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STATISTICAL INFERENCE FOR FUNCTIONAL TIME SERIES:

AUTOCOVARIANCE FUNCTION

Chen Zhong and Lijian Yang

Wuhan University and Tsinghua University

Abstract: We investigate statistical inference for functional time series by ex-

tending the classic concept of an autocovariance function (ACF) to a functional

ACF (FACF). We establish that for functional moving average (FMA) data, the

FMA order can be determined as the highest nonvanishing order of an FACF,

just as in classic time series analysis. We propose a two-step estimator for the

FACF. The first step involves a simultaneous B-spline estimation of each time

trajectory, and the second step is a plug-in estimation of the FACF, using the

estimated trajectories in place of the latent true curves. Under simple and mild

assumptions, the proposed tensor product spline FACF estimator is asymptot-

ically equivalent to the oracle estimator with all known trajectories, leading to

an asymptotically correct simultaneous confidence envelope (SCE) for the true

FACF. Simulation experiments validate the asymptotic correctness of the SCE

and the data-driven FMA order selection. The proposed SCEs are computed for

the FACFs of an electroencephalogram (EEG) functional time series, yielding an

interesting discovery of a finite FMA lag and Fourier-form functional principal

components.
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1. Introduction

Functional data analysis (FDA) has become an important statistics research

area, owing to its wide applications; see Ramsay and Sliverman (2002), Ramsay

and Sliverman (2005), Ferraty and Vieu (2006), Hsing and Eubank (2015), and

Guo et al. (2019) for the development of FDA applications and theory.

A functional random variable is a square-integrable continuous stochastic

process: that is, η (·) ∈ C [0, 1] almost surely, E supx∈[0,1] η
2 (x) < +∞. For

such η (·), both the mean function E {η (x)} , x ∈ [0, 1], and the covariance func-

tion Cov {η (x) , η (x′)} , x, x′ ∈ [0, 1], exist and are continuous. Functional data

consist of a sequence {ηi (·)}
n
i=1 of stochastic processes called trajectories, each

having the same distribution as η (·), thus also the same mean and covariance

functions. These trajectories are decomposed as ηi (·) = m (·) + χi (·), where the

centered trajectories χi (·) are small-scale variations of x on the ith trajectory,

and are continuous stochastic processes with Eχi (x) ≡ 0 and covariance function

Cov {χi (x) , χi (x
′)} , x, x′ ∈ [0, 1].

Estimating the functional mean E {η (·)} using simultaneous confidence bands

(SCBs) has been investigated by Degras (2011), Cao et al. (2012), Ma et al.

(2012), Gu et al. (2014), Zheng et al. (2014), Choi and Reimherr (2018),
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and Telschow and Schwartzman (2022). The simultaneous confidence envelope

(SCE) of a bivariate covariance function was established in Cao et al. (2016) for

dense functional data, and a sharper SCB was proposed by Wang et al. (2020a)

for an univariate stationary covariance function. See also related works on co-

variance estimation for stationary stochastic processes over an infinite domain in

Hall et al. (1994), and for sparse longitudinal data, see Meyer (1998) and Zhou

et al. (2018).

All of the above are limited to independent and identically distributed (i.i.d)

observations {ηi (·)}
n
i=1 of the functional random variable η (·). However, many

functional data are collected order over time, and exhibit temporal dependence.

These data can be regarded as functional dependent data. Estimating the func-

tional mean E {η (·)} has been investigated by Chen and Song (2015), Guo and

Chen (2019), Horváth et al. (2013), and Li and Yang (2021). For example, Li

and Yang (2021) studied EEG data for human subjects in an eyes-closed resting

state. Recorded at a sample rate of 1000 Hz (i.e., a recording at every 0.001

second), the EEG series is divided into n = 300 consecutive segments {ηt (·)}
300
t=1 ,

with 200 EEG signals in each segment. Figures 5 and 6 show estimates (mid-

dle surface) of the autocovariance function Cov
{
ηt (x) , ηt+1 (x

′)
}
, x, x′ ∈ [0, 1],

which differs significantly from zero (flat surface in Figure 6), indicating strong

dependence between ηt (·) and ηt+1 (·), see Section 6.
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To model time-ordered and time-dependent trajectories {ηt (·)}
n
t=1, the cen-

tered trajectories χt (·) are embedded into a strictly stationary functional infinite

moving average series, or FMA(∞) series {χt (·)}
∞
t=−∞ , as in Li and Yang (2021),

χt (·) =
∞∑

t′=0

At′ζt−t′ (·) , t ∈ Z, (1.1)

where the bounded linear operators At′ : L2 [0, 1] → L2 [0, 1] are scalar coef-

ficients in a classic MA(∞) (Definition 3.2.1, Brockwell and Davis (1991)).

The processes {ζt (·)}t∈Z are strong functional white noises (Definition 3.1 of

Bosq (2000)), corresponding to the classic white noises in Brockwell and Davis

(1991). They are square-integrable continuous stochastic processes, i.i.d over

index t ∈ Z, with Eζt (·) ≡ 0 and continuous covariance function G (x, x′) =

Eζt (x) ζt (x
′). Mercer’s lemma (Lemma 1.3, Bosq (2000)) states that G (x, x′) ≡∑∞

k=1 λkψk (x)ψk (x
′) , with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ 0 and corresponding

eigenfunctions {ψk}
∞
k=1, the latter being an orthonormal basis of L2 [0, 1], such

that
∑∞

k=1 λk <∞, {ψk}
∞
k=1 ⊂ C [0, 1] and

∫
G (x, x′)ψk (x

′) dx′ = λkψk (x).

For any t ∈ Z, ζt (·) allows the well-known Karhunen–Loève L2 representa-

tion ζt (·) =
∑∞

k=1 ζtkϕk (·), in which the rescaled eigenfunctions, ϕk, called func-

tional principal components (FPCs), satisfy that ϕk =
√
λkψk and

∫
ζt (x)ϕk (x) dx =

λkζtk, for k ≥ 1. Therefore, the random coefficients ζtk are uncorrelated over

k ∈ N+, and are i.i.d over index t ∈ Z, with mean zero and variance one. We

assume that
∑∞

k=1 ∥ϕk∥∞ < +∞ so that the Karhunen–Loève series converges

Statistica Sinica: Preprint 
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absolutely uniformly almost surely by the dominated convergence theorem.

