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DYNAMIC COMMUNITY DETECTION WITH A CHANGE-POINT 1
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Abstract: The field of dynamic network analysis has recently seen a surge of interest in community

detection and evolution. However, existing methods for dynamic community detection do not consider

dependencies between edges, which could lead to a loss of information when detecting community

structures. In this study, we investigate the problem of identifying a change-point with abrupt changes

in the community structure of a network. To do so, we propose an approximate likelihood approach for

the change-point estimator and for identifying node membership that integrates marginal information

and dependencies of network connectivities. We propose an expectation-maximization-type algorithm

that maximizes the approximate likelihood jointly over change-point and community membership evo-

lution. From a theoretical viewpoint, we establish estimation consistency under the regularity condition,

and show that the proposed estimators achieve a higher convergence rate than those of their marginal

likelihood counterparts, which do not incorporate dependencies between edges. We demonstrate the

validity of the proposed method by applying it to the ADHD-200 data set to detect brain functional

community changes over time.

Key words and phrases: Change-point detection, Community detection, Dynamic network, Stochastic

block model.
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1. Introduction

Network data analysis has become an important tool for studying relationships and as-

sociations among subjects. In this study, we develop community detection for dynamic

network data. Traditional network analysis assumes that network connectivities are inde-

pendent and identically distributed (i.i.d.), and that networks are static over time. However,

in practice, these assumptions fail when dynamic changes of sequential observed network

data occur over time, such as in social networks, political networks, trading networks,

brain networks, biological networks, among others.

Most existing dynamic networks do not use the latent community structure, mainly us-

ing the Gaussian graphic model to analyze the conditional correlation between variables.

To deal with a time-varying graphical structure, typical assumptions for the covariance

matrix require that the precision matrices either change smoothly or are piece-wise con-

stant. For example, Kolar et al. (2010) study the structure recovery of time-varying Ising

graphical models, assuming a smooth change of an underlying parameter. Gibberd and

Nelson (2017) propose a group-fused graphical lasso method for estimating piece-wise

constant Gaussian graphical models. Yang and Peng (2018) propose a local group graph-

ical lasso estimation, assuming that the graph topology changes gradually over time. The

aforementioned approaches focus on detecting changes in the precision matrix to explore

the conditional correlation among nodes, which is not applicable for detecting community

structures.
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Compared with static networks, dynamic community detection is much more challeng-

ing, because it involves both node classification and dynamic changes in the node grouping

over time. Existing works analyze community extraction and community dynamics using

two separate steps: first, a static analysis is applied to snapshots of the networks at given

time points; then, community changes over time are detected (Toyoda and Kitsuregawa,

2003; Mei and Zhai, 2005; Palla et al., 2007). However, this strategy assumes that the

networks are independent of each other at each discrete time point, thus failing to cap-

ture the community dynamics for the entire period, possibly making community detection

unstable. In addition, the label-switching problem can arise between two successive time

points (Matias and Miele, 2017).

The existing literature on dynamic community detection is based mainly on stochastic

block models (SBMs), or variants of the SBM. For example, Xing et al. (2010), Yang

et al. (2011) ,Xu and Hero (2014) use a transition matrix to describe the changes for nodes

under Bayesian frameworks. Matias and Miele (2017) use an SBM for the static part, with

Markov chains for the changes of node groups over time. As an alternative, latent space

models can be applied to capture the probability of the dynamic connectivities of two

nodes using the closeness of the corresponding latent points (Sarkar and Moore, 2006;

Heaukulani and Ghahramani, 2013; Sewell and Chen, 2017).

Although the aforementioned methods incorporate dynamic changes of membership,

they assume that the network communities follow a smooth change over time, and that
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the underlying distribution of the community structure does not change over time, such as

the stationary Markov chain. However, abrupt changes can occur in communities, owing

to external events or changes in the locations or interests of individuals in the network.

For example, a political network community may suffer a sudden and abrupt change after

an election, individuals may join the social network of a new community because of a

change in their geographical location, or a stock trading network may experience high

volatility during an economic crisis or unforeseen disaster, such as a pandemic. Therefore,

we cannot apply the dynamic network methods designed for smooth changes, requiring

that we construct an appropriate model for an abrupt change that causes the underlying

distribution of a community structure to change at a certain time point.

Few existing studies examine abrupt changes in dynamic community detection. Marangoni-

Simonsen and Xie (2015) propose detecting the emergence of a community in large net-

works from sequential observations using Erdős–Renyi random graphs. Wang et al. (2017b)

detect change-points in dynamic networks under the snapshot model at a given time.

Wang et al. (2017a) study hierarchical change-point detection to differentiate between

intra-community and inter-community evolution, assuming that the community structure

is known in advance. In general, these approaches compare two sequential networks to

determine the possible location of a change-point using the differences between the two

networks. Dubey et al. (2020) propose a test statistic for inferring the presence of a change-

point within a sequence of network distributions, but that cannot recover communities si-
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multaneously. However, the estimation of a change-point and the community structure are

joint processes, owing to their mutual influence on each other. In addition, the estimation

of a change-point conditional on a given community structure could be biased if the given

community structure is incorrect. For joint estimation, Bhattacharjee et al. (2020) con-

sider an unknown community estimation with a single change-point using a spectral-based

method, but their key assumption for a consistent estimation is difficult to verify. Wang

et al. (2018) propose a weighted network aggregating method that detects change-points

in sparse network sequences. Zhao et al. (2019) establish a nonparametric approach for

detecting a change in the underlying network structure by using neighborhood smoothing.

The main limitations of the aforementioned methods are that they assume that connec-

tivities are conditionally independent, given the membership of nodes, resulting in a loss of

high-order network information on community structure change. In addition, this assump-

tion is usually infeasible, because most networks are relational interdependent or interact

with each other, in practice. Therefore, dependent edges should be incorporated. For ex-

ample, friendships within social networks and functional connectivities in brain networks

are highly correlated. Trust transitivity in a social network shows the dependency of trust-

worthiness among unknown participants (Liu et al., 2011). In addition, the correlations

of brain network connectivity between patients with Alzheimer’s disease and healthy con-

trols could be quite different (Yapeng et al., 2013). To incorporate dependencies between

edges in static networks, Cheng et al. (2014) propose a conditional distribution model of
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binary network data, and incorporate covariate information into the Ising model. Park and

Lee (2014) develope a clustering method that incorporates group dependence by using a

geometric structure, and Yuan and Qu (2021) propose a truncated Bahadur representation

to incorporate the underlying dependency structure between the connectivities. However,

incorporating edge dependency has not been considered under dynamic network settings.

