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Abstract: We propose a novel method of finding principal components in multivariate

data sets that lie on an embedded nonlinear Riemannian manifold within a higher-

dimensional space. Our aim is to extend the geometric interpretation of PCA, while

being able to capture non-geodesic modes of variation in the data. We introduce the

concept of a principal sub-manifold, a manifold passing through a reference point,

and at any point on the manifold extending in the direction of highest variation in

the space spanned by the eigenvectors of the local tangent space PCA. Compared

to recent work for the case where the sub-manifold is of dimension one Panaretos

et al. (2014)–essentially a curve lying on the manifold attempting to capture one-

dimensional variation–the current setting is much more general. The principal sub-

manifold is therefore an extension of the principal flow, accommodating to capture

higher dimensional variation in the data. We show the principal sub-manifold yields

the ball spanned by the usual principal components in Euclidean space. By means of

examples, we illustrate how to find, use and interpret a principal sub-manifold and

we present an application in shape analysis.
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1. Introduction

Many quantities of interest are best described as points in a non-Euclidean

space, not as vectors in a vector space. The most well-known example are di-

rectional data represented on a circle or sphere in directional statistics, which

has been discussed as early as Fisher (1953). Higher dimensional manifold

data spaces arise in the description of shapes in terms of landmarks, e.g. by

Kendall (1989). In many cases, data lie close to a low dimensional sub-manifold

of the data space. Approaches to restrict consideration to such a sub-manifold

broadly fall into two categories. There are approaches to represent data ex-

plicitly on a known sub-manifold embedded in the data space (Kendall et al.,

1999; Patrangenaru and Ellingson, 2015). Alternative approaches represent

the data on an unknown sub-manifold in the sense that it is not embedded in

the original data space, which is determined by manifold learning (Roweis and

Sau, 2000; Donoho and Grimes, 2003; Zhang and Zha, 2004; Guhaniyogi and

Dunson, 2016; Yao et al., 2023). In this paper, we discuss a method which pro-

vides an explicit, embedded sub-manifold of a manifold data space. The setting

of a manifold data space in which a data sub-manifold is embedded becomes
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increasingly important, as many procedures in medical imaging (Gerber et al.,

2010; Souvenir and Pless, 2007) and computer vision produce high-dimensional

manifold data (Pennec, 2006; Pennec and Thirion, 1997). Such methods are

so far underdeveloped because conventional statistical methodology for vector

spaces cannot be easily adapted to manifold spaces. The simplest case is that

the existence and uniqueness of the commonly used notion of sample mean

is not guaranteed anymore on a manifold (Karcher, 1977; Kendall, 1989). To

quantify statistical variation on more complex features such as curves and sur-

face a strategy of developing statistical tools in parallel with their Euclidean

counterparts is highly relevant.

Previous approaches to determine an explicit data sub-manifold in a mani-

fold data space are typically framed as efforts to generalize principal component

analysis (PCA) to manifold data spaces and broadly fall into two categories.

In the forward approach, the sub-manifold is built up by increasing dimension

stepwise. Tangent space PCA (Fletcher and Joshi, 2007) attempts to project

the manifold data by simply lifting them to the relevant tangent space and ap-

proximating the data distribution locally at the lifting point on the manifold

with the induced Euclidean distribution. This approach only works well if the

data are fairly concentrated. An alternative line of work seeks instead to di-

rectly use geodesics, which generalize the Euclidean straight lines to manifolds.
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Most notable are principal geodesics (Fletcher et al., 2004) and a sequence of

improvements (Huckemann and Ziezold, 2006; Huckemann et al., 2010; Kenobi

et al., 2010; Jung et al., 2012; Sommer, 2013; Pennec, 2015; Eltzner et al.,

2018). In shape space, many approaches use the pre-shape space of oriented

shapes and the carefully deal with the quotient space structure. Using spline

functions on manifolds, Jupp and Kent (1987) and Kume et al. (2007) develop

smooth curves by unrolling and unwrapping the shape space. The backward

approach carries out the procedure in reverse order from higher to lower di-

mension (Jung et al., 2010), discarding the direction of lowest variation at each

step. The most well known approach of this type is principal nested spheres

by Jung et al. (2012), which fits a a sequence of nested sub-spheres with de-

creasing dimension, by minimizing the residuals of the projected data in each

step.

A recent approach, which retains the classical PCA interpretation at each

point of the curve, is the principal flow (Panaretos et al., 2014). The flow

attempts to follow the main direction of the data cloud locally and offers a

trade-off between data fidelity and curve regularity. Differing from the prin-

cipal flow that starts from a given reference point, Yao et al. (2024) further

develops a fixed boundary flow with fixed starting and ending point for multi-

variate datasets lying on an embedded non-linear Riemannian manifold. More

4

Statistica Sinica: Preprint 
doi:10.5705/ss.202021.0163



recently, inspired by finding an optimal boundary between the two classes of

data lying on manifolds, Yao and Zhang (2020) invent a novel approach –

the principal boundary. From the perspective of classification, the principal

boundary is defined as an optimal curve that moves in between the principal

flows traced out from two classes of data, and at any point on the boundary, it

maximizes the margin between the two classes. In the present paper we tackle

the challenging higher dimensional generalization of principal flows. The idea

is to generalize the flow to a surface or more generally a sub-manifold. To find

a suitable sub-manifold, we start from any point of interest on the manifold,

preferably close to a large number of data points, just like we do for the prin-

cipal flow; but unlike the principal flow that moves only along the maximum

direction of variation of the data, we let the sub-manifold expand in all direc-

tions along multiple dimensions simultaneously. Instead of following a given

shape template in every direction, the sub-manifold expands guided by the

eigenvectors of the local covariance matrix.