The FMA(∞) coefficient operators At, t ∈ N, are defined relative to the

orthonormal basis {ψk}
∞
k=1 of L2 [0, 1]

At

{ ∞∑
k=1

ckψk(·)

}
=

∞∑
k=1

atkckψk(·), atk ∈ R, t ∈ N

|atk| < Caρ
t
a,Ca ∈ (0,∞) , ρa ∈ (0, 1) , t ∈ N, k ∈ N+. (1.2)

Geometric decay of the MA coefficients {atk}t∈N in (1.2) holds for many causal

time series, such as the ARMA; see equation (3.3.6) of Brockwell and Davis

(1991).

The following holds absolutely uniformly almost surely according to (1.1):

χt (·) =
∞∑

t′=0

At′

{ ∞∑
k=1

ζt−t′,kϕk (·)

}
=

∞∑
t′=0

∞∑
k=1

at′,kζt−t′,kϕk (·)

=

∞∑
k=1

( ∞∑
t′=0

at′,kζt−t′,k

)
ϕk (·) =

∞∑
k=1

ξtkϕk (·) , t ∈ Z, (1.3)

in which

ξtk =

∞∑
t′=0

at′,kζt−t′,k, t ∈ Z, k ∈ N+. (1.4)

Thus, for each fixed k ∈ N+, the time series {ξtk}t∈Z is a classic MA(∞) expressed

in terms of the i.i.d sequence {ζtk}t∈Z. Note that the classic MA(∞) is sufficiently

broad to include the causal ARMA(p, q), and consequently AR(p) and MA(q),

as a special.

Assume for convenience that for each fixed k ∈ N+,
∑∞

t=0 a
2
tk ≡ 1. Then the

Statistica Sinica: Preprint 
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mean and variance of ξtk equal zero and one, respectively, for t ∈ Z, k ∈ N+, and

are uncorrelated over k ∈ N+. The covariance function of {χt (·)}
∞
t=−∞ is equal

to that of {ζt (·)}
∞
t=−∞ ,

Eχt (x)χt

(
x′
)

= E

{ ∞∑
k=1

ξtkϕk (x)

∞∑
k=1

ξtkϕk
(
x′
)}

=

∞∑
k=1

Eξ2tkϕk (x)ϕk
(
x′
)

=

∞∑
k=1

ϕk (x)ϕk
(
x′
)
= G

(
x, x′

)
= Eζt (x) ζt

(
x′
)
, x, x′ ∈ [0, 1] .

Hence, χt (·) =
∑∞

k=1 ξtkϕk (·) is the Karhunen–Loève expansion of the strictly

stationary FMA(∞) series {χt (·)}
∞
t=−∞, where the convergence is absolutely uni-

formly almost sure according to (1.3), and the random coefficients {ξtk}t∈Z,k∈N+

are called FPC scores.

Raw data of the FMA(∞) are in the form

Ytj = m (j/N) +

∞∑
k=1

ξtkϕk (j/N) + σ (j/N) εtj , 1 ≤ t ≤ n, 1 ≤ j ≤ N, (1.5)

with MA(∞) FPC scores ξtk given in (1.4). The terms σ (j/N) εtj represent

measurement errors which occur with data collection, {εtj}n,Nt=−∞,j=1 are i.i.d with

mean zero and variance one, and the standard deviation function σ (·) satisfies

the Hölder continuity in Assumption (A2).

The autocovariance function (ACF) in classic time series extends naturally

to the following functional autocovariance function (FACF):

Ch

(
x, x′

)
= Eχt (x)χt+h

(
x′
)
, h ∈ N, t ∈ Z, x, x′ ∈ [0, 1] . (1.6)

Statistica Sinica: Preprint 
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Obviously, C0 (x, x
′) ≡ G (x, x′). It is shown in Proposition 1 that if the highest

order h for which Ch (x, x
′) is not identically zero is a finite integer q ∈ N+, then

the FMA(∞) reduces to the simpler FMA(q).

This study extends the simultaneous confidence region for the i.i.d. func-

tional data covariance function in Cao et al. (2016) and Wang et al. (2020a)

to the much more complicated FACFs Ch (x, x
′) , for h ∈ N. The FACFs are

estimated in two steps. Step one estimates all n trajectories {ηt (·)}
n
t=1 and their

population mean m (·) using B-splines. Step two estimates the FACF Ch (x, x
′)

using the estimated trajectories and the population mean as if they were the true

values. The greatest technical difficulty is to establish in Proposition 2 under the

assumption of moving average trajectories {ηt (·)}
n
t=1 that the proposed FACF

estimator is asymptotically equivalent to the infeasible FACF estimator when

all trajectories {χt (·)}
n
t=1 are entirely observed. This “oracle efficiency” allows

us to construct an asymptotic SCE for each FACF Ch (x, x
′) , for h ∈ N. The

second technical difficulty is to obtain in Theorem 1 the limiting distribution

of the FACF estimate under a moving average dependence of the trajectories

{χt (·)}
n
t=1.

A nonparametric simultaneous confidence region is a versatile tool for global

inference on functions; see, for instance, Wang and Yang (2009a), Wang et al.

(2014), Gu and Yang (2015), Zheng et al. (2016), Wang et al. (2020b), Gu
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et al. (2021), Yu et al. (2021), and Zhong and Yang (2021) for the theory

and applications of SCBs in diverse contexts. The SCE for Ch (x, x
′) enables

one to test against any null hypothesis, such as H0 : Ch (x, x
′) ≡ 0, for any

positive integers h. For the EEG time series, this null hypothesis is rejected

when h = 9, but retained for h = 10, 11, 12, 13, 14, leading to the appropriate

decision of FMA(9) for the data; see Section 6, especially the SCEs in Figures 5

and 6.