In this paper, we propose a simultaneous change-point identification and community

detection method that incorporates abrupt changes and dependent connections. In con-

trast to static networks, we allow both the community structure and the dependence within

communities to change. The change-point estimator and the corresponding estimated com-

munity membership are obtained by maximizing an approximate likelihood, providing a

tighter lower bound to the true likelihood compared with that of the independent SBM

likelihood approach. Specifically, the proposed approximate likelihood captures changes

to the community structure from both marginal mean information and correlation infor-

mation of the connectivities. In contrast to Yuan and Qu (2021), we allow the correlation

coefficient between edges to change over time, which increases the computational com-

plexity significantly, owing to the involvement of a change-point estimation. To avoid an

intractable computation, we apply an expectation-maximization (EM)-type method for the

proposed likelihood to solve the optimization problem. Under regularity conditions, we

show that the estimators of both the community memberships and the change-points are

consistent. Empirical studies confirm our theoretical findings in that the proposed method
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outperforms existing approaches.

The main advantages and contributions of the proposed method can be summarized

as follows. We consider community detection incorporating abrupt changes under the

framework of a dependent dynamic SBM. In addition to the marginal mean difference

between communities, the proposed method considers within-community dependency be-

tween connectivities during the dynamic evolution of the community structure. In practice,

the concordance among within-community edges is an important intrinsic characteristic of

communities. Consequently, incorporating within-community dependency could enhance

the discriminative power of identifying the community memberships at change-points.

This is especially helpful when the marginal mean information is not informative. Because

of the mutual influence between the estimations of the change-point and the community

structures, we propose an algorithm that jointly estimates the change-point and identifies

the community structures. Establishing the consistency property of the change-point and

community membership estimations simultaneously is nontrivial, particularly because we

incorporate conditional dependencies between edges, whereas existing methods assume

conditional independence. The remainder of this paper is organized as follows. Section

2 introduces the notation and presents the proposed method and the implementation algo-

rithm. Section 3 illustrates the theoretical properties of the proposed method. Section 4

discusses our simulation studies, and in Section 5, we apply our method to real data on

ADHD brain networks. The last section concludes the paper.
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2. Methodology

2.1 Formulation

In this section, we consider the problem of community detection with an abrupt change,

where the members of some communities change at certain time points. Specifically, we

consider a dynamic change-point under the SBM framework.

Let Y =
{

(Y t
ij)n×n

}T
t=1

be T symmetric and unweighted sample networks, where

{Y t
ij} is one if there is an edge between nodes i and j at time point t, and is zero otherwise.

Here, n is the number of nodes that belong to one of K communities, and the main diag-

onal {Y t
ii}ni=1 is fixed to be zero. Suppose there exists an unknown change-point location

τ ?, where some nodes change their community memberships after τ ?. In the following, we

use a superscript d to distinguish variables before and after a change-point, where d = 1

before the change-point and d = 2 after change-point. We set zd = (zd1 , . . . , z
d
n)> as the

memberships for node i = 1, . . . , n, where zdi ∈ {1, 2, . . . , K}, such that

z1 = z(1) = . . . = z(τ ?) 6= z(τ ? + 1) = . . . = z(T ) = z2, (2.1)

where z(t) is the membership vector at time point t. We denote the membership assign-

ment matrix Zd =
{

(Zd
ik)n×K

}
∈ {0, 1}n×K , and Zd

ik = I{zdi = k}. Throughout this

paper, we assume that the true membership Z?d is fixed. Given the membership of nodes,

the observed edges between two nodes
{

(Y t
ij)n×n

}T
t=1

follow a Bernoulli distribution with

Statistica Sinica: Preprint 
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parameter π = {(πq,l)} such that

P (Y t
ij|zdi = q, zdj = l) ∼ Bern(πql), for i, j = 1, . . . , n, q, l = 1, . . . , K, (2.2)

where πql is the probability of nodes from communities q and l being connected. Addi-

tionally, we allow within-community connectivity dependency, and denote the correlation

between edges
(
Y t
i1j1
, Y t

i2j2

)
within a community as corr

(
Y t
i1j1
, Y t

i2j2

)
= ρti1,j1,i2,j2 .

In the following, we propose identifying a change-point using global network informa-

tion, through the probability matrix π. The goal of this study is to identify τ ? and recover

the underlying community structures simultaneously.

2.2 Change-point identification and community detection

Without loss of generality, we assume that the change-point occurs at one time τ , although

our method is not restricted to one time-point only. We define the parameter space as

Θ = (π, τ, z1, z2). Let τ ∈ T ≡ [t0T, t0T + 1, . . . , t1T ], where 0 < t0 < t1 < 1 and t0T

and t1T are integers. Let π ∈ Π ⊂ [0, 1]K
2 , where K is the number of communities, and

T and Π are parameter spaces for τ and π, respectively. The joint log-likelihood function

logL(Y,π, τ, z1, z2) given a change-point τ can be decomposed into the summation of

edge-wise terms, based on the conditional independence assumption

logL(Y |π, τ, z1, z2) =
τ∑
t=1

∑
i<j

{
Y t
ij log πz1i z1j + (1− Y t

ij) log (1− πz1i z1j )
}

+
T∑

t=τ+1

∑
i<j

{
Y t
ij log πz2i z2j + (1− Y t

ij) log (1− πz2i z2j )
}
.

(2.3)

Statistica Sinica: Preprint 
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Then, the change-point and membership can be estimated simultaneously as a one-step

maximizer, such that

(τ̂ , ẑ1, ẑ2) = argmax
τ∈T|z1,z2∈{1,...,K}n,π∈Π

logL(Y |π, τ, z1, z2). (2.4)

The community detection objective function in (2.3) assumes that connectivities are

conditional independent, given the membership of nodes. Therefore it allows one to

change the community structure using only the marginal information, in that the aver-

age connectivity rates within communities are different before and after the membership

change. However, in most community detection problems, it is common for edges within

communities to be more correlated, such as friendships in social networks. Therefore, the

conditional independence assumption among connectivities is restrictive and practically

infeasible, because it could lead to significant information loss related to the community

structure change.

In this section, we propose an approximate likelihood function to incorporate within-

community correlation, following Yuan and Qu (2021), thus improving the accuracy and

efficiency of identifying a community structure and detecting a change-point. In addition

to the marginal mean information of the edges, within-community dependency contains

additional information about the membership of nodes. This is especially effective when

the marginal mean is not informative in differentiating the connectivity between and within

communities.

In contrast to Yuan and Qu (2021), we assume that the correlation coefficient be-
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tween edges can also change over time, because the nodes’ membership changes over

time. Here, we use a homogeneous correlation structure, such that all pairwise correla-

tions from each community are assumed to be the average within-community correlation.

The rationale for this simplification is as follows. First, the pairwise correlation parameter

ρti1i2j1j2 = corr
(
Y t
i1j1
, Y t

i2j2

)
is a nuisance correlation parameter to enhance clustering and

identification. Second, Theorem 3.3 shows that the density of the pairwise correlations

between within-community edges affects the clustering performance more than the inten-

sity of the correlation does. Third, in practice, we use the sample correlation coefficient

to estimate ρti1i2j1j2 . However, if the observed binary edges are all zeros or ones, then the

corresponding sample correlation coefficient does not exist, owing to the zero variance.