During the preparation of this paper, which began in 2016, a preprint

was published that further elaborates on the geometric theory underpinning

principal submanifolds, see Akhoj et al. (2023).

In supplement S1 we present a simulation of a data set which is close to

a two-dimensional sub-manifold of S3 ⊂ R4. Figure 1 shows the data, the
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superimposed principal flow and the estimated two-dimensional principal sub-

manifold. Since the surface extends in two dimensions it can for more variance

of the data points.

(a) (b)

Figure 1: Visualization of the projected two-dimensional sub-manifold for data

on S3. (a) Principal flow; (b) Principal sub-manifold. The data points are

labeled in red, with the first and second principal flows (in green) going through

the starting point. The sub-manifold (in gray) are the estimated principal sub-

manifold. For visualization purpose, the sub-manifold, the first and second

principal direction and the data points have been projected to the first three

eigenvectors of the covariance matrix at the starting point.

The optimization to determine the principal sub-manifold subject to smooth-

ness constraints is a challenging problem. The same problem has appeared in

finding the principal flow, but for higher dimensional surfaces the problem

of parametrization is much more involved. We introduce two points of view

on principal sub-manifolds; the first, conceptual point of view is parametriza-
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tion invariant, while the second, more concrete point of view uses a specific

parametrization of the surface. Since the latter point of view is more amenable

to an explicit construction, our algorithm of finding the principal sub-manifold

is based thereon.

We formally define the principal sub-manifold (Section 2.4) as a sub-

manifold in which at any point of the sub-manifold, the tangent space of the

sub-manifold attempts to be close to that of the data manifold; intuitively, this

definition is analogous to the definition of the principal flow. We show that in

case of a flat space, the principal sub-manifold reduces to a ball spanned by the

usual principal components, in which the dimension of the sub-manifold cor-

responds to the number of principal components. The principal sub-manifold

also provides a complementary notation to that of a principal surface by Hastie

and Stuetzle (1989), as a self-consistent surface defined in Euclidean space.

2. Principal Sub-manifolds

2.1 Preliminaries

Suppose that {x1, . . . , xn} are n data points on a complete Riemannian mani-

fold (M, g) of dimensionm, isometrically embedded in a linear space Rd, where

m < d. The manifold (M, g) is considered known throughout all of the follow-

ing. The principal sub-manifolds which are introduced here are understood to
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2.1 Preliminaries

be submanifolds of this manifold (M, g).

Let U ⊂ Rd be an open set, which satisfies that there is an ϵ > 0 such

that {x ∈ Rd : ∃y ∈ M such that |x − y| < ϵ} ⊆ U . Throughout the paper,

we assume that there exists a differentiable function F : U → Rd−m such that

M :=
{
x ∈ Rd : F (x) = 0

}
.

For each x ∈ M, the tangent space at x, denoted by TxM is characterized by

the equation

TxM =
{
y ∈ Rd : yT∇F (x) = 0

}
.

Here, ∇F (x) is the d × (d −m) derivative matrix of F evaluated at x ∈ M,

assumed to be of full rank everywhere on M. This full rank assumption

implies that the components of F are functionally independent in a suitable

sense. This tangent space TxM provides a local vector space approximation

of the manifold M analogous to the derivative of a real-valued function that

provides a local approximation of the function. Let g be a smooth family of

inner products associated with the manifold M:

gx : TxM× TxM → R.

Then for any v ∈ TxM, the norm of v is defined by

∥v∥ =
√
gx(v, v).
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2.1 Preliminaries

Definition 1. An arc length parametrized curve γ : [0, δ] → M is a geodesic

if and only if its tangent vector γ̇(t) ∈ Tγ(t)M ⊂ Rd satisfies

d(γ̇)

dt
= 0, t ∈ [0, δ].

This means that d(γ̇)
dt

considered as a vector in Rd is normal to Tγ(t)M at any

time t.

We define the manifold exponential map

expx : TxM → M (2.1)

for ∥v∥ ≤ δ by expx(v) = γ(∥v∥) where γ is a geodesic starting from γ(0) = x

with initial velocity γ̇(0) = v/∥v∥. For a suitable neighborhood Ux ⊂ M of x,

which excludes the cut locus of x, the logarithm map

logx : Ux → TxM (2.2)

is the inverse of the exponential map.