The remainder of the paper is organized as follows. Section 2 examines

the theoretical properties of FACF Ch (x, x
′) and defines its infeasible and two-

step estimators. Section 3 establishes the limiting distribution of the infeasible

FACF estimator, and the asymptotic equivalence of the infeasible and two-step

estimators. Asymptotic SCEs for the FACF are proposed in Section 4, with

implementation details. Section 5 presents our simulation studies, and we discuss

our analysis of EEG data in Section 6. All technical proofs are provided in the

Supplementary Material.

2. FACF and its estimation

We begin by deriving the explicit formula of the FACF Ch (x, x
′) in (1.6).

Denote by γk (h) = E
(
ξtkξt+h,k

)
=
∑∞

m=0 amkam+h,k, h ∈ N, t ∈ Z, k ∈ N+ the

classic autocovariance function of {ξtk}t∈Z, with the convention that γk (−h) ≡

γk (h) , for h ∈ N. Noting the absolute almost sure convergence in (1.4), we can

Statistica Sinica: Preprint 
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derive, with uniform absolute convergence,

Ch

(
x, x′

)
=

1

n− h

n−h∑
t=1

∞∑
k,k′=1

E
(
ξtkξt+h,k′

)
ϕk (x)ϕk′

(
x′
)

=
1

n− h

n−h∑
t=1

∞∑
k=1

γk (h)ϕk (x)ϕk
(
x′
)

=
1

n− h

n−h∑
t=1

∞∑
k,k′=1

δkk′γk (h)ϕk (x)ϕk′
(
x′
)
, x, x′ ∈ [0, 1] , (2.1)

where δkk′ = 1 for k = k′, and is zero otherwise. The next proposition plays the

same role as its classic analog, Proposition 3.2.1 in Brockwell and Davis (1991).

Proposition 1. If Ch (x, x
′) ≡ 0, x, x′ ∈ [0, 1] for h > q, Cq (x, x

′) ̸= 0 for

some q ∈ N+, and the MA(∞) equation in (1.4) is invertible for all k ∈ N+

(i.e., there exist bt′,k ∈ R such that ζtk =
∑∞

t′=0 bt′,kξt−t′,k, t ∈ Z, k ∈ N+), then

χt (·) =
∑q

t′=0At′ζt−t′ (·) , t ∈ Z, absolutely uniformly almost surely, and hence

{χt (·)}
∞
t=−∞ is an FMA(q) series.

According to Proposition 1, a finite moving average order q is determined if

the FACF Ch (·, ·) vanishes exactly beyond order q. Testing whether an FACF is

identically zero is conveniently done by estimating the FACF using an SCE.

If the tth centered trajectory χt (·) = ηt (·) − m (·) , 1 ≤ t ≤ n, is fully

observed, we can estimate the ACF Ch (x, x
′) with the following sample ACF, as

in (7.2.1) of Brockwell and Davis (1991):

C̃h

(
x, x′

)
= n−1

n−h∑
t=1

χt (x)χt+h

(
x′
)
, x, x′ ∈ [0, 1] , (2.2)

Statistica Sinica: Preprint 
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which can be written explicitly as

C̃h

(
x, x′

)
= n−1

n−h∑
t=1

∞∑
k,k′=1

ξtkξt+h,k′ϕk (x)ϕk′
(
x′
)
. (2.3)

Because {χt (·)}nt=1 are unobservable, the above estimator function C̃h (x, x
′) is

“infeasible.” However, it does suggest the following plug-in sample covariance

estimator:

Ĉh

(
x, x′

)
= n−1

n−h∑
t=1

χ̂t (x) χ̂t+h

(
x′
)
, x, x′ ∈ [0, 1] , (2.4)

in which

χ̂t (·) = η̂t (·)− m̂ (·) , 1 ≤ t ≤ n, (2.5)

where η̂t (·) and m̂ (·) are some suitable estimators of ηt (·) andm (·), respectively.

In this work, we use the B-spline estimators η̂t (x) and m̂ (x). To describe

a B-spline estimator, denote by {tℓ}Jsℓ=1 a sequence of equally-spaced points. We

call tℓ = ℓ/ (Js + 1), ℓ ∈ {1, . . . , Js}, 0 < t1 < · · · < tJs < 1 interior knots,

which divide the interval [0, 1] into (Js + 1) equal subintervals I0 = [0, t1), Iℓ =

[tℓ, tℓ+1), ℓ ∈ {1, . . . , Js − 1}, IJs = [tJs , 1]. For any positive integer p, let t1−p =

· · · = t0 = 0 and 1 = tJs+1 = · · · = tJs+p be auxiliary knots. Let S(p−2) =

S(p−2) [0, 1] be the polynomial spline space of order p on Iℓ, ℓ ∈ {0, . . . , Js},

which consists of all (p− 2) times continuously differentiable functions on [0, 1]

that are polynomials of degree (p− 1) on subintervals Iℓ, 0 ≤ ℓ ≤ Js. Denote

Statistica Sinica: Preprint 
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by {Bℓ,p (x) , 1 ≤ ℓ ≤ Js + p} the p-th order B-spline basis functions of S(p−2) (de

Boor, C (2001)), S(p−2) =
{∑Js+p

ℓ=1 λℓ,pBℓ,p (·)
∣∣∣λℓ,p ∈ R

}
.

We estimate the trajectories ηt (·) and their population mean m (·) using the

spline regression

m̂ (·) = n−1
n∑

t=1

η̂t (·) , η̂t (·) = argming(·)∈S(p−2)

N∑
j=1

{Ytj − g (j/N)}2 . (2.6)

3. Asymptotic properties

This section studies the asymptotic properties of the proposed estimators.

