimensional screening techniques designed to survival outcomes

have flourished. For example, Fan, Feng and Wu (2010) investigated the

SIS method for the Cox proportional hazards model by ranking variables
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according to their respective univariate partial log-likelihoods (ISISC). He,

Wang and Hong (2013) developed a quantile-adaptive model-free screening

procedure based on the disparity between unconditional and conditional

quantiles for each covariate in the presence of right censored data with

heterogeneity (QaSIS). Song et al. (2014) devised a marginal screening pro-

cedure that utilizes an inverse probability-of-censoring weighted version of

Kendall’s τ (CRIS). Zhou and Li (2017) proposed a censored version of the

SIRS method (Zhu et al., 2011) using the inverse probability-of-censoring

weighting (CSIR) method. Zhang, Liu and Wu (2017) introduced a screen-

ing method based on the correlation between the cumulative distribution

function F (y) and each covariate (CRSIS). Yan, Tang and Zhao (2017)

considered Spearman rank correlation screening which assesses the correla-

tion between the distributions F (y) and F (Xα) of each covariate (SVSIR).

Liu, Zhang and Zhao (2018) extended the fused Kolmogorov filter proposed

by Mai and Zou (2015) to handle right censored survival data (KM), while

Chen, Chen and Wang (2018) proposed a robust feature screening procedure

based on a distance correlation measurement (RCDCS). Additionally, Hong,

et al. (2018a) developed the integrated powered density screening method

(IPOD), and Hong, Kang and Li (2018b) introduced Lq-norm learning to

handle ultrahigh-dimensional censored data (LQ).
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The aforementioned techniques utilized for ultrahigh-dimensional cen-

sored data, with the exception of Fan, Feng and Wu (ISISC ; 2010), are

all marginal screening methods. Despite their popularity, these marginal

screening techniques, which assess the dependence between the response

and individual covariates, have inherent limitations. As mentioned in Fan

and Lv (2008), some crucial variables may be marginally uncorrelated but

jointly correlated with the response. Marginal screening procedures may

fail to detect such active predictors. This issue is also relevant to censored

data. To address this issue, based on previous investigations and experi-

ences, Hong, Kang and Li (2018b) and Chen (2018) proposed harnessing

the conditional correlation between individual covariates and survival time

when some variables are known to be active. However, practical scenarios

often lack prior information or may contain erroneous information. Fan,

Feng and Wu (2010) introduced the censored iterative sure independence

screening (ISISC) approach as an alternative when prior information is ab-

sent. Nevertheless, the theoretical foundations for the ISISC method remain

elusive. These facts motivate us to explore new procedures, following Yang,

Yin and Zhang (2019), to overcome the challenges of existing marginal

screening approaches, relax the need for prior information, and seek theo-

retical justifications.

4

Statistica Sinica: Preprint 
doi:10.5705/ss.202021.0250



In this paper, we focus on right-censored survival data and introduce

two innovative sufficient variable screening procedures, inspired by insights

from the literature on sufficient dimension reduction. Our procedures trans-

late the conditional independence measures into alternative, manageable

independence measures. Importantly, our approach is model-free and ro-

bust against model misspecification. Significantly, the proposed procedures

are advantages when some active predictors are marginally independent of

the response, while many existing methods based on marginal relationships

fail.

The structure of this paper is as follows. Section 2 presents the prelim-

inaries of the sufficient variable screening concept and revisits the distance

correlation measure. In Section 3, we propose a censored distance corre-

lation measure for censored data using the inverse probability-of-censoring

weighting method. In Section 4, we develop one-stage and two-stage suffi-

cient variable screening procedures. The theoretical properties of our proce-

dures are explored in Section 5, and different methods are compared through

simulations in Section 6. A real data application is presented in Section 7.

A short discussion is included in Section 8. All proofs can be found in the

supplementary materials.

Throughout this paper, we assume that Y represents the univariate

5

Statistica Sinica: Preprint 
doi:10.5705/ss.202021.0250



survival time, and X = (X1, · · · , Xp)
> is a p × 1 vector. The notation

U V|W indicates that given W, U and V are independent.

2. Preliminaries and Distance Correlation Review

2.1 Some preliminaries

The following presents the definition of sufficient variable selection from

Yin and Hilafu (2015).

Definition 1. If there is a p× q matrix A with q ≤ p, wherein the columns

of A are composed of unit vectors, denoted as eα, with the αth element equal

to 1, such that Y X|A>X, then the column space of A is referred to as a

variable selection space. The intersection of all such spaces, if it adheres to

the aforementioned conditional independence condition, is called the central

variable selection space, denoted by SVY |X.

Let XD represent the set of elements within X that are involved in

SVY |X, and let XD̄ denote its complement, where D and D̄ are the respective

index sets. Yin and Hilafu (2015) discussed the existence and uniqueness

of SVY |X. In this paper, we assume that SVY |X always exists. Consequently,

Definition 1 is equivalent to asserting Y XD̄|XD, which, in turn, implies

that Pr(Y |XD,XD̄) = Pr(Y |XD). Therefore, we can eliminate XD̄ without
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sacrificing any relevant regression information. However, identifying XD

directly through the utilization of the conditional independence Y XD̄|XD

seems to be an infeasible task because it is difficult to decide which variables

should be included in the set XD and how many of them. To address this

problem effectively, inspired by the subsequent proposition, Yang, Yin and

Zhang (2019) explored a sufficient variable screening approach aiming to

identify a larger subset of predictors that includes the active predictors set.

We retain the notation XD to represent this target active set for variable

screening.

Proposition 1. Let X, X1and X2 be random vectors, and X> = (X>1 ,X
>
2 ).

Then, either statement (i) or statement (ii) implies statement (iii):

(i) (Y,X2) X1;

(ii) X1 X2|Y and Y X1;

(iii) Y X1|X2.

It is important to note that statement (iii), representing the ultimate

objective of sufficient variable screening, is necessarily true if either state-

ment (i) or statement (ii) holds. Consequently, it becomes essential to

develop methodologies for testing both statements (i) and (ii). To achieve

this, Yang, Yin and Zhang (2019) devised two sufficient variable screen-

ing approaches based on statements (i) and (ii), referred to as one-stage
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sufficient variable screening and two-stage sufficient variable screening, re-

spectively. Note that marginal screening methods, such as SIS (Fan and

Lv, 2008) and its variations, rely on the second part of statement (ii), and

therefore, are insufficient in their ability to imply (iii).

2.2 Review of distance correlation

Let (U,V) represent random vectors and (U′,V′) and (U′′,V′′) denote

independent copies of (U,V). Assume that (U1,V1), . . . , (Un,Vn) is a

random sample of (U,V). Székely, Rizzo and Bakirov (2007) articulated

the distance covariance dcov2(U,V) as follows:

dcov2(U,V) = S1 + S2 − 2S3,

where S1 = E [‖U−U′‖du‖V −V′‖dv ], S2 = E‖U − U′‖duE‖V − V′‖dv ,

and S3 = E [‖U−U′‖du‖V −V′′‖dv ]. Here, ‖ · ‖du and ‖ · ‖dv represent the

Euclidean norms in dimensions du and dv respectively. Similar definitions

can be encountered throughout the paper. The distance correlation (DC)

between U and V is defined as follows:

dcorr2(U,V) = dcov2(U,V)/
√

dcov2(U,U′)dcov2(V,V′).