For example, if we assume that the change-point is T/2, it is possible that the sample

correlation coefficients of certain pairs of edges are not estimable when only T/2 samples

are used for the calculation. More critically, we have nearly n4/4 correlation coefficients

to estimate, which is infeasible. Therefore, we assume a homogeneous correlation struc-

ture such that all pairwise correlations in each community are assumed to be the average

within-community correlation. Specifically, given that nodes i1, j1, i2, and j2 are in the

same community q, corr
(
Y t
i1j1
, Y t

i2j2

)
= ρdq , where d = 1 if t ≤ τ ? and d = 2 if t > τ ?.

Inspired by the Bahadur representation (Bahadur, 1961), we propose an approximate

likelihood function that combines information about node’ membership from both marginal

Statistica Sinica: Preprint 
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mean information and within-community dependency, as follows

logL(Y |π, τ,%, z1, z2) = logL1
ind(τ) + logL1

cor(τ) + logL2
ind(τ) + logL2

cor(τ), (2.5)

where

logLdind(τ) =
∑
t∈Td

∑
i<j

{
Y t
ij log πzdi zdj + (1− Y t

ij) log (1− πzdi zdj )
}
,

logLdcor(τ) =
∑
t∈Td

log
[
1 +

K∑
k=1

ρdk
2

n∑
i<j;u<v

(i,j)6=(u,v)

Zd
ikZ

d
jkZ

d
ukZ

d
vkŶ

t
ijŶ

t
uv

]
,

for d = 1, 2. We denote the time-point sets before and after the change-point as T1 =

{1, . . . , τ} and T2 = {τ + 1, . . . , T}, respectively, and Ŷ t
ij is a normalized binary variable

such that

Ŷ t
ij =

Y t
ij − E(Y t

ij)√
E(Y t

ij)(1− E(Y t
ij))

.

Specifically, the likelihood of the marginal mean is kept in logL1
ind(τ)+logL2

ind(τ), which

is consistent with the conditional independence model 2.3. In addition, we retain the

second-order dependency information among edges within communities, and ignore the

high-order dependency for computational efficiency. Intuitively, the second-order interac-

tion term
N∑

i<j;u<v
(i,j)6=(u,v)

ZikZjkZukZvkŶ
t
ijŶ

t
uv

measures the within-community concordance among edges, and therefore incorporates

within-community dependency by encouraging clustering among nodes with associated

edges that are correlated.

Statistica Sinica: Preprint 
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Similar to (2.4), we can estimate (τ, z1, z2) by

(τ̂ , ẑ1, ẑ2) = argmax
τ∈T,z1,z2∈{1,...,K}n,π∈Π,%∈P

logL(Y |π, τ,%, z1, z2), (2.6)

where P ⊂ [0, 1]2K is the parameter space for % = {ρ1
1, . . . , ρ

1
K , ρ

2
1, . . . , ρ

2
K}>. To jointly

maximize the proposed approximate likelihood, we use the profiling method such that

we maximize logL(Y |π, τ,%, z1, z2) over the parameters π,%, z1, andz2, given a fixed

change-point τ ; that is,

logL(Y |τ) = argmax
z1,z2∈{1,...,K}n,π∈Π,%∈P

logL(Y |π,%, z1, z2, τ).

Then, we search τ from [t0T, t1T ] to maximize logL(Y |τ) using an EM-type method.

Specifically, although we assume that the underlying true node memberships z1 and z2

are fixed parameters, in the optimization procedure, we adopt the idea of the EM algo-

rithm to treat z1 and z2 as missing variables that follows a multinomial distribution in the

E step of algorithm 1. To obtain logL(Y |τ) for any fixed τ , directly applying the EM

method is computationally challenging, because the conditional distribution P (z1, z2|Y )

becomes intractable in the expectation step. Therefore, we modify the EM algorithm fol-

lowing variational methods that approximate the likelihood P (z1, z2|Y ) using a complete

factorized distribution, R(z1, z2,µ1,µ2) =
n∏
i=1

h(Z1
i ;µ1

i )h(Z2
i ;µ2

i ), where h(·) denotes a

multinomial distribution, µd = (µd1,· · · ,µdN), and µdi = (µdi1,· · · ,µdiK) is a probability vector

such that
∑K

q=1 µ
d
iq = 1, for d = 1, 2. Note that only in the optimization process are z1 and

z2 treated as random. In our theoretical analysis, we still consider z1 and z2 to be fixed

parameters.

Statistica Sinica: Preprint 
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The key part of the proposed algorithm is to update the memberships of the nodes using

a Bayes factor constructed using the proposed approximate likelihood function. Specif-

ically, suppose the memberships of other nodes Z−i are known. Then, we predict the

membership of node i based on the following Bayes factor:

Ld(Y |τ,Zd
−i, Z

d
iq = 1)

Ld(Y |τ,Zd
−i, Z

d
ik = 1)

=
Ldind(Y |τ,Zd

−i, Z
d
iq = 1)Ldcor(Y |τ,Zd

−i, Z
d
iq = 1)

Ldind(Y |τ,Zd
−i, Z

d
ik = 1)Ldcor(Y |τ,Zd

−i, Z
d
ik = 1)

. (2.7)

If the above Bayes factor (2.7) > 1, then the probability of node i being in community q

is larger than that of it being in community k. Here, the Bayes factor can be decomposed

into ratios of the marginal and the correlation parts. When the marginal information is not

informative in differentiating between two communities, the marginal part ratio is close

to one. However if the correlation ratio is informative, the Bayes factor in (2.7) is still

differentiable, thus enhancing the community detection. In addition, the correlation ratio

serves as a correction to reduce the estimation bias.

In the maximization step, the point estimators for the model parameters are obtained

by maximizing logL(Y,π, τ,%,µ1,µ2), and we obtain

π̂ql(τ) =

∑τ
t=1

∑n
i6=j µ̂

1
iqµ̂

1
jlY

t
ij +

∑T
t=τ+1

∑n
i6=j µ̂

2
iqµ̂

2
jlY

t
ij∑τ

t=1

∑n
i6=j µ̂

1
iqµ̂

1
jl +

∑T
t=τ+1

∑n
i6=j µ̂

2
iqµ̂

2
jl

. (2.8)

For each node, the membership zd is determined by identifying the largest probability of

Statistica Sinica: Preprint 
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zdi (τ) such that

ẑdiq(τ) =


1, if q = argmaxq′ µ̂

d
iq′(τ)

0, otherwise.
(2.9)

Algorithm 1 implements the change-point identification and community detection jointly.