3.1 Assumptions and the infeasible estimator

To study the asymptotic properties of the two-step spline estimator Ĉh (x, x
′),

we require some mild assumptions. For sequences of real numbers an and bn, de-

note an ≍ bn if |an| ≤ C |bn| , |bn| ≤ C |an| , n ∈ N+ for some constant C > 0. For

any measurable function φ (·) defined on [0, 1], denote ∥φ∥∞ = supx∈[0,1] |φ (x)|,

and φ(q) (x) its q-th order derivative with respect to x, if it exists. For any

functions ϕ (·) , φ (·) ∈ L2 [0, 1], define their theoretical and empirical inner prod-

ucts as ⟨ϕ, φ⟩ =
∫
[0,1] ϕ (x)φ (x) dx, ⟨ϕ, φ⟩N = N−1

∑N
j=1 ϕ (j/N)φ (j/N). The

corresponding theoretical and empirical norms are ∥ϕ∥22 = ⟨ϕ, ϕ⟩ and ∥ϕ∥22,N =

⟨ϕ, ϕ⟩N .

For a nonnegative integer q and a real number µ ∈ (0, 1], write H(q,µ) [0, 1]

Statistica Sinica: Preprint 
doi:10.5705/ss.202021.0121
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as the space of (q, µ)-Hölder continuous functions, that is,

H(q,µ) [0, 1] =

{
φ : [0, 1] → R

∣∣∣∣∣∥φ∥q,µ = sup
x,y∈[0,1],x̸=y

∣∣φ(q) (x)− φ(q) (y)
∣∣

|x− y|µ
< +∞

}
,

in which ∥·∥q,µ denotes the (q, µ)-Hölder semi-norm. Denote by In ∈ N+ a trunca-

tion index such that the FMA(∞) χt (·) is well approximated by
∑In

t′=0At′ζt−t′ (·):

In > −10 log n/ log ρa, In ≍ log n, (3.1)

where ρa is the geometric decay parameter in (1.2).

The following are some technical assumptions.

(A1) There exist q ∈ N+, µ ∈ (0, 1], such that m (·) ∈ H(q,µ) [0, 1]. In the

following, we denote p∗ = q + µ.

(A2) The standard deviation function σ (·) ∈ H(0,ν) [0, 1] , for ν ∈ (0, 1] , and for

some constants Mσ > 0, supx∈[0,1] σ (x) ≤Mσ.

(A3) There exists θ > 0, such that as N → ∞, n = n (N) → ∞ and n =

O
(
N θ
)
.

(A4) The rescaled FPCs ϕk (·) ∈ H(q,µ) [0, 1] , with
∑∞

k=1 ∥ϕk∥q,µ < +∞,
∑∞

k=1 ∥ϕk∥∞ <

+∞; for increasing positive integers {kn}∞n=1, as n→ ∞,
∑∞

kn+1 ∥ϕk∥∞ =

O(n−1/2) and kn = O (nω) , for some ω > 0.

Statistica Sinica: Preprint 
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(A5) The i.i.d variables {εtj}t≥1,j≥1 are independent of {ζtk}t∈Z,k∈N+
. The

random coefficients {ζtk}t∈Z,k∈N+
are independent over k ∈ N+ and i.i.d

over t ∈ Z. The number of distinct distributions for all {ζtk}t∈Z,k∈N+

is finite and supk≥1Eζ
r0
1k < ∞, for some r0 ≥ 4. There exist C1, C2 ∈

(0,+∞), γ1, γ2 ∈ (1,+∞) , β1, β2 ∈ (0, 1/2), and i.i.d N (0, 1) variables

{Ztj,ε}n,Nt=1,j=1, {Ztk,ζ}n,knt=−In+1,k=1 , such that

P

{
max

1≤k≤kn
max

−In+1≤τ≤n

∣∣∣∣∣
τ∑

t=−In+1

ζtk −
τ∑

t=−In+1

Ztk,ζ

∣∣∣∣∣ > nβ1

}
< C1n

−γ1 ,

P

max
1≤t≤n

max
1≤τ≤N

∣∣∣∣∣∣
τ∑

j=1

εtj −
τ∑

j=1

Ztj,ε

∣∣∣∣∣∣ > Nβ2

 < C2N
−γ2 .

(A6) The spline order p ≥ p∗, the number of interior knots Js ≍ NγdN , for some

τ > 0 with dN + d−1
N = O (logτ N) as N → ∞, and for p∗ in Assumption

(A1), ν in Assumption (A2), θ in Assumption (A3), and r0, β1, β2 in

Assumption (A5),

max

{
4θ

r0p∗
+

θ

2p∗
, 1− ν

}
< γ < 1− θ

2
− β2 − θβ1.

Assumptions (A1)–(A2) are regular conditions for the spline smoother. In

particular, Assumption (A1) controls the size of the bias of the spline smoother

for m (·) , and Assumption (A2) ensures the variance function should be uni-

formly bounded. Assumption (A3) requires that sample size n grows in sync

with the number N of observations per curve, and not faster than N θ. Hence,

Statistica Sinica: Preprint 
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all asymptotics in this section are stated with N → ∞ only, not with N → ∞

and n → ∞. Assumption (A4) guarantees the bounded smoothness of the prin-

cipal components. The independence of the latent FPC scores {ζtk}t≥1,k≥1 over

k ∈ N+ in Assumption (A5) is common in existing works on functional data

analysis; see Cao et al. (2012), Ma et al. (2012), Gu et al. (2014), and Zheng

et al. (2014). The probability inequalities in Assumption (A5) provide strong

Gaussian approximations of the measurement errors {εtj}t≥1,j≥1 and the latent

FPC scores {ζtk}t≥1,k≥1. As a result, all the main results of this section hold

without the data being Gaussian. Assumption (A5) is a high-level assumption

that can be guaranteed by the elementary Assumption (A5′) below, together with

Assumption (A4); see Lemma S.3 in the Supplementary Material. Assumption

(A6) on the choice of the knot number satisfies the requirements for B-spline

smoothing.

(A5′) The i.i.d variables {εtj}t≥1,j≥1 are independent of {ζtk}t∈Z,k∈N+
. The ran-

dom coefficients {ζtk}t∈Z,k∈N+
are independent over k ∈ N+, and are i.i.d

over t ∈ Z. The number of distinct distributions for all {ζtk}t∈Z,k∈N+
is

finite. There exist constants r1 > 4+2ω, r2 > 4+2θ, for ω in Assumption

(A4) and θ in Assumption (A3), such that E |ε11|r2 and E |ζ1k|
r1 , k ∈ N+,

are finite.