Let x, y ∈ M. Denote the set of all (piecewise) smooth curves γ(t) :

[0, 1] → M with endpoints such that γ(0) = x and γ(1) = y by Γx,y. The

geodesic distance from x to y is defined as

dM(x, y) = inf
γ∈Γx,y

ℓ(γ) (2.3)
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2.2 Principal sub-manifolds

Figure 2: The vector v on the tangent subspace TxM at x. The endpoint of

vector v is the image of y = expx(v) under the mapping defined in (2.2).

where ℓ(γ) =
∫
[0,1]

∥γ̇(t)∥ dt =
∫
[0,1]

gγ(t) (γ̇(t), γ̇(t))
1
2 dt. Minimizing (2.3) yields

geodesics as in Definition 1, providing the shortest distance between two points

x and y in M.

2.2 Principal sub-manifolds

The concept of a principal sub-manifold is strongly inspired by the principal

flow, see Panaretos et al. (2014), we review this concept in Supplement S2.

In the following, we will go beyond previous work by introducing both

population and sample principal sub-manifolds and discussing statistical prop-

erties. Consider a probability measure P on the manifold M as well as data

{x1, · · · , xn} ⊂ M. We will give the definition of a multi-dimensional sub-

manifold N ⊂ M, based on a reference point x ∈ M. For any point x in M,

following Equation (S2.4) in Supplement S2, define the population and sample
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2.2 Principal sub-manifolds

local tangent covariance matrices on M

Σx =
1∫

M κh(y, x)dP(y)

∫
M

logx(y)⊗ logx(y)κh(y, x)dP(y), (2.4)

Σ̂x,n =
1∑

i κh(xi, x)

n∑
i=1

logx(xi)⊗ logx(xi)κh(xi, x). (2.5)

Let
{
λ1(x), . . . , λk(x)

}
and

{
e1(x), . . . , ek(x)

}
be the first k eigenvalues and

eigenvectors of Σx and let
{
λ̂n,1(x), . . . , λ̂n,k(x)

}
and

{
ên,1(x), . . . , ên,k(x)

}
be

the first k eigenvalues and eigenvectors of Σ̂x,n. Denote the linear subspace

spanned by
{
e1(x), . . . , ek(x)

}
as W (x) and the linear subspace spanned by{

ên,1(x), . . . , ên,k(x)
}

as Ŵn(x). For both cases, assume that each of the k

principal components is smooth. ThenW and Ŵn(x) are smooth distributions

as defined by Definition 2.

Definition 2. Let π : TM → M be the canonical projection, such that

for every subset U ⊂ M the set TU := π−1(U) ⊂ TM is well defined and

contains the tangent spaces TpM for all p ∈ U . Assume a subset of the

tangent bundle D ⊆ TM with the property that for every p ∈ M there is

some open set p ∈ Up ⊂ M such that there is a set of continuous vector

fields X = {X1, . . . , Xk}, defined on Up which gives rise to a homeomorphism

D ∩ TUp ↔ Up × Rk.

(i) Then the bundle D is called a distribution of dimension k.
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2.2 Principal sub-manifolds

(ii) If the vector fields used in the definition are Cr, D is called a Cr-

distribution of dimension k.

(iii) If for all local vector fields Xi, Xj ∈ X defined on the same Up we have

[Xi, Xj] ∈ D ∩ TUp, the distribution is called involutive.

In the following, we will denote components in Rd by latin letters from the

middle of the alphabet and components in N and W ranging from 1 to k by

greek letter from the beginning of the alphabet.

In Supplement S6, we propose a description of principal sub-manifolds in

terms of a Lagrangian problem, analogous to Panaretos et al. (2014). However,

since the solution technique used there is not immediately applicable here,

we instead propose an operational definition of principal sub-manifolds and

provide a simpler “greedy” algorithm in Section 3.1 to approximate them.

Since principal sub-manifolds will be defined locally, we introduce the no-

tion of a local sub-manifold.

Definition 3 (Local Sub-manifold). Assume a sub-manifold, described by the

image of an injective smooth function

N : Rk ⊃ U → N ⊂ M ⊂ Rd . (2.6)

In this expression, the image N := {N(t)} is the principal sub-manifold. We

denote the space of local k-dimensional sub-manifolds containing some point
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2.2 Principal sub-manifolds

A ∈ M, i.e. A ∈ N by this assumption, and satisfying ∀N ∈ N : dN (N,A) <

L by SubM(A,L, k,M). Here dN is the metric on N induced by the metric

on M.

Next, we define an integral sub-manifold of the distributions W (x) or

Ŵn(x). If such integral sub-manifolds exist, the principal sub-manifolds are

defined to be these integral sub-manifolds.

Definition 4 (Integral Sub-manifold). A sub-manifold N ⊂ M is called an

integral sub-manifold of the distribution W , if for every point q ∈ N the

tangent space is spanned by the distribution vector fields TqN = W (q) :=

span{X1(q), . . . , Xk(q)}.

The following is a theorem from differential geometry on the existence of

integral sub-manifolds.

Theorem 1. For any point p ∈ M a distribution W can give rise to at most

one integral sub-manifold containing p. A distribution W defines a unique C2

integral sub-manifold for each point p ∈ M if and only if W is involutive.