Algorithm 1 EM type algorithm
Input: samples Y , searching space T, estimation accuracy ε.
Initialization: set the iteration counter s = 0, and initial parameters π(0) ∈ RK×K , µ1(0) ∈ Rn×K ,
µ2(0) ∈ Rn×K , Z1(0) ∈ Rn×K , Z2(0) ∈ Rn×K .
for τ in [t1, t2] do

repeat
M step:
Obtain π(s)

ql through (2.8).
E step:
Obtain µ1(s)

iq and µ2(s)
iq through:

µ
d(s)
iq =

µ
d(s−1)
iq L(Y |τ,µd(s−1)−i , Zdiq = 1)∑K

k=1 µ
d(s−1)
ik L(Y |τ,µd(s−1)−i , Zdik = 1)

.

Update ρd(s)q through the method of moments estimator.
Update the iteration counter s=s+1.

until µ(s) satisfies: maxi (|µ1(s)
i − µ1(s−1)

i |1 + |µ2(s)
i − µ2(s−1)

i |1) < ε.
Calculate zi(τ) = argmaxk{µ

d(s)
i1 , . . . , µ

d(s)
iK }.

Calculate L(τ) = logL(Y,π(s), τ,%(s), z1(s), z2(s)) as in (2.5).
end for
Output: τ̂ = argmaxτ∈[t1,t2] L(τ) and zdi = z

d(s)
i .

Remark 1. In order to ensure the nonnegativity of the correlations between edges, when

we calculate the correlation coefficients in the E step of Algorithm 1, if the moment esti-

mator of a correlation is negative, we set the correlation to be zero. This also ensures that

the likelihood function is valid, because the log part is required to be positive.

The computational complexity of the proposed EM-type algorithm at each iteration

Statistica Sinica: Preprint 
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is O(Tn4K2), which is determined mainly by updating the node memberships in the E

step. Specifically, the complexity for calculating the Bayes factor for each single observed

network is O(n4K2), because it contains the correlation factor using the Bahadur repre-

sentation and involves a second-order interaction between edges. The calculation is made

additionally complex by incorporating the change-point, because the algorithm searches

for the location of the change-point within a sequence of networks. The number of itera-

tions of the proposed algorithm relies on the initial parameters, a common problem with

the EM-type algorithm. A good initial value could lead to much faster algorithm con-

vergence. Based on our numerical experiments, spectral clustering provides an excellent

initial value for node memberships. In addition, we adopt a parallel computing strategy,

because the node memberships can be updated in a parallel fashion, and estimations us-

ing different initial values can proceed independently. In the Supplemental Materials, we

provide the computation times of the proposed algorithm and other competing algorithms.

Furthermore, we extend the proposed method to a multiple change-point scenario, and

provide a speed-up algorithm based on the screening and ranking method. Further details

about the algorithm for estimating multiple change-points can be found in the Supplemen-

tal Materials.

Statistica Sinica: Preprint 
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3. Theoretical properties

In this section, we establish the consistency property of the membership estimations and

the change-point detection. We require the following assumptions, which are common

when using the SBM model (Celisse et al., 2012).

Assumption 1 (Identifiability for community). For every q 6= q′, there exists l ∈ {1, . . . , K}

such that

πq,l 6= πq′,l or πl,q 6= πl,q′ .

Assumption 1 requires that the nodes from different communities have unique proba-

bilities for connecting with other nodes, which ensures that different communities can be

identified by the marginal mean of the edges. Therefore, this assumption prevents the iden-

tifiability issue arising from a large community consisting of several smaller homogeneous

communities with the same probabilities of connections between nodes.

Assumption 2 (Parameter space). For every q, l ∈ {1, . . . , K}, we have ζ = c logn
n

such

that

πq,l ∈ [ζ, 1− ζ].

Assumption 2 imposes a bound for the node degree. We allow the probability of being

close to zero for generating an edge, and Assumption 2 always holds with ζ > 0 so that

log πq,l and log (1− πq,l) are valid.
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Assumption 3 (No empty class). For every q ∈ {1, . . . , K}, there exists some constant

γ ∈ (0, 1/K) such that for any realization of an SBM with a dependence structure, the

labeling vectors z1 and z2 satisfy

#{1 ≤ i ≤ n|zdi = q} ≥ γn, for q = 1, . . . , K and d = 1, 2.

This assumption implies that no community is empty. With this assumption, the num-

ber of nodes in each community is O(n).

Assumption 4 (Searching space). We assume τ ? ∈ T ≡ [t0T, t0T + 1, . . . , t1T ], which

satisfies 0 < t0 < t1 < 1, and T log n/n→∞.

Assumption 4 requires that the true change-point location is not at the beginning or the

end of the observations, which is a standard assumption in change-point analysis.

Assumption 5 (Sparsity of higher-order correlations). The number of high-order corre-

lations beyond the second-order correlations does not exceed the order of the number of

second-order correlations. Specifically, for any t and any edge (i1, j1), #{(i2, j2), (u2, v2) :

corr(Y t
i1j1
, Y t

i2j2
Y t
u2v2

) 6= 0} ≤ O(n2), and for any edge pair (i1, j1), (i2, j2), #{(u1, v1), (u2, v2) :

corr(Y t
i1j1
Y t
u1v1

, Y t
i2j2
Y t
u2v2

) 6= 0} ≤ O(n2). In addition, we assume that any two edges

Y t
i1j1

and Y t
i2j2

within a community have a nonnegative correlation corr(Y t
i1j1
, Y t

i2j2
) ≥ 0,

for t = 1, . . . , T .

Assumption 5 characterizes the sparsity of high-order correlations between within-

community edges. Here, we do not impose any restrictions on the second-order correla-
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tions, because the pairwise interactions between edges are the most relevant. It is com-

mon to assume that high-order correlations are negligible in dependent network modeling.

For example, Frank and Strauss (1986) introduce a Markov graph that allows a special

correlation structure between edges, where only pairs of joint edges are dependent, and

higher-order correlations between edges can be ignored. In the GEE2 approach (Gar-

rett Fitzmaurice, 2009), the third-order and fourth-order correlations are assumed to be

equal, and correlations beyond four are zero. We often need to simplify high-order cor-

relations, because these can significantly increase the computational cost and instability,

while providing negligible benefits in terms of improving membership identification and

change-point detection. The nonnegative correlations between edges in the same com-

munity are also sensible in practice. For example, a positive pairwise correlation between

edges is more likely to produce a star or triad relation in a network (Robins et al., 2007a,b).

In the following, we establish our theoretical results under the independent case (ρ =

0) and dependent case (ρ > 0).