When U and V take values in a separable Hilbert space, Lyons (2013)

pointed out that the DC measure defined for Euclidean spaces in
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Székely, Rizzo and Bakirov (2007) is still applicable to separable Hilbert

spaces. A noteworthy property of the DC measure is its ability to assess

all types of dependence between U and V in arbitrary dimensions. The

DC value equals to zero if and only if U and V are independent. This

property makes DC particularly suitable for variable screening in ultrahigh-

dimensional data.

The corresponding sample versions of S1, S2, and S3 are given by

Ŝ1 = n−2

n∑
i,j=1

‖Ui−U′j‖du‖Vi−V′j‖dv , Ŝ2 = n−4

n∑
i,j=1

‖Ui−U′j‖du
n∑

i,j=1

‖Vi−V′j‖dv ,

Ŝ3 = n−3

n∑
i,j,`=1

‖Ui −U′j‖du‖Vi −V′′` ‖dv .

By substituting these expressions into the formula of dcorr2(U,V), we ob-

tain an estimator of DC.

3. New Dependency Measures for Right Censored Data

In the realm of ultrahigh-dimensional right-censored survival data, let Y

represent the survival time and C represent the censoring time. We denote

the observed time as T , where T = min(Y,C), and let δ = I(Y < C) be the

censoring indicator. To ensure identifiability under the random censoring

scheme (Lu and Li, 2011), we assume that Y C|X, where X represents the

covariates. Our primary objective is to accurately identify the active predic-
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tor indices, denoted as D, based on the aforementioned DC measure. How-

ever, it is important to note that we observe T instead of Y . Ignoring the

censored observations can lead to significant inaccuracies, as highlighted in

(Tsiatis, 2007). One solution is to use the inverse of the censoring probabil-

ity to reweight the uncensored observations (Robins, Rotnitzky and Zhao ,

1994). In this section, we introduce three inverse probability-weighted mea-

sures to assess the dependence between the predictors and right censored

response.

3.1 An inverse probability weighted marginal utility

Following Székely, Rizzo and Bakirov (2007), we define the population dis-

tance covariance between Xα and T as dcov2
α(Xα, T ) = S1 +S2− 2S3, with

S1 = E{ δδ′

G(T |X)G(T ′|X′)
‖Xα −X ′α‖dXα‖T − T

′‖dT },

S2 = E‖Xα −X ′α‖dXαE{
δδ′

G(T |X)G(T ′|X′)
‖T − T ′‖dT },

S3 = E{ δδ′δ′′

G(T |X)G(T ′|X′)G(T ′′|X′′)
‖Xα −X ′α‖dXα‖T − T

′′‖dT }.

Here, G(t|X) = Pr(C > t|X) represents the conditional survival func-

tion of censoring time C given X, and (X ′α, T
′) and (X ′′α, T

′′) denote inde-

pendent and identical copies of (Xα, T ). Throughout the paper, we define

0/0 = 0 to ensure that S1, S2, and S3 well-defined. Following the meticu-
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lous calculations in Appendix A.1, we demonstrate that the censored version

of the distance covariance is equivalent to that determined with a known

response,

dcov2
α(Xα, T ) = dcov2

α(Xα, Y ). (3.1)

The DC measure between Xα and T is defined as

dcorr2(Xα, T ) = dcov2(Xα, T )/
√

dcov2(Xα, X ′α)dcov2(T, T ′).

At the sample level, our observations consist of {(Xi, Ti, δi), i = 1, · · · , n}

instead of {(Xi, Yi), i = 1, · · · , n}. The respective sample estimators for S1,

S2 and S3 are given as follows:

Ŝ1 =
1

n2

n∑
i,j=1

δiδ
′
j

Ĝn(Ti|Xi)Ĝn(T ′j|Xj)
‖Xα,i −X ′α,j‖dXα‖Ti − T

′
j‖dT ,

Ŝ2 =
1

n2

n∑
i,j=1

‖Xα,i −X ′α,j‖dXα
1

n2

n∑
i,j=1

δiδ
′
j

Ĝn(Ti|Xi)Ĝn(T ′j|Xj)
‖Ti − T ′j‖dT ,

Ŝ3 =
1

n3

n∑
i,j,l=1

δiδ
′
jδ
′′
l

Ĝn(Ti|Xi)Ĝn(T ′j|X′j)Ĝn(T ′′l |X′′l )
‖Xα,i−X ′α,j‖dXα‖Ti− T

′′
l ‖dT ,

where Ĝn(t|X) is the sample estimator of G(t|X).

To estimate G(t|X), the simplest approach assumes that G(t|X) =

G(t). A similar assumption was employed in He, Wang and Hong (2013),

Song et al. (2014), Zhou and Li (2017), and Zhang et al. (2018). The clas-

sical Kaplan-Meier method can be applied to estimate G(t). Additional
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methods to estimate G(t|X) along with their respective conditions and re-

sults are detailed in Appendix A.2.

3.2 An inverse probability weighted one-stage utility

For one-stage sufficient variable screening, Proposition 1 (i) holds that

(Y,X−α) Xα, where X−α = (X1, . . . , Xα−1, Xα+1, . . . , Xp). Denote U =

Xα, V = (Y,X−α), and W = (T,X−α). The distance covariance can be

defined as follows: dcov∗α
2(U,W) = S1 + S2 − 2S3, where Sj, j = 1, 2 and

3, are as follows:

S1 = E{ δδ′

G(T |X)G(T ′|X′)
‖U−U′‖dU‖W −W′‖dW},

S2 = E‖U−U′‖dUE{
δδ′

G(T |X)G(T ′|X′)
‖W −W′‖dW},

S3 = E{ δδ′δ′′

G(T |X)G(T ′|X′)G(T ′′|X′′)
‖U−U′‖dU‖W −W′′‖dW},

where (U′,W′), (U′′,W′′) are independent and identical copies of (U,W).

According to the detailed calculations in Appendix A.1, we can prove that

dcov∗α
2(U,W) = dcovα

2(U,V). (3.2)

The sample counterparts Ŝ1, Ŝ2, and Ŝ3 are given by:

Ŝ1 =
1

n2

n∑
i,j=1

δiδ
′
j

Ĝn(Ti|Xi)Ĝn(T ′j|X′j)
‖Ui −U′j‖dU‖Wi −W′

j‖dW ,
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Ŝ2 =
1

n2

n∑
i,j=1

‖Ui −U′j‖dU
1

n2

n∑
i,j=1

δiδ
′
j

Ĝn(Ti|Xi)Ĝn(T ′j|X′j)
‖Wi −W′

j‖dW ,

Ŝ3 =
1

n3

n∑
i,j,l=1

δiδ
′
jδ
′′
l

Ĝn(Ti|Xi)Ĝn(T ′j|X′j)Ĝn(T ′′l |X′′l )
‖Ui −U′j‖dU‖Wi −W′′

l ‖dW .