Remark 1. The aforementioned assumptions are easily satisfied in practice. One
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simple and reasonable setup for the above parameters q, µ, θ, p, and γ is the

following: q + µ = p∗ = 4, ν = 1,r0 > 4, θ = 1, p = 4 (cubic spline), γ = 3/8,

dN ≍ log logN . These constants are used as defaults for the implementation in

Section 4.

We first examine the infeasible estimator C̃h (x, x
′). Denote ∆h (x, x

′) =

C̃h (x, x
′)− n−h

n Ch (x, x
′), x, x′ ∈ [0, 1]. Then, (2.1) and (2.3) imply that

∆h

(
x, x′

)
= n−1

n−h∑
t=1

∞∑
k,k′=1

{
ξtkξt+h,k′ − δkk′γk (h)

}
ϕk (x)ϕk′

(
x′
)
.

Let φh (x, x
′) be a zero-mean Gaussian random field defined on [0, 1]2 , with

covariance function Ωh (x, x
′, y, y′) , defined as

Ωh

(
x, x′, y, y′

)
= Cov

{
φh

(
x, x′

)
, φh

(
y, y′

)}
=

∞∑
l=−∞

Cl (x, y)Cl

(
x′, y′

)
+

∞∑
l=−∞

Cl+h

(
x, x′

)
Cl−h

(
y, y′

)
+

∞∑
m=1

(
Eζ40m − 3

)
γ2m (h)ϕm (x)ϕm

(
x′
)
ϕm (y)ϕm

(
y′
)
,

for x, x′, y, y′ ∈ [0, 1] . Then Eφ2
h (x, x

′) = Ωh (x, x
′, x, x′) = Ξh(x, x

′) satisfies a

functional version of Bartlett’s formula

Ξh

(
x, x′

)
=

∞∑
l=−∞

{
Cl (x, x)Cl

(
x′, x′

)
+ Cl+h

(
x, x′

)
Cl−h

(
x, x′

)}
+

∞∑
m=1

(
Eζ40m − 3

)
γ2m (h)ϕ2m (x)ϕ2m

(
x′
)
. (3.2)

Theorem 1 below gives the asymptotics of ∆h (x, x
′).
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Theorem 1. Under Assumptions (A3)-(A5), for h ∈ N, as N → ∞,

∥∥nE∆h

(
x, x′

)
∆h

(
y, y′

)
− Ωh

(
x, x′, y, y′

)∥∥
∞ → 0,

√
n∆h

(
x, x′

)
→D φh

(
x, x′

)
,
√
n
{
C̃h

(
x, x′

)
− Ch

(
x, x′

)}
→D φh

(
x, x′

)
.

Remark 2. Bartlett’s formula (Chapter 7, Brockwell and Davis (1991)) for the

sample ACF of a numerical time series is extended to a functional Bartlett’s for-

mula (3.2) for an infeasible FACF C̃h (x, x
′). If we use the degenerate FMA(∞)

with ϕ1 (x) ≡ 1, ϕk (x) ≡ 0, k ≥ 2, the infeasible ACF C̃h (x, x
′) simplifies

to the sample ACF γ∗ (h) = n−1
∑n−h

t=1 ξt1ξt+h,1 of the numerical time series

{ξt1}
∞
t=−∞, and Ξh (x, x

′) becomes the asymptotic covariance of γ∗ (h),(
Eζ401 − 3

)
γ21 (h)+

∑∞
l=−∞

{
γ21 (l) + γ1 (l + h) γ1 (l − h)

}
, as in equation (7.3.3)

in Brockwell and Davis (1991), by setting p = q = h.

Theorem 1 is proved in Section S3 of the Supplementary Material. While it

provides desirable asymptotics of the infeasible estimator C̃h (x, x
′), it is not a

statistic because the centered trajectories χt (·) are unobservable.

3.2 Oracle efficiency

Proposition 2 states that the proposed two-step FACF estimator Ĉh (x, x
′) in

(2.4) is oracally efficient: up to order n1/2, it is asymptotically equivalent to, or

as efficient as C̃h (x, x
′), the infeasible FACF estimator if all centered trajectories
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χt (·) are fully known by “oracle.” Thus, Ĉh (x, x
′) enjoys all the same asymptotic

properties as C̃h (x, x
′).

Proposition 2. Under Assumptions (A1)–(A6), for h ∈ N, as N → ∞,

sup
(x,x′)∈[0,1]2

∣∣∣Ĉh

(
x, x′

)
− C̃h

(
x, x′

)∣∣∣ = Op

(
n−1/2

)
.

Proposition 2 and Theorem 1 lead to the following.

Theorem 2. Under Assumptions (A1)–(A6), for h ∈ N, as N → ∞,

sup
(x,x′)∈[0,1]2

∣∣∣Ĉh

(
x, x′

)
− Ch

(
x, x′

)
−∆h

(
x, x′

)∣∣∣ = Op

(
n−1/2

)
,

√
n
{
Ĉh

(
x, x′

)
− Ch

(
x, x′

)}
→D φh

(
x, x′

)
. (3.3)

Therefore, the limiting distribution of Ĉh (x, x
′) − Ch (x, x

′) is the same as

C̃h (x, x
′)− Ch (x, x

′), and hence the term “oracle efficiency.”

4. SCEs

In this section, we construct an SCE for the functional autocovariance func-

tion Ch (x, x
′).