When the network connectivities are independent, that is, ρdk = 0, we define the regu-

larized log likelihood as

L(τ,Z1,Z2,π) =
1

Tn(n− 1)
logL(Y |τ,π,Z1,Z2), (3.1)

where L(Y |τ,π,Z1,Z2) is defined as in (2.3). We obtain the estimators of the change-
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point and the node memberships from

(τ̂ , ẑ1, ẑ2) = argmax
τ∈T,z1,z2∈{1,...,K}n,π∈[0,1]K2

L(τ,Z1,Z2,π). (3.2)

Theorem 1 provides the consistency of the node memberships and change-point simul-

taneously under the independent case, because estimating a change-point and the commu-

nity structure are joint processes, owing to their mutual influence on each other. Therefore,

the consistency of the two estimators cannot be shown separately. Note the proof that the

membership vectors z1? and z2? are nonrandom under the conditional SBM framework,

and that the change-points and node memberships are treated as parameters of the space

T×{1, . . . , K}2n. Therefore, we ccan establish the consistency of the two estimation pro-

cesses simultaneously, following the consistency of M-estimators (Van der Vaart, 2000).

Theorem 1. Suppose assumptions 1 to 4 hold and ρ = 0, and (τ̂ , ẑ1, ẑ2) is defined in

(3.2). Then, (τ̂ , ẑ1, ẑ2) converges to (τ ?, z1?, z2?) in probability as n and T go to infinity.

Theorem 1 indicates that the independent likelihood estimators are strongly consistent

if there are no correlations between edges. In the independent case, the edges both within

the same observation network and from different observation networks are considered

independent samples from the underlying edge-generating model. Therefore, increases in

the network size or the number of observation times contribute to the sample size, which

is also supported by the rate of convergence in Theorem 3.

We incorporate the dependent part, and thus the number of terms in (2.5) is O(Tn4).
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Therefore we adjust the log-likelihood function by averaging over the total terms, and

redefine the regularized log-likelihood function as

L(τ,Z1,Z2,%,π) =
1

Tn4
logL(Y |τ,π,%,Z1,Z2), (3.3)

where L(Y |τ,π,%,Z1,Z2) is defined as in (2.5). The estimators of nodes’ membership

and change-points are

(τ̂ , ẑ1, ẑ2) = argmax
τ∈T,z1,z2∈{1,...,K}n,π∈[0,1]K2 ,%∈[0,1]K

L(τ,Z1,Z2,%,π). (3.4)

The following theorem states the consistency for the estimators under dependent con-

nectivities.

Theorem 2. Suppose assumptions 1 to 5 hold, and (τ̂ , ẑ1, ẑ2) is defined in (3.4). Then,

(τ̂ , ẑ1, ẑ2) converges to (τ ?, z1?, z2?) in probability as n and T go to infinity.

In addition to the consistency of the proposed method, we establish its theoretical

advantages over the independent likelihood function in (3.2). The proposed objective

function is robust in the sense that it guarantees the memberships and change-point re-

covery, regardless of whether or not the dependencies exist between edges. In contrast,

the independent likelihood approach cannot guarantee consistency for the memberships

and change-point when the correlation ρ > 0. In addition to the guaranteed consistency

property, the proposed method leads to faster convergence than that of its independent

counterpart by incorporating the dependency of edges, as shown in the following theorem.

Let P ? := P (Y |τ = τ ?, z1 = z1?, z2 = z2?,π = π?,% = %?) denote the conditional
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distribution of edges given the true change-point, the true membership of nodes, and true

parameters. We define Tr = c1T (r1 + r2) + |τ ? − τ |
(
|r1 − r| ∧ |r2 − r|

)
, where r1 =

||z1 − z1?||0 and r2 = ||z2 − z2?||0 are the numbers of misclassified nodes, and r =

||z1? − z2?||0 is the number of nodes that change memberships. The constant ρ is the

largest pairwise correlation among within-community edges, and C1, C2, c1 and c2 are

some positive constants. Then, Theorem 3 provides the joint convergence rate for the

change-point and memberships.

Theorem 3. Suppose assumptions 1 to 5 hold. Then for every t > 0 and (τ, z1, z2) 6=

(τ ?, z1?, z2?),

P ?
{ L(Y |π, τ,Z1,Z2)

L(Y |π, τ ?,Z1?,Z2?)
> t
}

= O(exp
{
− C1

Trn

[3 + 2ργ(r1 + r2 + r)n] log n

}
),

(3.5)

where L denotes the independent approximate likelihood defined in (3.1), and

P ?
{ L(Y |π,%, τ,Z1,Z2)

L(Y |π,%, τ ?,Z1?,Z2?)
> t
}

= O(exp
{
− C2

Tr(n+ n3I{ρ > 0})
[3 + c2ργ(r1 + r2 + r)n] log n

}
),

(3.6)

where L denotes the dependent approximate likelihood defined in (3.3).

For the independent likelihood approach, if there is no pairwise correlation among the

edges, that is, ρ = 0, then the convergence rate increases to O(exp(−Tn)) in (3.5), which

implies the achieved consistency of the estimation. Additionally, if the true change-point

is given such that |τ − τ ?| = 0, then it degenerates to a community detection problem

with multiple networks, where the convergence rate is consistent with the results in Yuan
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and Qu (2021). However, when correlations among edges exist, that is, ρ > 0, even

if the estimations of the memberships are correct, implying r1 = r2 = 0, and Tr =

|τ − τ ?|r, the convergence rate is O(exp(−C1
|τ−τ?|rn
3+2ργrn

)), implying that the convergence

of the change-point estimation could fail. Intuitively, the independent likelihood approach

uses the edges only as cumulative samples, and the dependencies between edges diminish

the effective sample size. Therefore the convergence rate deteriorates and could lead to

an inconsistent estimation. Under the most extreme scenario, πl,q = πl′,q′ , and there is

no marginal information in the networks about the change-point. Then, the independent

likelihood (2.3) does not change with respect to τ , and the estimator of the change-point

can be any value in T, implying that the location of the change-point cannot be identified

if only marginal information is used.

Under the proposed likelihood approach, given the same number of networks T and

node size n, the convergence in (3.6) is faster with (3.5). When dependencies between

edges exist, (3.6) implies that the consistency of the independent likelihood approach can

only be achieved by increasing the number of networks, but does not benefit from increas-

ing the number of nodes. In contrast the consistency of the proposed method incorporating

edge dependency leads to faster convergence, as indicated in (3.6), with an additional n3

on the exponent part. Furthermore, the independent likelihood approach accumulates in-

formation from the first-order marginal mean of the edges, whereas the proposed method

also incorporates the pairwise interactions between edges, thus using the second-order cor-
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relation information between edges. It is not surprising that the increased effective sample

size also leads to a faster convergence rate. In addition, given that the true memberships are

obtained, the convergence rate of the change-point estimation is O(exp(−n2)), indicating

that the consistency of the change-point estimation is achieved.