3.3 An inverse probability weighted two-stage utility

For two-stage sufficient variable screening, Proposition 1 (ii) applies that

Xα X−α|Y and Y Xα. The assessment of the conditional independence

Xα X−α|Y is not trivial; hence, we adopt a slicing approach. If Y is

uncensored, we can slice it directly. A general partition of the real number

line is defined as J = {[ls−1, ls) : ls−1 < ls, s = {1, · · · , S},
⋃S
s=1[ls−1, ls) \

l0 = R}, where ls represents the s
S

th sample quantiles of Y , l0 = −∞ and

lS = ∞. Each interval [ls−1, ls) is referred to as an s-slice. Note that the

first slice, (l0, l1), is open, but we slightly abuse the notation for consistency

across all slices. However, if Y is censored and (T, δ) is observed, we can

only slice the observations based on T and refer to the partition as the

aforementioned J .

The population version of the censored two-stage distance covariance

is denoted as dcov∗∗α
2{(Xα,X−α)|T}. For ease of computation, we approxi-

mate it based on the fact that E(dcov∗∗α
2{(Xα,X−α)|T}) ≈ S−1

∑S
s=1 dcov∗∗α

2

{(Xα,X−α) | T ∈ [ls−1, ls)}, where dcov∗∗α
2{(Xα,X−α)|T ∈ [ls−1, ls)} =
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S1,s + S2,s − 2S3,s, with Sj,s, for j = 1, 2 and 3 defined below:

S1,s =E
[ δδ′

G(T |X)G(T ′|X′)
‖Xα −X ′α‖dXα‖X−α −X′−α‖dX−α

×

1{T ∈ [ls−1, ls)}1{T ′ ∈ [ls−1, ls)}
]
/

E
[ δδ′

G(T |X)G(T ′|X′)
1{T ∈ [ls−1, ls)}1{T ′ ∈ [ls−1, ls)}

]
,

S2,s =E
[ δδ′

G(T |X)G(T ′|X′)
‖Xα −X ′α‖dXα1{T ∈ [ls−1, ls)}1{T ′ ∈ [ls−1, ls)}

]
×

E
[ δδ′

G(T |X)G(T ′|X′)
‖X−α −X′−α‖dX−α

1{T ∈ [ls−1, ls)}1{T ′ ∈ [ls−1, ls)}
]
/

E
[ δδ′

G(T |X)G(T ′|X′)
1{T ∈ [ls−1, ls)}1{T ′ ∈ [ls−1, ls)}

]
,

S3,s =E
[ δδ′δ′′

G(T |X)G(T ′|X′)G(T ′′|X′′)
‖Xα −X ′α‖dXα‖X−α −X′′−α‖dX−α

×

1{T ∈ [ls−1, ls)}1{T ′ ∈ [ls−1, ls)}1{T ′′ ∈ [ls−1, ls)}
]
/

E
[ δδ′δ′′

G(T |X)G(T ′|X′)G(T ′′|X′′)
×

1{T ∈ [ls−1, ls)}1{T ′ ∈ [ls−1, ls)}1{T ′′ ∈ [ls−1, ls)}
]
,

where (X′, T ′, δ′) and (X′′, T ′′, δ′′) are independent and identical copies of

(X, T, δ). After some calculation (Appendix A.1), we obtain that

dcov∗∗α
2{(Xα,X−α)|T ∈ [ls−1, ls)} = dcovα

2{(Xα,X−α)|Y ∈ [ls−1, ls)}.

(3.3)
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The indices of the observations belonging to slice s are denoted as Vs =

{k, Tk ∈ [ls−1, ls), k = 1, 2, · · · , n}, and the empirical estimator Ŝ1,s of S1,s

is

Ŝ1,s =
1

n2

∑
i,j∈Vs

δiδ
′
j

Ĝn(Ti|Xi)Ĝn(T ′j|X′j)
‖X(α,i) −X ′(α,j)‖‖X−(α,i) −X′−(α,j)‖/(

1

n2

∑
i,j∈Vs

δiδ
′
j

Ĝn(Ti|Xi)Ĝn(T ′j|X′j)

)
,

where the subscripts (α, i) and (α, j) represent the i-th and j-th elements of

a specific slice, respectively. The estimations for S2,s, S3,s can be obtained

in a similar manner as S1,s.

4. Sufficient Variable Screening Procedures for Right Censored

Data

We now present three algorithms based on Proposition 1 as follows. Let

I{A,B} represent a population-level independence measure between two

random vectors A and B.

(i) Censored Marginal Feature Screening Procedure (CFSM): This proce-

dure calculates the marginal relationship as follows: uα = I(T,Xα) =

dcorrα
2(T,Xα).

(ii) Censored One-Stage Sufficient Variable Screening Procedure (CSV S1):

This procedure builds upon statement (i), and computes u∗α =
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I{(T,X−α), Xα} = dcorr∗α
2{(T,X−α), Xα}.

(iii) Censored Two-Stage Sufficient Variable Screening Procedure (CSV S2):

This method extends from statement (ii), and computes u∗∗α =

I{(Xα,X−α)|T} = dcorr∗∗α
2{(Xα,X−α)|T}. Additionally, it approx-

imates u∗∗α as uJα =
∑S

s=1 u
J
α,s/S, where uJα,s = I{(Xα,X−α) | T ∈

[ls−1, ls)} = dcorr∗∗α
2{(Xα,X−α)|T ∈ [ls−1, ls)}.

Sample estimates of the pivotal quantities are denoted as ûα, û∗α, and û∗∗α ,

respectively.

The sufficient variable screening algorithm is as follows:

Censored Sufficient Variable Screening (CSVS):

1. Calculate ûα = Î{T,Xα} for α ∈ {1, . . . , p}. The estimate XD̂1
is the

set of Xα’s with the largest d1 values of ûα, where d1 is the preselected

value.

2(a). Calculate û∗α = Î{(T,X−α), Xα} for α ∈ {1, . . . , p}. The estimate

XD̂2
is the set of Xα’s with the largest d2 values of û∗α but not in XD̂1

from Step 1.

2(b). Alternatively, slice T into S nonoverlapping slices. Then calculate

û∗∗α =
∑S

s=1 û
J
α,s/S with ûJα,s = Î{(Xα,X−α)|T ∈ [ls−1, ls)}. The
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estimate XD̂2
is the set of Xα’s with the largest d2 values of û∗∗α but

not in XD̂1
from Step 1.

3. The final estimate XD̂ is the union of these two sets, i.e., XD̂1
∪XD̂2

.