Remark 1. Involutiveness is a strong property that is not generically sat-

isfied for the spans of eigenvectors of local covariance matrices which we

consider. As an example for a simple non-involutive distribution that could

arise in our setting, consider the two everywhere orthonormal vector fields
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2.3 Asymptotic theory for principal sub-manifolds

X = cos(y)∂x + sin(y)∂z and Y = ∂y on R3. These define a non-involutive

distribution since [X, Y ] = sin(y)∂x − cos(y)∂z /∈ span(X, Y ). The defining

construction for principal sub-manifolds as presented in Section 3.1 always

yields an interpretable sub-manifold, however it is not in general an integral

sub-manifold.

In order to show the connection between population and sample principal

sub-manifolds, we discuss asymptotics results in Supplement S3.

2.3 Asymptotic theory for principal sub-manifolds

For the asymptotic theory discussed here, we assume that integral sub-manifolds

of W (x) and Ŵn(x) exist and the principal sub-manifolds are defined as these.

The difference between population and sample principal sub-manifolds rests

entirely on the distinction whether the distribution W (x) or Ŵn(x) are used,

since principal sub-manifolds are defined as integral manifolds of these distri-

butions. In Theorems 2 and 3 we also assume a fixed kernel with bandwidth

h used to define both W (x) and Ŵn(x). We do not place specific restrictions

onto the kernel or the bandwidth except for the high-level requirement that

the resultant distributions W (x) and Ŵn(x) be involutive.

The first step towards establishing consistency and asymptotics of sam-

ple principal sub-manifolds with respect to population principal sub-manifolds
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2.3 Asymptotic theory for principal sub-manifolds

requires establishing these properties for the distributions W (x) and Ŵn(x).

Note that here and in the following we denote by ∠(v, w) the angle between

two vectors v and w.

Theorem 2 (Consistency of Local Covariance). If for every x ∈ Bϵ(A) we

have λk(x) > λk+1(x), then we have for every δ > 0 and for every sequence

an → 0

lim
n→∞

sup
x∈Bϵ(A)

P
(
ann

1/2∠
(
Ŵn(x),W (x)

)
> δ

)
= 0 .

Proof. Using the CLT for principal components by Anderson (1963) the result

follows immediately.

This result does not immediately yield a consistency result for principal

sub-manifolds. In fact, since Ŵn(x) will in general deviate from W (x) even at

the reference point A, the two sub-manifolds may diverge proportionately to

the distance L from the reference point A.

Theorem 3 (Consistency of Local Principal Sub-manifolds). Assume that

for every x ∈ Bϵ(A) we have λk(x) > λk+1(x). Furthermore, assume a se-

quence {Ln ∈ R+}n∈N which satisfies n1/4Ln → 0, and consider a sequence of

{An ∈ Rk}n∈N satisfying n1/2dM(An, A) → 0 for some point A ∈ N on the

population principal sub-manifold. Define local sample principal sub-manifolds
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2.3 Asymptotic theory for principal sub-manifolds

N̂n ∈ SubM(An, Ln, k,M), then we have for every δ > 0

lim
n→∞

P
(
n1/2 max

x∈N̂n

min
y∈N

dM (x, y) > δ

)
= 0 .

Proof. The proof can be found in Supplement S3.

The asymptotic results given above assume a fixed kernel κ and a fixed

bandwidth h. This is due to the fact that the population principal sub-manifold

is defined as an integral manifold of a geometric distribution defined by an

optimization criterion. This might not be immediately intuitive and one might

rather have the picture in mind of the population manifold being a true smooth

object and the sample to be a noisy discrete representation thereof drawn via

a generative model. We will therefore discuss a simple a generative model and

show a consistency result for it.

Theorem 4. Consider a sub-manifold N0 ⊂ M = Rd and the multivariate

normal probability density ϕ(x;µ,Σ) on Rd. Then define a one-parameter fam-

ily of probability densities

ϕn,N0(x) =

∫
N0

ϕ(x; y, σn · Id)dy .

Consider a sequence of bandwidths {hn ∈ R+}n∈N with hn → 0, a sequence of

noise levels {σn ∈ R+}n∈N with n1/4σn/hn → 0, and a sequence {Ln ∈ R+}n∈N

with n1/4Ln → 0. Then, a sequence of local population principal sub-manifolds
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Nn ∈ SubM(A,Ln, k,M) with reference point A ∈ N0 defined by the sequence

of local covariance fields

Σn,x =
1∫

M κhn(y, x)dP(y)

∫
M

logx(y)⊗ logx(y)κhn(y, x)dP(y),

leading to a sequence of distributions Wn satisfies for every δ > 0

lim
n→∞

n1/2 max
x∈Nn

min
y∈N0

dM (x, y) = 0 .

Proof. The proof can be found in Supplement S3.

3. Determination of Principal sub-manifold

3.1 An algorithm for principal sub-manifold

Recall that the principal flow is the solution of an optimization problem in

equations (S2.2) and (S2.3). Finding such a solution requires an extensive

search for a critical point of a Euler-Lagrange problem that involves integrating

the vector field along the curve. Because it is a one dimensional curve, standard

numerical methods can be applied as shown in Panaretos et al. (2014), reducing

it to a problem of determining the solution of a system of ordinary differential

equations (ODEs). As seen in equation (S6.6) in Supplement S6, when it comes

to a sub-manifold, things turn out to be quite different. The corresponding

optimization problem for sub-manifolds is much more complex and it is not

clear how to approach the problem numerically. The main reason is that the
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3.1 An algorithm for principal sub-manifold

Lagrangian theory leads to a partial differential equation for which the method

used in Panaretos et al. (2014) is not applicable, whereas in the case of principal

flow one has a simple ordinary differential equation.