4. Simulation study

In this section,we conduct simulation studies to confirm whether the properties of the pro-

posed method hold in finite samples. To justify the broad applicability of our method, we

consider two models. in which where the number of communities is two and four, respec-

tively. In addition, we consider settings with various change-point locations, correlations,

and membership-switching scenarios.

We draw T = 40 sample networks from a latent time-varying generative model, as in

Section 2.1. We discuss three scenarios for t > τ ?:

• (Balance) Only partial nodes change their community memberships, and the number

of nodes in each community remains the same after a change-point.

• (Unbalance) partial nodes change their community memberships, and the number

of nodes in each community is not the same after a change-point.

• (No change) There is no change of membership.

Table 1 provides detailed membership-switching scenarios under different settings. To

simplify the notation, we use the following notation to represent the size of each com-
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munity, and the number in brackets represents the initial community label. For example,

{20(1)|20(2)} → {15(1), 5(2)|15(2), 5(1)} indicates that there are 20 nodes in commu-

nity 1 and community 2, respectively, at the beginning, and then five members of commu-

nity 1 change their membership to community 2.

We set the correlation coefficient within a community as ρ = 0 and ρ = 0.3 to rep-

resent the independent and dependent cases, respectively. In general, there is a difference

between inter-community connectivities and intra-community connectivities. Here, we set

the block probability as πi,i = 0.6 and πi,j = 0.3, respectively, where 1 ≤ i 6= j ≤ K. For

the dependent case, we reduce the gap between two probabilities to show a weak signal

case, and set the block probability to πi,i = 0.6 and πi,j = 0.4, respectively.

We set the change-point as τ ? = rT , where r = 0.3, 0.4, 0.5. In a change-point

analysis, the change-point needs to be away from the endpoint of the time space, and we

set T = [0.1T, 0.9T ], where T = 40.

We compare the performance of the proposed method with that of three existing meth-

ods, namely the EM approach, applying the Bahadur approximation (EMBahadur), but not

incorporating the dynamic feature (Yuan and Qu, 2021), the dynamic SBM (Matias and

Miele, 2017), and dynamic network clustering using the variational Bayesian algorithm

(Sewell and Chen, 2017). Note that Sewell and Chen (2017) provide two methods, namely

the variational Bayesian algorithm and the Gibbs sampler, for the projection model. Here,

we choose the former because of the similar performance of the two methods. Bhat-
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tacharjee et al. (2020) propose a fast computational strategy that ignores the underlying

community structure, and focuses on change-point estimation. This method use a spectral

clustering algorithm, which leads to an inconsistent number of communities, and therefore

a low adjusted rand index (ARI). Thus, we do not include this method in the comparison.

We use the ARI to measure the performance of clustering. The ARI takes a value

between -1 and 1, and a higher ARI represents better clustering performance. The ARI

can also yield negative values if the index is less than the expected one. We calculate the

ARI at each time point and the corresponding average ARI value. All results are based on

100 replications.

Table 2 shows the average ARI for the four methods when n = 40, which is the aver-

age of 100 replications under various settings. The proposed method (EMcp) outperforms

other competing methods under all settings. The EMBahadur assumes no change-point, and

the estimated community memberships tend to be closer to the true membership after the

change-point. This is because the change-point occurs in the first half of the time interval,

and most samples are generated from the SBM after the change-point. The dynamic SBM

performs well only when ρ = 0, but performs poorly when ρ 6= 0 and the edges are corre-

lated. The variational Bayesian algorithm for the projection model performs inadequately,

because the density of inter-community and intra-community edges is close in all settings,

which leads to a low signal strength for the variational Bayesian algorithm. The proposed

method demonstrates the advantage of incorporating within-community dependency. Note
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that even if there is no change-point, the proposed method still performs well and is similar

to the EMBahadur. This confirms the robustness of the proposed method against the correct

specification of change-point.

Table 3 provides the ARI when n = 100. When the network data are dependent, the

proposed method outperforms the other competing methods. Specifically, when the num-

ber of communities increases, the performance of the dynamic SBM deteriorates rapidly.

In addition, when the connectivities between nodes are independent, the proposed method

performs slightly worse than Dynsbm, but the ARI still exceeds 0.96 under all settings.

This may be because that the percentage of nodes that change community membership

is lower than n = 40, making the case closer to a smooth change case. However Table

4 shows that when the node size increases to n = 200, the performance of the proposed

method is comparable to that of Dynsbm, even under the independent case, and the pro-

posed method still performs best under the dependent case.

Owing to space limitations, the results for n = 1000 and the multiple change-point

scenarios are provided in the Supplementary Material. along with an investigation of the

robustness of the proposed method when the percentage of membership changes is small.

In conclusion, the simulation studies support the theory in finite samples, and illustrate

that the proposed method is effective under the SBM model framework with a potential

change-point.
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5. Real-data analysis

In this section, we illustrate the proposed method using dynamic brain network data. At-

tention deficit hyperactivity disorder (ADHD) is one of the most commonly diagnosed

child-onset neurodevelopmental disorders, and understanding the dynamics of brain func-

tion plays a significant role in diagnosing ADHD. We analyzed a data set from the ADHD-

200 Global Competition, which includes demographic information and resting-state fMRI

data for nearly 1000 children and adolescents, including on combined types of ADHD

(ADHD-C) and typically developing control (TDC). The data were collected from eight

participating sites. To avoid potential site bias, we focus our analysis on the fMRI data

from the New York University site only. We removed subjects with a missing diagnostic

status or missing scans. The final data set consists of 73 ADHD-C subjects and 98 TDC

subjects. The data set contains 116 regions of interest (ROI), measured over 172 time

points for each subject. Each node represents an ROI. The average empirical correlations

of the connections between these regions are 0.166 and 0.171 for TDC and ADHD-C sub-

jects, respectively. Considering that there are usually more between-communitie edges

than there are within-community edges, in general, the within-community correlation co-

efficient is much larger, indicating that the connectivity dependency should not be ignored.

Because it is difficult to directly observe whether connectivities exist between the ROI,

a common practice is to generate a functional connectivity network based on the correla-

tions between all possible node pairs (Cary et al., 2017; He et al., 2018; Hilger and Fiebach,
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2019). In this study, we apply the SPACE method of Peng et al. (2009) to generate net-

works at given time points. Specifically, we generate networks every five time points at

time points 1,6,11, . . . , 96 to reduce the time dependence and to estimate the precision

matrix using the SPACE method. Thus, the number of nodes n = 116 and the number of

time points T = 20. The number of edges, on average, over T is 825. To determine the

number of communities, we use the Louvain method (Blondel et al., 2008) for community

detection for a network from each individual. Then, we obtain the average of the calcu-

lated number of communities over 20 individuals, and round it to an integer, whichin this

case is four.