In the aforementioned algorithm, Step 2(a) and Step 2(b) follow sepa-

rate paths guided by statement (i) and statement (ii) to achieve sufficient

variable screening. In contrast, the traditional marginal screening method

(CFSM) focuses only on Step 1. The CSVS1 algorithm encompasses both

Step 1 and Step 2(a), while the CSVS2 algorithm incorporates Step 1 along

with Step 2(b). The additional step (2(a) or 2(b)) ensures the sufficiency

of the selected features. It is noteworthy that in the CSVS1 algorithm, we

integrate CFSM due to its practical significance, as the marginal relation

typically plays an important role. Note that in the CSVS2 algorithm, the

number of slices S can be subjective. A general recommendation is to avoid

an excessive number of slices, as it may render a small number of obser-

vations unstable within each slice. For further insights on selecting the

appropriate value of S, additional information can be found in Yang, Yin

and Zhang (2019) and Li (1991). From a practical standpoint, the choice

of suitable values for d1 and d2 is also essential. As suggested by Yang, Yin

and Zhang (2019), we opted for S = 2 and set d = bn/ ln(n)c, d1 = b0.95dc

and d2 = d− d1 in our implementation, which seems effective.
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The performance of the censored marginal screening procedure CFSM

can be assessed using other existing measurements, such as correlation rank

screening (CRSIS; Zhang, Liu and Wu, 2017), Spearman rank correlation

screening (SVSIR; Yan, Tang and Zhao, 2017), and censored rank indepen-

dence screening (CRIS; Song et al., 2014). In this paper, we illustrate the

proposed censored one-stage (CSVS1) and two-stage (CSVS2) algorithms

using the newly proposed censored distance correlation (CDC) in Section

2. The advantage of CDC is that it can measure the dependence between

two random vectors with arbitrary dimensions, while the abovementioned

screening measures can only assess the dependency between univariate ran-

dom variables.

5. Theoretical Properties

We now study the theoretical properties of the measurements ûα, û∗α, and

û∗∗α in the screening procedures.

Note that uα = I(T,Xα) = 0 if and only if T is independent of Xα.

It guarantees that uα effectively separates and ranks the active predictors

over the inactive ones, i.e., maxα∈D̄ uα < minα∈D uα. Consequently, the

quantity uα serves as a valuable tool for feature screening. However, it is

also important to consider the separating capability of the empirical version
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ûα and its sure screening property. The theoretical properties of ûα are

presented in Theorem 1, and the following conditions are needed:

(C1): There exists a positive constant s0 such that for all 0 < s ≤ 2s0,

E{exp(s||X||2dX)} <∞ E{exp(s||T ||2dT )} <∞,

where dX (and dT ) are the dimensions of X (and T ). In our case, similar

to Li, Zhong and Zhu (2012), when both X and T are uniformly bounded

or conform to a multivariate normal, condition (C1) holds true.

(C2): minα∈D uα ≥ 2cn−ν , for 0 ≤ ν < 1/2, and c > 0.

Condition (C2) closely resembles Condition (C2) in Li, Zhong and Zhu

(2012). Essentially, this condition implies that uα cannot be too small in

the active set D. Condition (C2) reflects the signal strength exhibited by

individual active predictors, thereby controlling the probability error rate

in the selection of active predictors (Zhu et al., 2011).

To ensure that the Kaplan-Meier estimator and its inverse function are

well-behaved, Condition (C3) is necessary. This requirement is common

in the survival analysis literature, under the assumption that G(T |X) =

G(t). Similar conditions for alternative scenarios to estimate G(T |X) are

presented in Appendix A.2.

(C3): If G(t | X) = G(t), then Pr(t ≤ Y ≤ C) ≥ τ0 > 0 for t ∈

[0, Tmax], where Tmax is the maximum follow-up time. In addition, sup{t :
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Pr(Y > t) > 0} ≥ sup{t : Pr(C > t) > 0} and G′α(t), the first derivative

of Gα(t), is uniformly bounded.

Theorem 1. Let 0 < (ν + γ) < 1/2. Under conditions (C1) and (C3),

there exist positive constants c, c1, c2 > 0 such that

Pr( max
1≤α≤p

|ûα − uα| ≥ cn−ν)

≤ O
{
p
[
exp

(
−c1n

1−2(ν+γ)
)

+ n exp
(
−c2n

γτ 2
0

)]}
.

(5.1)

Furthermore, under condition (C2), let ζ = minα∈D1 uα −maxα∈D̄1
uα, i.e.

ζ ≥ 2cn−ν ≥ 0. Then we have

Pr(max
α∈D̄1

ûα < min
α∈D1

ûα)

≥ 1−O
{

2p
[
exp

(
−c1n

1−2(ν+γ)
)

+ n exp
(
−c2n

γτ 2
0

)]}
.

(5.2)

Under conditions (C1), (C2), and (C3), we have that

Pr(D ⊆ D̂)

≥ 1−O(sn
[
exp

(
−c1n

1−2(ν+γ)
)

+ n exp
(
−c2n

γτ 2
0

)]
),

(5.3)

where sn is the cardinality of D.

The result (5.1) presented in Theorem 1 indicates that ûα is rank con-

sistent. This indicates that the maximum disparities between ûα and uα for

all α = 1, · · · , p can be controlled within a certain level. Its overwhelming

probability is allowed to converge to zero at an exponential rate in terms of
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n and p. Equations (5.2) and (5.3) jointly guarantee that ûα consistently

ranks active predictors above inactive ones in terms of probability. Fur-

thermore, it confirms that true active predictors survive with a probability

approaching one at an exponential rate in terms of p and n. Theorem 1

sheds light on the relationship between p and n in the context of rank con-

sistency and sure screening properties. If we balance the two terms on the

right-hand side of (5.1) and choose the optimal order γ = (1 − 2ν)/3, the

relationship between p and n can be expressed as p = o(exp(cn(1−2ν)/3)).

Consequently, (5.1) becomes

Pr( max
1≤α≤p

|ûα − uα| ≥ cn−ν) ≤ O
{
p
[
exp

(
−c1n

1−2(ν+γ)
)]}

.

If we make an additional assumption that X is uniformly bounded in terms

of p, then (5.1) further simplifies to

Pr( max
1≤α≤p

|ûα − uα| ≥ cn−ν) ≤ O
{
p
[
exp

(
−c1n

1−2ν
)]}

.

For a similar conclusion, refer to Li, Zhong and Zhu (2012).

To investigate the separating capacity of the empirical version û∗α and

its sure screening property, including conditions (C1) and (C3), we also

need condition (C2∗).

(C2∗): minα∈D∗ u∗α ≥ 2cn−ν , for 0 ≤ ν < 1/2, and c > 0.
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Theorem 2. Let 0 < (ν + γ) < 1/2. Under conditions (C1) and (C3),

there exist positive constants c, c1, c2 > 0 such that

Pr( max
1≤α≤p

|û∗α − u∗α| ≥ cn−ν)

≤ O
{
p
[
exp

(
−c1n

1−2(ν+γ)
)

+ n exp
(
−c2n

γτ 2
0

)]}
.

(5.4)

Furthermore, under condition (C2∗), where ζ∗ = minα∈D∗ u∗α−maxα∈D̄∗ u∗α,

i.e. ζ∗ ≥ 2cn−ν ≥ 0. Then we have

Pr(max
α∈D̄∗

û∗α < min
α∈D∗

û∗α)

≥ 1−O
{

2p
[
exp

(
−c1n

1−2(ν+γ)
)

+ n exp
(
−c2n

γτ 2
0

)]}
.