With this in mind, it is clear that the algorithm we provide should ap-

proximate curves in an integral sub-manifold, whenever the distribution is

involutive.

Some complications arise when working with a sub-manifold of higher di-

mension than two. One problem is that computational complexity increases

exponentially with dimension, which can be easily understood since the number

of points in a simple rectangular grid depends exponentially on dimension. For

the algorithm we present here there is an additional complication for higher

dimensions, which we briefly mention below. We will discuss how to deter-

mine a two-dimensional principal sub-manifold as a special case and present

an algorithm for the rest of the paper.

Principal sub-manifolds are always constructed starting from some initial

point A ∈ M. A possible initial point, which is used in some of the applications

below, is the Fréchet mean defined below.

Definition 5. The Fréchet sample mean, x̄ ∈ M, for a sample of data points

{x1, · · · , xn} ∈ M is a minimizer of the Fréchet sample variance, if the mini-
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3.1 An algorithm for principal sub-manifold

mizer is unique:

x̄ = argmin
x∈M

1

n

n∑
i=1

d2M(x, xi).

Consider N ∈ SubM(A, ϵ, k,M) where k = 2. We will not perform an

analytical optimization and rather present an approximating algorithm. To

this end, we will work with a natural parametrization of N induced by the

vector space structure of logA(N ). Thus, recalling the defining map from

equation (2.6), we use N := expA and U := Bϵ(0) in order to parameterize

any sub-manifold N ∈ SubM(A, ϵ, 2,M).

We now define an equidistant pattern of directions P := {2jπ/L | j =

1, . . . L} ⊂ S1 ⊂ R2 and use it to define a set of points in Bϵ(0) ⊂ R2 as

∀l ∈ P ⊂ R2 : Pl :=
{
tl
∣∣t ∈ {t0 = 0, t1, . . . , TN(l)} ⊂ [0, ϵ]

}
⊂ R2 ,

where N(l) is the number of levels for the lth direction. These are mapped by

expA into point sets, which we call rays,

∀l ∈ P : Al :=
{
Al,0 = A,Al,1 = expA(1 · l), . . . , Al,N(l) = expA(N(l) · l)

}
⊂ M , (3.1)

where we choose L = 180.

For dimension k > 2 one can also define patterns P ⊂ Sk−1 of finitely

many directions, which are close to evenly and uniformly distributed on Sk−1.
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3.1 An algorithm for principal sub-manifold

However, one cannot achieve the same regularity as for an equidistant pattern

in S1. This is an additional complication which arises when trying to use the

algorithm presented here in higher dimension.

In words, the key is to represent N discretely by a collection of ordered

rays, each representing a certain amount of data variation and all of them

spanning the sub-manifold of maximal variation. The rays are expected to

grow and expand along all directions. While the principal flow tries to match

its tangent vector to the first eigenvector at a certain point, the principal sub-

manifold tries to find the best direction that belongs to the plane spanned by

the first few eigenvectors, as represented by the Lagrangian L2. In this sense,

the directions in which the sub-manifolds expands provide an extra dimension

to build up the target sub-manifold of maximal variation. A set of such rays

representing an approximation to the sub-manifold N at A—in every possible

direction of variation—remain to be found.

We call all the rays for all directions a principal sub-manifold N . A com-

plete algorithm (Algorithm 1) can be found in Supplement S7. Here, we elab-

orate the core of the algorithm (see Figure 3): given direction l, we are at the

ith level, Al,i, there are three steps to go through to find the (i + 1)th level,

Al,i+1

(1) Reorientation: identify the current tangent vector of the curve Al,iAl,i−1
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3.1 An algorithm for principal sub-manifold

and determine the direction for the next move

(2) Projection: expand the rays from the points Al,i along the direction rl,i

by a step of ϵ′ and arrive at point Al,i+1

(3) Updating: project the data points xj’s(1 ≤ j ≤ n) onto the point Al,i+1,

and re-calculate the tangent plane at Al,i+1.

In Step (1), given the current point Al,i and the previous point Al,i−1, we obtain

the tangent vector of the curve Al,iAl,i−1 by backward projection

vl,i = logAl,i

(
Al,i−1

)
.

The best knowledge we have about the ray at Al,i is vl,i. Let ul,i be the direction

for the next move and define the projected vector

ṽl,i := W (Al,i)
TW (Al,i)vl,i =

〈
vl,i, e1

(
Al,i

)〉
e1
(
Al,i

)
+
〈
vl,i, e2

(
Al,i

)〉
e2
(
Al,i

)
where e1

(
Al,i

)
and e2

(
Al,i

)
are the first and second eigenvector of ΣAl,i

. We

discuss two alternatives to determine u. Let Wl,i denote the plane spanned by

e1
(
Al,i

)
and e2

(
Al,i

)
.