Figure 1 displays the approximate likelihoods at different fixed time-points for the

ADHD-C and TDC data sets, showing a possible change-point at t = 86 among TDC

subjects, and at t = 51 among ADHD-C subjects. Figure 2 and Figure 3 provide vi-

sualizations of the ADHD networks before the change-point and immediately after the

change-point, respectively, using the BrainNet Viewer (Xia et al., 2013). Note that we use

different colors to identify the four communities to which the nodes belong.

The detailed memberships of the communities before and after the change-point can be

found in the Supplementary Material. It is noticeable that the brain network for the ADHD-

C subjects has a large community initially, but then there is a rapid change, and some of

the ROIs from the largest community move to other communities. In addition, changes in

TDC children’s brain networks are smoother than those of ADHD-C children. This may
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be because ADHD patients are more likely to be distracted during the experiment.

We compare the proposed method with the dynamic SBM (Matias and Miele, 2017)

for dynamic ADHD-C brain networks. Table 6 provides the number of ROIs at differ-

ent communities before and after each time point using the dynamic SBM, showing that

only 22 ROIs changed communities. However, our method shows that 58 ROIs change

their communities. In fact, at the 51 and 56 time points, excluding edges that have never

been connected, 61.8% of the edges changed their connectivity status from zero to one or

vice versa. This implies that the ADHD-C patients’ brain network connectivities changed

more dramatically, which is consistent with ADHD symptoms such as being inattentive

and having a short attention span, whereas the dynamic SBM is not able to capture this

phenomenon.

Table 7 shows the changed ROIs of the ADHD group, which are different from TDC

group. The different ROIs mainly concentrate on the frontal gyrus, cingulate gyrus, cere-

bellum and cerebellar vermis, precentral gyrus, postcentral gyrus, and temporal gyrus.

The prefrontal cortex is responsible for many more complex mental functions, including

planning complex cognitive behavior, personality expression, decision-making, and mod-

erating social behavior. ADHD is highly associated with alterations in the prefrontal cortex

(Arnsten and Li, 2005). The cingulate gyrus is associated with cognitive processes such as

emotional processing and the vocalization of emotions, and there is evidence of anterior

cingulate dysfunctions in ADHD patients (Bush et al., 2005). The cerebellum coordinates
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voluntary movements such as posture, balance, coordination, and speech. Dysfunction in

the cerebellum and anomalies in the cerebellar vermis in ADHD patients have been estab-

lished (Toplak et al., 2006). The precentral gyrus is the site of the primary motor cortex,

and is involved in the planning, control, and execution of voluntary movements. The post-

central gyrus is the location of the primary somatosensory cortex, and is associated with

ADHD (Fassbender et al., 2011). The temporal lobe consists of structures that are vital

for declarative or long-term memory, and less temporal gray matter volume was found in

ADHD children (Castellanos et al., 2002; Carmona et al., 2005). Compared with the TDC

group, many ROIs of ADHD-C networks in brain anatomical regions have changed, which

is, in general, consistent with the current clinical literature on ADHD, as mentioned above.

6. Conclusion

In this paper, we investigate the problem of simultaneous change-point identification in

network community structures. We propose a new approximate likelihood method to inte-

grate both marginal and correlation information among network communities to estimate

the change-point and the corresponding community memberships. The proposed method

provides flexible modeling of the underlying a joint distribution assumption.

Theoretically, we establish the consistency of both the change-point and the member-

ship estimations for the proposed approximate likelihood under some regular conditions.

In addition, we show the superiority of the proposed method compared with the indepen-
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dent likelihood approach, because the membership estimator achieves a faster convergence

rate, while obtaining the consistency of the change-point estimation.

The proposed method can be implemented efficiently, and numeric studies indicate

that it can improve clustering performance over that of the independent model and other

existing methods, even under moderate dependency within-community connectivities. In

addition, in the application to dynamic fMRI brain network data, the proposed method de-

tects brain functional community changes associated with ADHD that are not captured by

other methods without incorporating within-community dependency among the functional

connectivities.

We also consider balancing between saving on the computation cost and retaining high-

order information, so that our method can deal with larger networks. This is common in

real data, such as a brain network with ROIs as nodes. However, analyzing very large-

scale networks can be time consuming, and thus improving the efficiency of this process

is important, and is left to future research.

One advantage of the proposed method is that we can directly estimate the member-

ships at each time point, without pretesting the existence of the change-point. Both our

numerical experiments (see the results in Table 2 to Table 4) and our theoretical findings

(Yuan and Qu, 2021) show that even if the change-point does not occur, the community

detection still performs well.

The proposed methed is based on the SBM framework, but the degree-corrected block
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model (DCBM) can be used more broadly. However, even when there is no change-point,

the DCBM is much more challenging than the SBM, both theoretically and practically

(Chen et al., 2018; Gao et al., 2018; Wilson et al., 2019). In fact, the existence of a

change-point and connectivity dependence introduce additional parameters, which make

the theoretical analysis more challenging. In addition, in a functional brain network, the

heterogeneity of the node degree is not strong, and the SBM can capture the community

structure quite well (Le et al., 2018; Levin et al., 2019; Wang et al., 2019). The exten-

sion of the proposed method to the DCBM is left to future research. In addition, we

can investigate community structure change detection by allowing a dynamic number of

communities, where communities can devide or merge with each other. This could have

significant value for evolution modeling of complex networks.
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The online Supplementary Material includes detailed proofs of the main theorems and lem-

mas, numerical results on a large-scale network, the robustness of the proposed method and

multiple change-point estimation, and detailed tables related to the ADHD data analysis.
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Table 1: Scenarios of membership change under different settings.

Balance Unbalance

K=2

n=40
{20(1)|20(2)} {20(1)|20(2)}

→ {15(1), 5(2)|15(2), 5(1)} → {15(1)|20(2), 5(1)}

n=100
{50(1)|50(2)} {50(1)|50(2)}

→ {40(1), 10(2)|40(2), 10(1)} → {40(1)|50(2), 10(1)}

n=200
{100(1)|100(2)} {100(1)|100(2)}

→ {80(1), 20(2)|80(2), 20(1)} → {80(1)|100(2), 20(1)}

K=4

n=40
{10(1)|10(2)|10(3)|10(4)} {10(1)|10(2)|10(3)|10(4)}

→ {5(1), 5(4)|5(2), 5(1)|5(3), 5(2)|5(4), 5(3)} → {5(1)|10(2), 5(1)|5(3)|10(4), 5(3)}

n=100
{25(1)|25(2)|25(3)|25(4)} {25(1)|25(2)|25(3)|25(4)}

→ {15(1), 10(4)|15(2), 10(1)|15(3), 10(2)|15(4), 10(3)} → {15(1)|25(2), 10(1)|15(3)|25(4), 10(3)}

n=200
{50(1)|50(2)|50(3)|50(4)} {50(1)|50(2)|50(3)|50(4)}

→ {30(1), 20(4)|30(2), 20(1)|30(3), 20(2)|30(4), 20(3)} → {30(1)|50(2), 20(1)|30(3)|50(4), 20(3)}

Statistica Sinica: Preprint 
doi:10.5705/ss.202021.0182



40 DIQING LI, YUBAI YUAN, XINSHENG ZHANG AND ANNIE QU

Table 2: Adjusted rand index between the estimated memberships and the true member-
ships for networks with n = 40.