(5.5)

Under conditions (C1), (C2∗), and (C3), we have that

Pr(D∗ ⊆ D̂∗)

≥ 1−O(sn
[
exp

(
−c1n

1−2(ν+γ)
)

+ n exp
(
−c2n

γτ 2
0

)]
),

(5.6)

where sn is the cardinality of D∗.

The following Theorem 3 presents the theoretical properties of û∗∗α . To

prove Theorem 3, we require the following additional conditions and Lemma

5 in Appendix A.3.

(C2∗∗): minα∈D∗∗ u∗∗α ≥ 2cn−ν , 0 ≤ ν < 1/2, and c > 0.

(C4∗∗): After slicing T , the sample X1, · · · ,Xn remains an independent

observation within each slice.
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(C5∗∗): For any interval [b1, b2), we have

inf
y∈[b1,b2)

I{(Xα,X−α)|T = y} ≤ I{(Xα,X−α)|T ∈ [b1, b2)}

≤ sup
y∈[b1,b2)

I{(Xα,X−α)|T = y}.

Furthermore, for any ε > 0, if 1/S − ε ≤ Pr(T ∈ [b1, b2)) ≤ 1/S + ε, then

for any y1, y2 ∈ [b1, b2),

|I{(Xα,X−α)|T = y1} − I{(Xα,X−α)|T = y2}| ≤ ε/2.

Note that the assumption (C4∗∗) appears strong; nevertheless, it is a rela-

tively common assumption. For instance, in sufficient dimension reduction,

Li (1991), Gannoun and Saracco (2003), and Cook and Ni (2005) make this

assumption; and in screening methods such as Mai and Zou (2015), the

assumption is made as well. With this condition, we can obtain the rank

consistency of ûJα,s in each slice. Condition (C5∗∗) is equivalent to the condi-

tion (C2) in Mai and Zou (2015), which will be used to provide a necessary

exponential inequality. Condition (C5∗∗) ensures I{(X−α, Xα)|T ∈ [b1, b2)}

with slices to accurately approximate the goal I{(X−α, Xα)|T}.

Theorem 3. Let 0 < (ν+ γ) < 1/2. Under conditions (C1), (C3), (C4∗∗),

and (C5∗∗), there exist positive constants c, c1, c2, c3 > 0 such that

Pr( max
1≤α≤p

|û∗∗α − u∗∗α | ≥ cn−ν)

≤ O(p[exp
(
−c1τ

4
0n

1−2(γ+ν)
)

+ n exp
(
−c2n

γτ 2
0

)
+ exp

(
−c3n

1−2ν
)
]).

(5.7)
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Furthermore, under condition (C2∗∗), let ζ∗∗ = minα∈D∗∗ u∗∗α −maxα∈D̄∗∗ u∗∗α ,

i.e. ζ∗∗ ≥ 2cn−ν ≥ 0. Then we have

Pr( max
α∈D̄∗∗

û∗∗α < min
α∈D∗∗

û∗∗α )

≥ 1−O(2p[exp
(
−c1τ

4
0n

1−2(γ+ν)
)

+ n exp
(
−c2n

γτ 2
0

)
+ exp

(
−c3n

1−2ν
)
]).

(5.8)

Under conditions (C1), (C2∗∗), (C3), (C4∗∗), and (C5∗∗), we have that

Pr(D∗∗ ⊆ D̂∗∗)

≥ 1−O(sn[exp
(
−c1τ

4
0n

1−2(γ+ν)
)

+ n exp
(
−c2n

γτ 2
0

)
+ exp

(
−c3n

1−2ν
)
]),

(5.9)

where sn is the cardinality of D∗∗.

Proofs of Theorems 1, 2, and 3 are in Appendix A.3.

6. Numerical Studies

In this section, we evaluate the performance of our proposed approaches

through simulations. We utilize the CDC, CDC1, and CDC2 approaches

to represent the marginal procedure (CFSM), one-stage procedure (CSVS1)

and two-stage procedure (CSVS2), respectively, by employing the newly

introduced censored dependency measurements. In our simulation, we esti-

mate G(T |X) using the unconditional Kaplan-Meier estimator G(t) for the
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sake of simplicity. We compare our methods with the following approaches

from the literature: QaSIS (He, Wang and Hong, 2013), a quantile adaptive

model-free variable screening, where we set the quantile to 0.5; CSIR (Zhou

and Li, 2017); RCDCS (Chen, Chen and Wang, 2018); CRSIS (Zhang, Liu

and Wu, 2017); SVSIR (Yan, Tang and Zhao, 2017); CRIS (Song et al.,

2014); KM (Liu, Zhang and Zhao, 2018; Mai and Zou, 2015); IPOD (Hong,

et al., 2018a); LQ (Hong, Kang and Li, 2018b); and ISISC (Fan, Feng and

Wu , 2010).

For each simulated model, we set n = {100, 200} and p = {1000, 2000}.

The presented outcomes are based on 500 replicates and rely on Ps and

Pa, which represent the proportions of individually active predictors being

selected and the proportion of all active predictors being selected, respec-

tively. Note that the results tend to be more favorable when Ps and Pa

approach 1.

Example 1. Suppose that the survival time T follows a Cox proportional

hazards model with a conditional hazard function similar to that of

Zhang, Liu and Wu (2017), Chen, Chen and Wang (2018), and Liu, Zhang

and Zhao (2018):

h(t|X) = h0(t) exp (X>β),

where h0(t) = (t − 0.5)2, X = (X1, . . . , Xp)
> ∼ N(0,Σ), and Σ = (σij)p×p
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Table 1: Simulation results of Ps and Pa for Example 1.
Ps Pa Ps Pa

X1 X2 X3 X4 X5 ALL X1 X2 X3 X4 X5 ALL

n = 100, p = 1000, CR ≈ 0.019 n = 200, p = 1000, CR ≈ 0.019

CDC 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

CDC1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

CDC2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

QaSIS 0.976 0.998 1.000 1.000 0.986 0.960 1.000 1.000 1.000 1.000 1.000 1.000

CSIR 0.722 0.858 0.876 0.852 0.698 0.516 0.992 0.998 1.000 1.000 0.996 0.988

RCDCS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

CRSIS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

SVSIR 0.982 1.000 1.000 1.000 0.986 0.970 1.000 1.000 1.000 1.000 1.000 1.000

CRIS 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

KM 0.998 1.000 0.998 1.000 0.994 0.994 0.996 1.000 1.000 1.000 0.998 0.996

IPOD 1.000 1.000 1.000 1.000 0.994 0.994 1.000 1.000 1.000 1.000 1.000 1.000

LQ 0.994 0.990 0.986 0.986 0.996 0.952 1.000 1.000 1.000 1.000 1.000 1.000

ISISC 0.868 0.884 0.922 0.892 0.840 0.508 0.976 0.982 0.976 0.966 0.962 0.862

with σij = 0.8|i−j|. We set β> = (0.35, 0.35, 0.35, 0.35, 0.35, 0, . . . , 0), i.e.,

only the first five predictors are active. The censoring time follows a uni-

form distribution C ∼ U(0, 100).