4.1 Asymptotic SCE

The main theorem in this section establishes the asymptotic behavior of the

normalized maximal deviation of the FACF estimator Ĉh (x, x
′). Using (3.3) in
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18 CHEN ZHONG AND LIJIAN YANG

Theorem 2, we obtain the following standardized limiting distribution:

√
n
{
Ĉh

(
x, x′

)
− Ch

(
x, x′

)}
Ξ
−1/2
h

(
x, x′

)
→D φh

(
x, x′

)
Ξ
−1/2
h

(
x, x′

)
, (4.1)

in which φh (x, x
′) is the mean-zero Gaussian random field defined in Theorem

1 with the pointwise variance function Ξh (x, x
′) = Eφ2

h (x, x
′). Therefore, the

standardized random field φh (x, x
′) Ξ

−1/2
h (x, x′) has mean zero and variance one.

Denote by Q1−α the 100 (1− α)th percentile of the absolute maxima distribution

of φh (x, x
′) Ξ

−1/2
h (x, x′), that is, for α ∈ (0, 1) , h ∈ N,

P

{
sup

(x,x′)∈[0,1]2

∣∣φh

(
x, x′

)∣∣Ξ−1/2
h

(
x, x′

)
≤ Q1−α

}
= 1− α. (4.2)

The next theorem follows directly from (4.1) and (4.2).

Theorem 3. Under Assumptions (A1)–(A6), for α ∈ (0, 1) , h ∈ N,

lim
N→∞

P

{
sup

(x,x′)∈[0,1]2
n1/2

∣∣∣Ĉh

(
x, x′

)
− Ch

(
x, x′

)∣∣∣Ξ−1/2
h

(
x, x′

)
≤ Q1−α

}
= 1− α.

Corollary 1. Under Assumptions (A1)–(A6), as N → ∞, an asymptotic 100 (1− α)%

SCE for Ch (x, x
′) is Ĉh (x, x

′)± n−1/2Q1−αΞ
1/2
h (x, x′) , x, x′ ∈ [0, 1].

4.2 Knot selection

The number of knots Js for the spline smoothing is selected subject to the

constraints of Assumption (A6). The smoothness order (q, µ) of the mean func-

tion m (·) and eigenfunctions ϕk (·) is taken as (3, 1) or (4, 0) , by default, with
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a matching spline order p = 4 (cubic spline). Therefore, Js = [cNγ log log (N)]

is recommended with a constant c, where [a] denotes the integer part of a. The

default values of the parameters γ = 3/8 and c = 0.8 are adequate in our simu-

lations.

4.3 FPC analysis

We now describe the covariance function estimator Ĉ0 (·, ·) = Ĝ (·, ·), eigen-

function estimators ϕ̂k (·), and eigenvalue estimators λ̂k in the FPC analysis. We

can estimate C0 (·, ·) by

Ĉ0

(
x, x′

)
= n−1

n∑
t=1

χ̂t (x) χ̂t

(
x′
)
=

Js+p∑
s=1

Js+p∑
s′=1

β̂ss′Bs,p (x)Bs′,p

(
x′
)
, (4.3)

where χ̂t (·) is defined in (2.5) and β̂ss′ are the coefficients.

Denote B (x) = {B1,p (x) , . . . , BJs+p,p (x)}⊤, and the N × (Js + p) design

matrix B for spline regression is B = {B (1/N) , . . . ,B (N/N)}⊤. Then, for any

k ∈ {1, . . . , κ}, consider the following spline approximation for ψk (·): ψ̂k (x
′) =∑Js+p

ℓ=1 γ̂ℓkBℓ,p (x
′), where γ̂ℓk are the coefficients of the B-spline estimator, sub-

ject to γ̂⊤
k B

⊤Bγ̂k = N with γ̂k =
(
γ̂1,k, . . . , γ̂Js+p,k

)⊤
. The estimates of the

eigenfunctions and eigenvalues, corresponding to ψk and λk, respectively, can be

obtained by solving the eigenequations

∫
Ĉ0

(
x, x′

)
ψ̂k

(
x′
)
dx′ = λ̂kψ̂k (x) , 1 ≤ k ≤ Js + p. (4.4)

According to (4.3), solving (4.4) is equivalent to solving N−1B⊤ (x) β̂B⊤Bγ̂k =
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λ̂kB
⊤ (x) γ̂k, k ∈ {1, . . . , κ}, where β̂

⊤
=
(
β̂ss′

)Js+p

s,s′=1
. The above is equiva-

lent to solving N−1β̂B⊤Bγ̂k = λ̂kγ̂k, for 1 ≤ k ≤ Js + p. Consider the fol-

lowing Cholesky decomposition: B⊤B = LBL
⊤
B. Solving (4.4) is equivalent

to solving λ̂kL
⊤
Bγ̂k = N−1L⊤

Bβ̂LBL
⊤
Bγ̂k, subject to γ̂⊤

k LBL
⊤
Bγ̂k = N , that is,

λ̂k and L⊤
Bγ̂k, 1 ≤ k ≤ Js + p, are the eigenvalues and unit eigenvectors, re-

spectively, of N−1L⊤
Bβ̂LB. In other words, γ̂k is obtained by left multiplying

N1/2
(
L⊤
B

)−1
to the unit eigenvectors of N−1L⊤

Bβ̂LB, yielding ψ̂k (·). Conse-

quently, ϕ̂k (x
′) = λ̂

1/2

k ψ̂k (x
′). The k-th FPC score of the t-th curve is estimated

by numerical integration:

ξ̂tk = N−1
N∑
j=1

λ̂
−1

k χ̂t

(
j

N

)
ϕ̂k

(
j

N

)
, 1 ≤ t ≤ n, 1 ≤ k ≤ Js + p.

Instead of computing all Js+p eigenvalues, it is typical to truncate the spec-

tral decomposition at a much smaller number of eigenvalues that account for 95%

of the variation in the data, κ = argmin1≤l≤Js+p

{∑l
k=1 λ̂k

/∑Js+p
k=1 λ̂k ≥ 0.95

}
;

see Cao et al. (2016) and Wang et al. (2020a).

4.4 Estimating the variance function Ξh and the percentile Q1−α

The strong approximation property of ξtk, guaranteed by Assumption (A5)

and Lemma S.4, makes a procedure for approximating Ξh and Q1−α possible.