(a) The straight forward choice ul,i := ṽl,i amounts to projection to Wl,i.

(b) Choosing ul,i := 2ṽl,i − vl,i amounts to reflection at Wl,i.
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3.1 An algorithm for principal sub-manifold

While the reflection is a less obvious choice, it can achieve better data fidelity

for large, but slowly varying curvature. We illustrate this point in Supplement

S9.

In Step (2), we move Al,i on the tangent plane by a step of ϵ′ along rl,i,

where

rl,i = −ϵ′ × ul,i∥∥ul,i∥∥ ,
and then map it back to the manifold M

Al,i+1 = expAl,i
(rl,i).

Note that ul,i is not of unit length, and the negative sign appears as ul,i is

obtained from vl,i.

In Step (3), updating the covariance matrix at Al,i+1 is necessary when

local data points change significantly, where the covariance matrix is updated

by replacing ΣAl,i
with ΣAl,i+1

.

It is crucial to make sure that the rays always move forward and do not

return to points already explored by the ray itself or another ray. Additionally,

a stop condition is necessary such hat the principal sub-manifold does not

extend far beyond the data domain. In accordance with the stopping rule

used in Panaretos et al. (2014), we can terminate the process when the length
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3.1 An algorithm for principal sub-manifold

Figure 3: Illustration of the Algorithm. The goal is to determine Al,i+1, given

the current point Al,i−1 and the previous point Al,i: vl,i is the tangent vector of

the curve Al,iAl,i−1, ul,i is the projection of vl,i onto the tangent plane spanned

by e1(Al,i) and e2(Al,i). The point Al,i+1 is found by mapping a small move ϵ′

from Al,i along the direction of rl,i = −ul,i/
∥∥ul,i∥∥.

of the lth ray, i.e.,

ℓAl
=

N(l)−1∑
i=1

d(Al,i, Al,i+1),

exceeds 1. The length of lth ray does not necessarily have to be equal. There

may exist other stopping rules that one can use. Among them, we should also

consider that for all j,

∥∥logAl,i+1
(xj)

∥∥ > δ or
〈
logAl,i+1

(Al,i), logAl,i+1
(xj)

〉
≥ 0,

which implies that either there are not enough data points in the neighborhood

or Al,i+1 is already outside the convex hull of the xj’s under the logarithm map.

Remark 2. Both ϵ′ and δ are pre-defined parameters. We suggest to choose

ϵ′ preferably with small values to ensure the stability of the local move on the
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3.2 Visualization of the principal sub-manifold

tangent plane, while the choice of δ depends more on the data dispersion and

configuration, which might vary from case to case.

For h → ∞ and a flat manifold the principal component distribution is

constant over the whole space and therefore it is clear that the greedy algorithm

leads to straight lines spanning the linear subspace spanned by the k largest

principal components. In this sense, the limiting case of standard PCA is

trivial. In Supplement S8 we investigate the convergence behavior of the greedy

algorithm in the limit ϵ′ → 0 if the length of all curves is fixed in advance. In

general, it is very difficult to show that solution curves of the greedy algorithm

approximate solution curves to either Lagrangian. Instead, we show that the

curves converge to the integral sub-manifold if the distribution is involutive,

as expected. This convergence result is very important, because it shows that

the greedy algorithm leads to meaningful results in all cases where a unique

“true” geometric solution in terms of an integral sub-manifold exists.

3.2 Visualization of the principal sub-manifold

The principal sub-manifold in general cannot be fully visualized when its di-

mension exceeds one. Consider a simple case where the data lies in S3 ⊂ R4;

the principal sub-manifold is then a subset of S3; that is, it is equivalent to

visualizing a two-dimensional manifold in a four-dimensional space. However,
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3.2 Visualization of the principal sub-manifold

a meaningful representation of the sub-manifold is still quite relevant for un-

derstanding the shape of the manifold, at least partially. We propose two ways

of visualizing the principal sub-manifold. The first one is to represent the sub-

manifold in terms of principal direction rays. The second one is to visualize

the sub-manifold in the projected manifold space.

• parameterize the sub-manifold in polar coordinates and represent it by

the shapes of principal direction rays

• project the sub-manifold by multiplying a projection matrix in which

the basis is formed by eigenvectors from the covariance matrix at the

starting point

(a) (b)

Figure 4: Visualization of a principal sub-manifold. (a) Visualize the sub-

manifold by eight principal direction rays. (b) Visualize the sub-manifold by

projecting to the three largest eigenvectors of covariance matrix at A.
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3.2 Visualization of the principal sub-manifold

Visualization in principal direction rays: Choose a number of directions

from the starting point of the algorithm and visualize the sub-manifold by using

the corresponding rays. Recall that the entire sub-manifold can be expressed

as follows

N =
[
A1,A2, · · · ,AL

]T
.