We also consider the survival time T from the transformation model

in Example 1 in Appendix A.4 of the supplementary file. The outcomes

presented in Table 1 (and Tables 1-2 in Appendix A.4) reveal that the

CDC, CDC1, and CDC2 methods exhibit similar performance compared to

other existing screening methods. One may question the necessity of using

the proposed procedures. To explore this further, we consider the following

example.

Example 2. For each of the four models in this example, we assume X ∼

N(0,Σp), where Σp = (σij). Specifically, σii = 1 for i = 1, · · · , p, σi4 =
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σ4j = ρ
7
10 for i 6= 4, and σij = ρ for i 6= j, i 6= 4, j 6= 4. Additionally, we

assume that ε ∼ N(0, 1) and is independent of X. Under this setup, X4 is

marginally independent of Y , while it becomes an active predictor when ρ 6=

0. For each model, censoring time C is independently generated from two

different normal distributions, resulting in censoring rates of approximately

0.01 ∼ 0.03 and 0.1 ∼ 0.3, respectively. The models and the distributions

of C are outlined as follows:

(a). Y = max{X1+X2+X3−3ρ
7
10 e(X4− 1

2
)+10+ε, 0}, C ∼ N(13, 1), N(10, 1)

(b). Y = max{X1 +X2 +X3− 3
5
ρ

7
10X3

4 + 10 + ε, 0}, C ∼ N(15, 1), N(12, 1)

(c). Y = max{X1 +X2 +X3− 3ρ
7
10X4 + 10 + ε, 0}, C ∼ N(14, 1), N(11, 1)

(d). log Y = X1 +X2 +X3 − 3ρ
7
10X4 + ε, C ∼ N(100, 1), N(7, 1)

The predictors X4 in models (a), (b), and (c) correspond to exponen-

tial, cubic, and linear terms, respectively. Model (d) represents a log-linear

regression model. Due to space constraints, only a portion of the results for

model (a) are presented in Table 2, while the results for the other simula-

tions and models can be found in Tables 3-9 within Appendix A.4. Across

all methods, performance is generally improved under moderate correlation

(ρ = 0.5) compared to scenarios with high correlation ρ = 0.8. As expected,

the simulation results clearly indicate that methods exclusively focusing on

the marginal relationship between X and Y are highly unlikely to detect X4.
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Both ISISC and the proposed CDC1 and CDC2 procedures demonstrate a

high probability of identifying X4. However, ISISC performs suboptimally

when the correlation is strong (ρ = 0.8).

When the censoring rate is low, the CDC1 and CDC2 methods ex-

hibit superior performance compared to the other methods. They not only

select the active variable X4 but also enhance their ability to screen the

marginal variables (selecting X1, X2, and X3). In high censoring rate situ-

ations, the CDC1 and CDC2 approaches are more likely to identify X4 with

higher probability than ISISC , particularly when the correlation is strong

(ρ = 0.8), although their ability to screen marginal variables is poor. This

behavior is expected because our proposed methods employ the inverse

probability-censoring weighted technique to address censoring. Essentially,

the proposed methods leverage noncensored observations in their calcula-

tion, which may result in some efficiency loss when the censoring proportion

is high. A similar conclusion can be found in Song et al. (2014).

The preceding observation inspired us to combine the existing marginal

screening techniques with our proposed one-stage (CSVS1) and two-stage

(CSVS2) methodologies when the censoring rate is higher. Note that we still

choose the CDC measure as the dependence measure in both the CSVS1

and CSVS2 approaches. This choice is based on its capacity to assess the
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Table 2: Simulation results of Ps and Pa for Example 2 (a)
r = 0.5 r = 0.8

Ps Pa Ps Pa
X1 X2 X3 X4 ALL X1 X2 X3 X4 ALL

n = 200, p = 1000, d = [n/log(n)], CR ≈ 0.01 ∼ 0.03

CDC 0.998 1.000 1.000 0.034 0.034 0.972 0.980 0.988 0.048 0.042

CDC1 0.998 1.000 1.000 1.000 0.998 0.972 0.978 0.988 1.000 0.938

CDC2 0.998 1.000 1.000 1.000 0.998 0.972 0.978 0.988 1.000 0.938

QaSIS 0.946 0.950 0.974 0.698 0.600 0.314 0.358 0.334 0.762 0.040

CSIR 0.688 0.734 0.722 0.010 0.004 0.400 0.440 0.440 0.002 0.000

RCDCS 1.000 1.000 1.000 0.004 0.004 0.964 0.960 0.962 0.012 0.008

CRSIS 1.000 1.000 1.000 0.002 0.002 0.964 0.932 0.922 0.000 0.000

SVSIR 1.000 1.000 1.000 0.000 0.000 0.982 0.976 0.980 0.000 0.000

CRIS 1.000 1.000 1.000 0.000 0.000 0.980 0.982 0.984 0.000 0.000

KM 0.978 0.984 0.974 0.098 0.092 0.556 0.574 0.578 0.172 0.024

IPOD 0.990 0.990 0.986 0.088 0.084 0.614 0.624 0.634 0.178 0.036

LQ 0.980 0.976 0.988 0.160 0.140 0.302 0.356 0.308 0.252 0.006

ISISC 0.990 1.000 1.000 0.993 0.986 0.716 0.723 0.720 0.870 0.440

n = 200, p = 1000, d = [n/log(n)], CR ≈ 0.1 ∼ 0.3

CDC 0.796 0.802 0.802 0.026 0.010 0.842 0.834 0.818 0.050 0.032

CDC1 0.794 0.800 0.800 0.942 0.460 0.832 0.828 0.814 0.990 0.546

CDC2 0.794 0.800 0.800 1.000 0.478 0.832 0.828 0.814 1.000 0.552

QaSIS 0.634 0.618 0.620 0.460 0.132 0.234 0.308 0.282 0.696 0.028

CSIR 0.714 0.774 0.760 0.010 0.004 0.396 0.448 0.438 0.002 0.000

RCDCS 1.000 0.998 1.000 0.008 0.008 0.950 0.948 0.944 0.010 0.006

CRSIS 0.998 1.000 1.000 0.002 0.002 0.930 0.912 0.894 0.000 0.000

SVSIR 1.000 1.000 1.000 0.000 0.000 0.974 0.972 0.978 0.000 0.000

CRIS 0.998 1.000 1.000 0.002 0.002 0.978 0.978 0.984 0.000 0.000

KM 0.988 0.994 0.978 0.088 0.088 0.562 0.576 0.580 0.162 0.018

IPOD 0.988 0.992 0.986 0.086 0.084 0.624 0.622 0.632 0.180 0.032

LQ 0.966 0.976 0.970 0.148 0.126 0.312 0.340 0.314 0.254 0.006

ISISC 0.990 0.983 0.983 0.986 0.956 0.656 0.670 0.620 0.793 0.300
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dependence relationship between two random vectors of arbitrary dimen-

sions, whereas other existing screening methods are limited to univariate

random variables.