Denote the matrices Γ
(n)
k = {γk (|i− j|)}ni,j=1 , k = 1, . . . κ, where γk (|i− j|) is

the (i, j)th entry of Γ
(n)
k . It is easily shown that Γ

(n)
k is the covariance matrix of
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random vector (ξ1k, ξ2k, . . . ξnk). Useful estimates of γk (h) can only be made if

n ≥ 50 and 0 ≤ h ≤ n/4; see p. 221, Chapter 7, in Brockwell and Davis (1991).

Therefore we consider the r× r submatrix Γ
(r)
k of Γ

(n)
k , where r can be chosen as

[
√
n] or [n/4] . Then, according to the definition of γk (h) , h ∈ N, we can construct

the estimation Γ̂
(r)
k of Γ

(r)
k as γ̂k (h) = n−1

∑n−h
t=1

(
ξ̂tk − ξ̂·k

)(
ξ̂t+h,k − ξ̂·k

)
, for

0 ≤ h ≤ r, where ξ̂·k = n−1
∑n−h

t=1 ξ̂tk, 1 ≤ k ≤ κ.

For 1 ≤ k ≤ κ, we can generate B independent replications of r-dimensional

normal random vectors
{(
Zb
1k, . . . Z

b
rk

)}B
b=1

with mean zero and covariance matrix

Γ̂
(r)
k , whereB is a preset large integer. Let Ĉb

h (x, x
′) = r−1

∑r−h
t=1

{∑κ
k=1 Z

b
tkϕ̂k (x)

}
{∑κ

k=1 Z
b
t+h,kϕ̂k (x)

}
. Then we can estimate Ξh (x, x

′) by

Ξ̂B
h

(
x, x′

)
=

r

B − 1

B∑
b=1

{
Ĉb
h

(
x, x′

)
− C̄∗

h

(
x, x′

)}2
,

where C̄∗
h (x, x

′) = B−1
∑B

b=1 Ĉ
b
h (x, x

′).

Lastly, define the empirical quantile

Q̂B
1−α ≡ (1− α) -th quantile of

 sup
x,x′∈[0,1]

n1/2
∣∣∣Ĉb

h (x, x
′)− C̄∗

h (x, x
′)
∣∣∣

Ξ̂B
h (x, x′)1/2

, b = 1, . . . B

 ,

where the supremum is computed over N × N equal distance grid points on

[0, 1]2 , with B = 500. The SCEs are then computed as

Ĉh

(
x, x′

)
± n−1/2Q̂B

1−αΞ̂
B
h

(
x, x′

)1/2
, x, x′ ∈ [0, 1] . (4.5)

While the consistency of Q̂B
1−αΞ̂

B
h (x, x′) as an estimate of Q1−αΞh (x, x

′) is

conceivable, its full theoretical proof is beyond the scope of this work.
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5. Simulation studies

In this section, we examine the finite-sample performance of the SCEs. The

data are generated from the following model:

Ytj = m (j/N) +
2∑

k=1

ξtkϕk (j/N) + σεtj , 1 ≤ j ≤ N, 1 ≤ t ≤ n.

Case 1: m (x) = 10 + sin {2π (x− 1/2)} , εtj ∼ N (0, 1) , 1 ≤ t ≤ n, 1 ≤ j ≤

N,ϕ1 (x) = −2 cos {π (x− 1/2)} , and ϕ2 (x) = sin {π (x− 1/2)} . {ξtk}
n,2
t=1,k=1

are generated from (1.4), where {ζtk}
n,2
t=1,k=1 are i.i.d N (0, 1)

a0k = 0.8, a1k = 0.6, atk = 0, ∀t ≥ 2, k = 1, 2,

so {ξtk}
n
t=1 is an MA(1) process. The number of trajectories n is taken to be

160, 400, 900, and 1600, and the number of observations per trajectory N is taken

as 200, 500, 1000, and 2000, respectively, with the noise level σ = 0.1.

Case 2: {ξtk}
n,2
t=1,k=1 are generated from (1.4), where {ζtk}

n,2
t=1,k=1 are i.i.d

N (0, 1) variables and

a0k = 0.3, a1k = 0.6, a2k = 0.741, atk = 0, ∀t ≥ 3, k = 1, 2,

so {ξtk}
n
t=1 is an MA(2) process; m (x) , εtj , ϕ1 (x) , and ϕ2 (x) are the same as

those in Case 1. The number of curves n is taken to be 400 and the number N

of observations per curve is taken to be 500.

Case 3: {ξtk}
n,2
t=1,k=1 are generated from (1.4), where {ζtk}

n,2
t=1,k=1 are i.i.d
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N (0, 1) variables and

atk = 2−(t+1)/2, ∀t ∈ N, k = 1, 2,

so {ξtk}
n
t=1 is an MA(∞) process; m (x) , ϕ1 (x) , and ϕ2 (x) are the same as those

in Case 1, and εtj follows a standardized t-distribution with degrees of freedom

40, εtj ∼
√

19
20 t40. The number of trajectories n is taken to be 160, 400, 900, and

1600, and the number of observations per trajectory N is taken as 200, 500, 1000,

and 2000, respectively, with the noise level σ = 0.1.

Tables 1–3 display the empirical coverage frequencies out of 1000 replications

of the true surface Ch (·, ·) , for h = 0, 1, 2, in Case 1 being covered by the SCE in

(4.5) at all N×N grid points {(j/N, j′/N) , 1 ≤ j, j′ ≤ N} on [0, 1]2. Overall, the

empirical coverage frequency approaches the nominal level as n and N increase,

and is slightly higher than the nominal level in Table 3 because the true FACF

C2 (·, ·) ≡ 0. For Case 3, with genuine FMA(∞) trajectories, Tables 4–6 exhibit

similar patterns.

Figure 1 depicts the FACF estimate Ĉ1 (·, ·) and 95% SCEs for the true

FACF for one replication of Case 1, with σ = 0.1, r = [n/4] , and various n,N

combinations. As expected, the SCEs become narrower as the sample size n

increases. Figure 2, with a different lag h, shows similar patterns to those in

Figure 1, conforming our asymptotic theory.