Although we denote N as a “matrix”, the actual length of each row (i.e.,

Al, 1 ≤ l ≤ L) may vary. To visualize the sub-manifold, we select a candidate

set Ls ⊂ L and map the corresponding rows of N into the corresponding rays

in shape coordinates. Thus, the principal direction rays of the sub-manifold

shall be represented by

xl,i = f−1(Al,i), ∀l ∈ Ls, 1 ≤ i ≤ N(l),

where f is the embedding function. In the case of Kendall shape space, the

resultant xl,1, · · · , xl,N(l) is a collection of N(l) k-ads.

Among all l’s, the two principal directions of the sub-manifold are defined

as follows. Recall polar coordinates on the image θ = 2lπ/L, where L = 180.

The first principal direction, denoted as NPD1, is the curve corresponding to

θ = π and θ = 2π in polar coordinates on the image; this is equivalent to l

equals 90 and 180 such that

NPD1 = A90 ∪ A180.
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3.2 Visualization of the principal sub-manifold

The second principal direction, denoted as NPD2, corresponds to the curve

with θ = π/2 and θ = 3π/2 in polar coordinates on the same image; this is

equivalent to l equals 45 and 135 such that

NPD2 = A45 ∪ A135.

In addition, it is suggested to also include the curves, NPD3, corresponding

to θ = π/4 and θ = 5π/4 as well as the ones, NPD4, corresponding to θ =

3π/4 and θ = 7π/4. Adding two extra directions gives additional details about

the sub-manifold.

We remark here that although we have used NPD1 −NPD4 as the principal

directions, they are by no means the simple extension of the usual principal

components or any variants thereof. Figure 5 gives an example of such a config-

uration of shapes. The entire image contains 9 by 9 small shapes. The central

figure is the mean shape. Row 5 represents the shapes of NPD1. Column 5 is

the shapes of NPD2. The main diagonal contains the shapes of NPD3. The other

diagonal contains the shapes NPD4.

Visualization in projected space: Alternatively, one may wish to represent

the sub-manifold using a projected sub-manifold rather than itself. The latter

serves as a much simplified version of the original one and it is more inter-

pretable, provided that the majority of variation of the principal sub-manifold
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3.2 Visualization of the principal sub-manifold

can be explained by a reduced one. Compared to the previous representation,

this visualization preserves the resolution of the sub-manifold.

To fix representation, we center the N row-wise by A and obtain the

centered sub-manifold

N ∗ =
(
N ∗

l,i

)
1≤l≤L,1≤i≤N(l)

where N ∗
l,i = Al,i − A where 1 ≤ l ≤ L, 1 ≤ i ≤ N(l). Clearly, for i = 1,

N ∗
l,i = 0. Let the projection matrix for N ∗ be

Ψ = (ψl,i)1≤l≤L,1≤i≤N(l)

where ψl,i is the projection matrix for Al,i. Usually, we choose ψl,i = E3 where

E3 = [e1(A), e2(A), e3(A)]
T of ΣA. The process is carried out by multiplying

N ∗ element-wise by the projection Ψ, so that

N pro = Ψ⊙N ∗

where ⊙ is the element-wise product such that N pro

l,i = ψl,iN ∗
l,i. Figure 4(b)

illustrates the main idea: the red dashed arrow starting from A denotes the

lth ray (or a vector of (Al,1, . . . , Al,N(l))) of the principal sub-manifold N ; the

red solid arrow denotes the projected lth ray of the principal sub-manifold,

A∗
l . The point A is now regarded as the new origin under the new coordinate

system, correspondingly. Moreover, the data points xj’s are projected in the
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same way by

x∗j = E3(xj − A), 1 ≤ j ≤ n.

In general, the projected points x∗j ’s are expected to lie closely to the sub-

manifold N pro, provided that the projection matrix has accounted for most of

the variability.

4. Applications

This section contains an illustration of principal sub-manifolds on a data set of

handwritten digits. Additional simulations are presented in Supplement S10-

11 and two more applications can be found in Supplement S12-13. Since we

are concerned with landmark shapes, we provide a brief introduction to that

topic in Supplement S14.

To illustrate the use of the principal sub-manifold in a concrete example,

we consider a handwritten digit “3” data. The data, included in the GNU R

package shapes , consists of 13 landmarks of a “3” in two dimensions, collected

from 30 individuals. For visualization, we find a principal sub-manifold for the

data and recover the shape variation of the “3” in four principal directions,

started at two different shapes of the “3”. In the first case (see Figure 5),

the sub-manifold starts from the Fréchet mean of the data. In each principal

see https://cran.r-project.org/web/packages/shapes/index.html
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direction, the flow of images describes the shapes of the “3” moving from one

extreme to the other extreme. The horizontal set of the images represents the

various shapes of “3” recovered from the first principal direction. From there,

we can see that the most varying part is the middle part of the “3”. The parts

varying in the second principal direction are mainly the upper and lower parts

of the “3”. Those parts of the “3” have exhibited a significant shape change

along the two principal directions. Both the main diagonal and the other

diagonal show certain degrees of the shape change mostly in the middle part

of the “3” but in an opposite direction. By observing the fact that there are two

seemingly outlying individuals of “3”s deviating from the rest in the data—the

midpoint of the 3 having moved away from the center of the figure—a more

sensible center of symmetry should be also considered. As in the second case

(Supplement S4) serves to illustrate the slight effect of having a different choice

(center of symmetry) of the starting point on the sub-manifold. However, no

significant change in the representation of the sub-manifold is found.