In essence, within the algorithm, we combine the marginal screening

methods with the CDC1 and CDC2 procedures. For example, RCDCSM1

represents the combination of RCDCS with the CDC1 procedure, and RCDCSM2

represents the amalgamation of RCDCS with the CDC2 procedure. The re-

sults presented in Table 3 (and Tables 10-13 in Appendix A.4) demonstrate

that the combined procedures exhibit enhanced performance, particularly

when the censoring rate is higher.

Drawing upon the simulation results, it is evident that the proposed

CDC1 and CDC2 methodologies generally perform well when the censoring

rate is low or the sample size n is relatively large. Consequently, we make

the following recommendations: When the censoring rate is low (below 5%),

we advocate using the CDC1 or CDC2 procedure. Conversely, when the

censoring rate is high (exceeding 5%), we recommend employing a procedure

that combines the CDC1 or CDC2 approach with the RCDCS, CRSIS,

SVSIR, or CRIS method. Beyond the aforementioned considerations, it

is essential to acknowledge that achieving a more accurate screening result

through sufficient variable screening procedures requires a more extensive
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Table 3: Combination of existing methods and one-stage, two-stage algorithms:

Example 2 (a)

r = 0.5 r = 0.8

Ps Pa Ps Pa

X1 X2 X3 X4 ALL X1 X2 X3 X4 ALL

n = 200, p = 1000, d = [n/log(n)], CR ≈ 0.1 ∼ 0.3

QaSISM1 0.622 0.610 0.610 0.952 0.270 0.226 0.284 0.276 0.998 0.032

QaSISM2 0.622 0.610 0.610 1.000 0.274 0.226 0.284 0.276 1.000 0.032

CSIRM
1 0.706 0.764 0.750 0.942 0.380 0.386 0.438 0.432 0.988 0.062

CSIRM
2 0.706 0.764 0.748 1.000 0.394 0.386 0.438 0.432 1.000 0.062

RCDCSM1 1.000 0.996 1.000 0.930 0.926 0.946 0.946 0.938 0.990 0.826

RCDCSM2 1.000 0.996 1.000 1.000 0.996 0.946 0.946 0.938 1.000 0.836

CRSISM1 0.998 1.000 1.000 0.940 0.938 0.924 0.904 0.892 0.988 0.732

CRSISM2 0.998 1.000 1.000 1.000 0.998 0.924 0.904 0.892 1.000 0.742

SVSIRM
1 1.000 1.000 1.000 0.94 0.94 0.974 0.970 0.978 0.988 0.910

SVSIRM
2 1.000 1.000 1.000 1.000 1.000 0.974 0.970 0.978 1.000 0.922

CRISM1 0.998 1.000 1.000 0.94 0.938 0.976 0.978 0.984 0.988 0.926

CRISM2 0.998 1.000 1.000 1.000 0.998 0.976 0.978 0.984 1.000 0.938

KMM
1 0.988 0.994 0.978 0.946 0.912 0.55 0.568 0.566 0.994 0.178

KMM
2 0.988 0.994 0.978 1.000 0.962 0.55 0.568 0.566 1.000 0.182

IPODM
1 0.988 0.99 0.986 0.946 0.912 0.608 0.62 0.620 0.994 0.246

IPODM
2 0.988 0.99 0.986 1.000 0.964 0.608 0.62 0.620 1.000 0.252

LQM
1 0.964 0.976 0.970 0.948 0.868 0.300 0.336 0.300 0.992 0.040

LQM
2 0.964 0.976 0.970 1.000 0.914 0.300 0.336 0.300 1.000 0.042

computational duration.

7. Real Data Analysis

In this paper, we analyze two real-world datasets. One is a neuroblastoma

dataset, while the other one is a diffuse large-B-cell lymphoma (DLBCL)

dataset. The first dataset analysis is included in the main text, while the
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other one is in the appendix due to limited space.

Neuroblastoma is a malignant pediatric tumor originated from neural

crest elements of the sympathetic nervous system. It predominantly affects

the pediatric population and can even manifest in infancy. Our aim is to

identify the genes that influence patient survival, as studied by Fan, Feng

and Wu (2010). They examined neuroblastoma data using an initial vari-

able screening stage followed by the application of the smoothly clipped

absolute deviation (SCAD) penalty stage, which involves tuning parameter

selection through cross-validation. Thus, the selection of different tuning

parameters may result in significantly different sets of selected genes. To

ensure a fair comparison, we focus on the screening stage. All gene expres-

sion levels are standardized to have a mean of zero and a standard deviation

of one during the exploratory data analysis.

The normalized neuroblastoma data is obtained from the MicroArray

Quality Control phase-II (MAQC-II) project and can be accessed through

the ArrayExpress database (https://www.ebi.ac.uk/arrayexpress/; Ac-

cession: E-TABM-38). The dataset consists of 255 patients aged from 0 to

296 months at the time of diagnosis, with a median age of 15 months.

Among these patients, 160 patients exhibit gene expression at 10163 probe

sites. The censoring rate is approximately 36%. Our focus is on the asso-
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ciation between gene expression and overall survival time.

Following Zhou and Li (2017), we randomly split the dataset into a

training set with n1 = 106 patients and a testing set with the remaining

n2 = 54 patients. Various screening procedures are employed for the train-

ing data, and the top d = [n1/log(n1)] = 22 genes are ultimately retained.

Detailed information about the gene IDs selected using various variable

screening methods on the training set can be found in Appendix A.4. Ta-

ble 4 summarizes the gene IDs that are commonly selected across multiple

screening methods. Notably, genes 5926 and 447 are commonly selected

by the marginal method CDC, as well as by RCDCSM1 , CRSISM1 , SVSIRM
1 ,

and CRISM1 . Similarly, genes 2292 and 6278 are commonly selected by the

variants RCDCSM2 , CRSISM2 , SVSIRM
2 ,CRISM2 , and CDC2. This suggests

that the aforementioned genes have a close relationship with overall survival

and warrant further exploration. However, these genes are not selected by

the marginal screening methods.

Using the testing data, we evaluate the prediction performance of these

screening approaches based on the d = 22 selected genes. Since the true

model is unknown, we adopt the Cox proportional-hazards model as a work-

ing model. Following Bair and Tibshirani (2004), patients can be classified

into low-risk and high-risk subgroups. The log-rank test is employed to test
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the null hypothesis of no disparity in survival between these subgroups,

and the p-values are presented in the final column of Table 5. Based on

the p-values, all screening methods successfully identify subgroups. The

C-statistic (Uno et al., 2011) is employed to evaluate the predictive power

of the resultant models and is defined as Cn = Pr(βtXi > βtXj|Ti < Tj),

where βtXi is the risk score of the i-th patient. A higher C-statistic indi-

cates better predictive power. Heuristically, Cn = 0.5 implies no predictive

power. Table 5 presents the C-statistic values, along with their 95% lower

and upper bounds. The standard deviation (SD) of the C-statistic is ob-

tained through a perturbation resampling method with 200 replicates.