K = 2 K = 4

ρ? τ?/T EMcp EMBahadur Dynsbm VB EMcp EMBahadur Dynsbm VB

Balanced 0 0.3 1 0.828 0.952 0.414 1 0.805 0.564 0.748

0.4 1 0.771 0.953 0.441 1 0.715 0.365 0.747

0.5 1 0.713 0.949 0.467 1 0.652 0.247 0.755

0.3 0.3 0.997 0.825 0.401 0.372 0.992 0.788 0.212 0.378

0.4 0.999 0.770 0.392 0.375 0.995 0.706 0.187 0.375

0.5 1 0.713 0.382 0.356 0.995 0.645 0.176 0.380

Unbalanced 0 0.3 1 0.724 0.971 0.466 1 0.867 0.763 0.750

0.4 1 0.632 0.969 0.444 1 0.816 0.691 0.743

0.5 1 0.540 0.968 0.425 1 0.757 0.657 0.758

0.3 0.3 0.984 0.712 0.444 0.334 0.988 0.843 0.349 0.360

0.4 0.993 0.630 0.465 0.345 0.993 0.805 0.333 0.354

0.5 0.992 0.538 0.454 0.306 0.994 0.728 0.318 0.361

No change 0 — 1 1 0.982 0.661 1 1 0.869 0.826

0.3 — 1 1 0.430 0.339 1 1 0.272 0.375

TDC children ADHD children

Figure 1: Likelihood at different time points
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Table 3: Adjusted rand index between the estimated memberships and the true member-
ships for networks with n = 100.

K = 2 K = 4

ρ? τ?/T EMcp EMBahadur Dynsbm VB EMcp EMBahadur Dynsbm VB

Balanced 0 0.3 0.994 0.823 0.999 0.689 0.991 0.805 0.986 0.988

0.4 0.997 0.744 1 0.733 0.987 0.746 0.987 0.989

0.5 1 0.685 0.999 0.767 0.995 0.680 0.986 0.989

0.3 0.3 0.992 0.799 0.714 0.354 0.969 0.797 0.547 0.354

0.4 0.996 0.734 0.718 0.376 0.976 0.751 0.541 0.376

0.5 0.997 0.670 0.717 0.327 0.998 0.654 0.532 0.327

Unbalanced 0 0.3 0.965 0.903 0.992 0.805 0.942 0.882 0.991 0.994

0.4 0.979 0.864 0.992 0.812 0.984 0.830 0.991 0.994

0.5 0.981 0.821 0.991 0.809 0.997 0.808 0.991 0.994

0.3 0.3 0.964 0.884 0.707 0.263 0.940 0.863 0.707 0.303

0.4 0.976 0.848 0.713 0.303 0.969 0.830 0.713 0.263

0.5 0.98 0.811 0.705 0.282 0.984 0.787 0.705 0.282

No change 0 — 1 1 1 0.979 1 1 0.994 0.997

0.3 — 0.997 1 0.744 0.237 0.998 1 0.564 0.611

Before change After change

Figure 2: Network for TDC children
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Table 4: Adjusted rand index between the estimated memberships and the true member-
ships for networks with n = 200.

K = 2 K = 4

ρ? τ?/T EMcp EMBahadur Dynsbm VB EMcp EMBahadur Dynsbm VB

Balanced 0 0.3 1 0.822 1 0.918 1 0.814 0.979 0.999

0.4 1 0.762 1 0.927 1 0.739 0.978 0.999

0.5 1 0.669 1 0.941 1 0.694 0.978 0.999

0.3 0.3 1 0.800 0.796 0.433 1 0.812 0.648 0.670

0.4 1 0.736 0.781 0.379 1 0.732 0.641 0.665

0.5 1 0.671 0.778 0.375 1 0.681 0.634 0.675

Unbalanced 0 0.3 1 0.891 1 0.974 1 0.894 0.985 1

0.4 1 0.864 1 0.976 1 0.852 0.985 1

0.5 1 0.835 1 0.976 1 0.805 0.985 1

0.3 0.3 0.982 0.884 0.743 0.366 0.992 0.867 0.680 0.594

0.4 0.992 0.848 0.749 0.363 0.996 0.833 0.671 0.621

0.5 0.995 0.812 0.754 0.269 1 0.797 0.670 0.646

No change 0 — 1 1 1 1 1 1 1 1

0.3 — 0.998 1 0.792 0.251 1 1 0.681 0.704

Table 5: Adjusted rand index between the estimated memberships and the true member-
ships for networks with n = 40.

K = 2 K = 4

ρ? EMcp EMBahadur Dynsbm VB EMcp EMBahadur Dynsbm VB

Balanced 0 0.941 0.828 0.834 0.595 0.905 0.730 0.340 0.719

0.3 0.937 0.819 0.704 0.470 0.917 0.668 0.473 0.379

Unbalanced 0 0.929 0.718 0.887 0.549 0.842 0.646 0.672 0.775

0.3 0.888 0.703 0.701 0.421 0.899 0.603 0.321 0.401

Table 6: The number of ROIs that belong to different communities before and after each
time point using the dynamic SBM.

time point 1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

numbers 26 27 27 23 23 25 20 28 20 22 22 19 24 16 19 25 17 22 15
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Before change After change

Figure 3: Network for ADHD-C children

Table 7: Changed regions of ADHD group.

ROI community ROI community ROI community

Cerebelum_Crus1_R 1→2 Cingulum_Mid_R 3→1 Occipital_Inf_R 3→4
Cerebelum_4_5_R 1→4 Cingulum_Post_L 3→1 Fusiform_L 3→4
Cerebelum_8_R 1→2 Cingulum_Post_R 3→1 Fusiform_R 3→4
Cerebelum_7b_L 2→3 ParaHippocampal_L 3→4 SupraMarginal_L 3→1

Precentral_R 3→1 ParaHippocampal_R 3→4 Precuneus_L 3→1
Frontal_Sup_Orb_L 3→1 Calcarine_R 3→4 Temporal_Inf_R 3→4
Supp_Motor_Area_L 3→1 Cuneus_L 3→1 Cerebelum_9_R 3→2
Supp_Motor_Area_R 3→1 Lingual_R 3→4 Vermis_3 3→4

Olfactory_R 3→1 Occipital_Mid_R 3→4 Vermis_10 3→4
Cingulum_Mid_L 3→1 Occipital_Inf_L 3→4 Insula_R 4→3
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