To further understand the shape variation in configuration space, we con-

trast the results with that from the standard generalized Procrustes analysis

(GPA). The profiling of shapes obtained from both methods along different

principal directions (or principal components) in Figure 6 has suggested quite

different patterns. Not only does the variation differ at various parts of the
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Figure 5: Principal sub-manifolds of the handwritten digits data, started from

the mean. Among all the figures: the central figure (in blue) is the Fréchet

mean; the horizontal row contains images recovered from the first principal

direction of the sub-manifold; the vertical column is the second principal di-

rection; the main diagonal is the third principal direction; the other diagonal

is the fourth principal direction.
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“3”, but the images of shapes recovered from the principal directions of the

sub-manifold reveals an phenomenon of asymmetrical variation around the

Procrustes mean, compared to the GPA: the principal sub-manifold tries to

explain most of the variation by its first principal direction, while the GPA

explains the variation almost equally along its first and second principal com-

ponents. This is interesting to us, as this information is not available from

standard procedures that profiles the images in the configuration space where

they obey a standard PCA manner.
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Figure 6: Principal sub-manifolds and generalized Procrustes analysis on the

handwritten digits data. Figures (a) and (b): the central figure (in blue) is

the Procrustes mean; (a) contains images recovered from the first principal

direction of the principal sub-manifold; (b) contains images recovered from

the first principal component of generalized Procrustes analysis. Figures (c)

and (d) give the same information for second principal direction (or principal

component) of the principal sub-manifold (or generalized Procrustes analysis).
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5. Discussion

The statistical analysis of data on Riemannian manifold is a very challenging

topic and it plays an increasingly important role in real-world problems. Con-

ventional approaches, such as PCA in Euclidean space, are essentially helpful

in neither learning the shape of the underlying manifold nor deciding its di-

mensionality. The main reason for this lies in the fact that those approaches

simply do not use the intrinsic Riemannian manifold structures.

With the aim of proposing a method that allows for finding a nonlinear

manifold from the data, we introduced the notation of principal sub-manifold.

We showed the importance of estimating a multi-dimensional sub-manifold,

and its difference from finding only a one-dimensional curve. The principal sub-

manifold was seen to be interpretable as a measure of non-geodesic variation

of the data. Based on a polar coordinate representation, the principal sub-

manifold was constructed so that it coordinated with the local data variation.

We illustrated that the principal sub-manifold is an extension of the principal

flow, in the sense that it depicts a multi-dimensional manifold. When the

manifold is linear, the k-dimensional principal sub-manifold reduces to the

ball spanned by the principal component vectors corresponding to the k largest

eigenvalues.

We claim here that by definition, the implemented principal directions
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might or might not coincide with the principal flows that are defined in Panare-

tos et al. (2014), although in practice, they appear to be close to or the same

as the principal flows. Under the polar coordinate representation, we observe

that the principal directions (these are plotted in green in Figure 1) on the

principal sub-manifold have presented the main modes of variation.

Regarding the issue of choosing the locality parameter h, or equivalently,

which scale of the local covariance one should consider, we note that different

sub-manifolds in this article have been fitted by choosing different parameters.

Still, we refrain from making a strict statement on optimizing the h; rather, one

should overview a sequence of h. Possible routes to approach this question are

suggested by the criterion in Panaretos et al. (2014), which could be adapted,

and the scale space perspective Chaudhuri and Marron (2000). Simultaneously,

we were able to define the principal sub-manifold to any dimension k ≤ d, and

this may also be seen as the development of a heuristic understanding of a

backward stepwise principle of PCA on manifolds: in backward PCA, the best

approximating affine subspaces are constructed from the highest dimension to

the lowest one, see Jung et al. (2010) for the case of spherical subspaces, while

in the case of principal sub-manifolds, each ray of the principal sub-manifolds

(i.e., the principal directions) corresponds to lower dimension sub-manifolds,

compared to the entire sub-manifold.

34

Statistica Sinica: Preprint 
doi:10.5705/ss.202021.0163



Last but not least, the formulation of the principal sub-manifold opens

the way to the generalization of many other statistical procedures. From the

variance reduction perspective, one may categorize our proposed method as one

of those competing methods that extend PCA on manifolds but not limited to

only using lines or curves. This, potentially, can help us understand the data

variation better and improve accuracy. From the classification point of view,

this new method has been seen to be a useful tool to study shape changes.

In the leaf growth example (Supplement S12), we studied the only two main

modes of shape variation. This implies that one can extend a classification

framework to manifolds. By projecting the new data points to any principal

direction of the sub-manifold, one can calculate the distance and extend a

classification rule based on all the distances. Surely, a successful classification

also depends on 1) the data configuration; 2) how to define the local covariance

matrix. If the data on the manifold is not too dense, one might consider using

a kernel density estimation. The label information also needs to be considered

in the local covariance matrix, in which one would account for both of the

between class and within class effects. As this is one of our on-going works,

we will investigate it in the future.
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