As shown in Table 5, the marginal screening methods, namely, CSIR,

CRSIS, CRIS and LQ, yield overall higher C-statistic values compared to

the other methods. However, due to the high censoring rate in real data,

the performance of CDC is not as excellent as the aforementioned methods,

although it remains competitive. Conversely, the performance of ISISC lags

behind, partly due to its design for parametric models and its vulnerabil-

ity to model misspecification. In addition, most combination procedures,

where a marginal procedure is coupled with a one-stage or two-stage proce-

dure, outperform the marginal methods. For example, measures combined

with the one-stage procedure, such as RCDCS, SVSIR, and IPOD. exhibit
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Table 4: Gene IDs that are commonly selected by screening methods.
Gene IDs Methods

{5926,447} {CDC,RCDCSM1 , CRSISM1 , SVSIRM1 ,CRISM1 }
{2292,6278} {RCDCSM2 , CRSISM2 , SVSIRM2 ,CRISM2 , CDCM2 }
{3633} {RCDCS, CRSIS, CRIS ,IPOD, KM, and LQ}
{870} {RCDCS, SVSIR, CSIR,LQ}
{1977} {RCDCS, CRSIS, ISIS}
{8312} {RCDCS, CRSIS, SVSIR}
{5746} {RCDCS, CRSIS, CSIR}
{8727} {RCDCS, KM, IPOD}

{2397, 5960} {RCDCS, CRSIS}
{3846} {RCDCS, SVSIR}
{10375} { SVSIR, CDC}
{7207} {RCDCS,CRIS}
{659 } { RCDCS, CDC}
{2353} { CRSIS, CDC}
{1000} { SVSIR, CRSIS}
{8814 } { KM, LQ}

slightly superior performance in terms of a higher C-statistic value com-

pared to the marginal methods. Similarly, the QaSIS, RCDCS, KM, and

IPOD procedures, which are coupled with the two-stage procedure, demon-

strate slightly enhanced performance compared to the marginal methods.

These results confirm that the proposed one-stage and two-stage proce-

dures enhance not only variable screening performance but also the overall

performance when fused with other marginal screening methods.

8. Discussion

In this paper, we propose two censored sufficient variable screening algo-

rithms (CSVS1 and CSVS2), specifically designed for ultrahigh-dimensional

right censored data. These innovative methods are particularly useful for
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Table 5: The C-statistic for different screening methods.
C-statistic standard error lower bound of C upper bound of C p value

QaSIS 0.895 0.099 0.702 1.089 4.013e-05
QaSISM1 0.888 0.182 0.532 1.245 1.427e-03
QaSISM2 0.913 0.085 0.747 1.079 1.204e-05

CSIR 0.992 0.153 0.693 1.291 2.016e-04
CSIRM1 0.952 0.188 0.583 1.320 1.041e-04
CSIRM2 0.961 0.191 0.587 1.335 8.443e-05
RCDCS 0.865 0.168 0.536 1.194 2.431e-07

RCDCSM1 0.891 0.147 0.602 1.179 2.487e-05
RCDCSM2 0.891 0.104 0.686 1.095 3.472e-07

CRSIS 0.971 0.138 0.700 1.241 2.731e-03
CRSISM1 0.966 0.152 0.669 1.264 4.981e-05
CRSISM2 0.965 0.135 0.700 1.230 2.635e-05
SVSIR 0.908 0.146 0.621 1.195 1.425e-03

SVSIRM1 0.928 0.161 0.612 1.244 2.297e-03
SVSIRM2 0.899 0.217 0.474 1.324 6.419e-04

CRIS 1.000 0.004 0.992 1.008 6.513e-06
CRISM1 1.000 0.003 0.992 1.007 4.221e-06
CRISM2 1.000 0.002 0.997 1.003 1.739e-05

KM 0.933 0.154 0.631 1.234 3.191e-04
KMM

1 0.934 0.153 0.633 1.234 3.192e-04
KMM

2 0.938 0.168 0.610 1.267 8.983e-06
IPOD 0.900 0.143 0.620 1.179 1.824e-05

IPODM1 0.907 0.106 0.699 1.115 1.956e-07
IPODM2 0.904 0.113 0.684 1.125 5.547e-06

LQ 1.000 0.003 0.995 1.005 1.128e-03
LQM1 0.972 0.099 0.778 1.166 1.302e-04
LQM2 0.973 0.154 0.670 1.275 2.968e-05
CDC 0.913 0.124 0.669 1.157 2.042e-06

CDCM1 0.913 0.102 0.712 1.114 2.042e-06
CDCM2 0.901 0.084 0.738 1.065 8.794e-07
ISISc 0.892 0.097 0.702 1.081 6.131e-06

36

Statistica Sinica: Preprint 
doi:10.5705/ss.202021.0250



detecting active predictors that exhibit marginal independence from the re-

sponse variable, a task where conventional marginal methodologies struggle.

Although the iterative ISISC algorithm introduced by Fan, Feng and Wu

(2010) may yield similar results to those of CSVS1 and CSVS2 in certain

scenarios, it typically lacks theoretical underpinnings. In contrast, our pro-

posed procedures draw upon the extensive literature on sufficient dimension

reduction (Yin and Hilafu, 2015), providing them with a robust theoreti-

cal foundation for the selection of all active predictors. Illustratively, we

employ the censored version of the distance covariance measure (CDC) to

demonstrate the sure screening properties of our proposed methods.

Based on simulation studies, we demonstrate that when the censoring

rate is low, our CDC1 and CDC2 methods outperform existing methods.

Conversely, when the censoring rate is high, the CDC1 and CDC2 proce-

dures outshine in identifying informative variables that maintain marginal

independence from the response variable, especially when the correlation is

high ρ = 0.8. However, it is worth noting that their effectiveness in marginal

screening is hampered by the use of the inverse probability-censoring weights.

In light of these findings, we are motivated to propose a hybrid approach

that combines the strengths of marginal screening methods with CDC1

and CDC2, yielding superior performance. Developing other approaches to
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handling a high censoring rate for sufficient variable screening is a potential

research direction.

Beyond the aforementioned advantages, it is imperative to highlight

that CSVS1 and CSVS2 are illustrated through the DC measure, as it can

handle dependence relationships between two random vectors of arbitrary

dimensions. However, it is essential to recognize that DC represents a

specialized instance of the Hilbert-Schmidt independence criterion (HSIC),

a framework based on the embedding of probability distributions into re-

producing kernel Hilbert spaces (RKHS, Gretton et al. (2005)). While

it is conceivable to extend the purview of CSVS1 and CSVS2 to encom-

pass HSIC, such an extension is by no means a trivial task. Empirical

evidence from Yang, Yin and Zhang (2019)’s simulations suggests that the

proposed method based on HSIC may not be sufficiently robust in ultrahigh-

dimensional settings. Inspired by the work of He et al. (2021), we are

encouraged to explore feature screening procedures rooted in HSIC, incor-

porating diverse kernel functions and considering the interplay between p

and n. Future research regarding this topic could be conducted.
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Supplementary Material

Supplementary material is available that includes proofs of theorems, addi-

tional simulation instances, real data analysis, and corresponding results.
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