Figure 3 shows the FACF estimate and 95% SCE of the true FACF for one
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replication of Case 2 with σ = 0.1 and (n,N) = (400, 500), for h = 0, 1, 2, 3, p = 4.

Here, the 95% SCE fails to cover the zero plane entirely for lag h = 0, 1, 2,

whereas it does for h = 3. When testing the null hypothesis H0 : Ch (x, x
′) ≡ 0

for h = 0, 1, 2, 3, we retain the null hypothesis for h = 3 with p-value > 0.05, and

reject the null hypothesis for h = 0, 1, 2 at the significance level α = 0.05. Thus,

the FMA(∞) is actually FMA(2) according to Proposition 1, which is the model

of Case 2.

However, for the genuine FMA(∞) Case 3, Figure 4 shows that for one repli-

cation, the 95% SCE fails to cover the zero plane entirely for lag h = 0, 1, 2, 3, 4,

whereas it does for h = 5. Then, under the same testing procedure, we can infer

that the FMA(∞) is actually FMA(4), according to Proposition 1. It is unclear

what the asymptotics of the FMA order by Proposition 1 should look like when

the true model is a genuine FMA(∞). Further research is also needed on how

Proposition 1 should be applied to multiple h, simultaneously or sequentially.

6. Real-data analysis

In this section, we study the EEG data discussed in Section 1. The data

were collected by the research group of Prof. Linhong Ji at Tsinghua University

Department of Mechanical Engineering, from 142 university student participants.

The data are recorded by electrodes placed on the scalp surface of an individual

subject A at the sixth of 32 scalp locations, at a 1000 Hz sample rate. The
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mid-portion of 60000 EEG recordings are used as 300 consecutive segments, each

consisting of 200 EEG signals. Hence, there are n = 300 unobserved curves, with

N = 200 signals recorded in each curve (see Figure 8 for the raw data). The data

range is from -22 to 22. The data are available upon request.

Multiple SCEs are used to test the null hypothesis H0 : Ch (·, ·) ≡ 0, with

preset lag h. For h = 1, the estimated FACF and 95% SCE computed by (4.5)

are shown in Figure 5. Figure 6 (a) shows the 95% SCEs (upper and lower

surfaces) and the null hypothesis zero plane. Here, we reject the null hypothesis

at the significance level α = 0.05 because the zero plane is not entirely covered

by the 95% SCE. Moreover, Figure 6 (b) shows that even the 99% SCE does not

contain the zero plane. Hence, we reject the null hypothesis H0 : C1 (·, ·) ≡ 0

with p-value < 0.01. Similarly for h = 2, 3, . . . , 9, we reject the null hypothesis

with p-values less than 0.05. For h = 10, the 95% SCE covers the null hypothesis

zero plane, and the lowest confidence level of the SCE covering the entire zero

plane is 0.896. Hence, we retain the null hypothesis H0 : C10 (x, x
′) ≡ 0 with

p-value 0.104. Similar null hypotheses are retained for h = 11, 12, 13, 14, with

p-values = 0.150, 0.220, 0.204, 0.192, respectively. Thus, Proposition 1 points to

an FMA(9) model for the data.

We also investigate the specific form of the covariance function C0 (x, x
′)

for the EEG data. Figure 7 (a) depicts the estimated FACF, which strongly

Statistica Sinica: Preprint 
doi:10.5705/ss.202021.0121



26 CHEN ZHONG AND LIJIAN YANG

suggests a trigonometric form. We test the null hypothesis H0 : C0 (x, x
′) =

a0+
∑2

k=1 {2ak cos (2kπx) cos (2kπx′) + 2bk sin (2kπx) sin (2kπx
′)} , in which the

parameters {ak}2k=0 , {bk}
2
k=1 are estimated by linear least squares. Figure 7 (b)

shows that the 95% SCE (upper and lower surfaces) cover the null surface com-

pletely, and the coefficient of determination for the two-step estimate Ĉ0 (x, x
′)

by the trigonometric form is R2 = 0.9661. The lowest confidence level by which

the SCE covers the entire null surface (Figure 7 (c)) is 67.4%, so we retain the

null hypothesis with p-value = 0.326.

Because all of the estimated parameters â0, â1, â2, b̂1, b̂2 are significantly pos-

itive, the above null hypothesis is a Mercer’s lemma expansion of the FACF with

positive eigenvalues in descending order:

λ0,1 = b̂2 = 19.6, λ0,2 = â2 = 17.1, λ0,3 = â0 = 14.6, λ0,4 = â1 = 3.5, λ0,5 = b̂1 = 2.9,

and the orthonormal eigenfunctions ψk (x) are a Fourier basis:

ψ0,1 (x) ≡
√
2 cos (4πx) , ψ0,2 (x) ≡

√
2 sin (4πx) , ψ0,3 (x) ≡ 1,

ψ0,4 (x) ≡
√
2 sin (2πx) , ψ0,5 (x) ≡

√
2 cos (2πx) . (4.1)

This strongly suggests a Karhunen–Loève expansion with Fourier form FPCs

ϕ0,1 (x) ≡
(
2b̂2

)1/2
cos (4πx) , ϕ0,2 (x) ≡ (2â2)

1/2 sin (4πx) , ϕ0,3 (x) ≡ â
1/2
0 ,

ϕ0,4 (x) ≡ (2â1)
1/2 sin (2πx) , ϕ0,5 (x) ≡

(
2b̂1

)1/2
cos (2πx) .
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The centered trajectories χ̂t (·) in (2.5) are then well approximated by

5∑
k=1

ξ̂tkϕ0,k (·) , ξ̂tk = λ−1
0,k

∫
t
χ̂t (x)ϕ0,k (x) dx, 1 ≤ k ≤ 5, 1 ≤ t ≤ 300.

For two randomly chosen integers t between 1 and 300, Figure 8 shows both

the spline trajectory η̂t (·) = m̂ (·) + χ̂t (·) (solid), and the trajectory with hy-

pothesized FPCs
{
ϕ0,k (·)

}5
k=1

: m̂ (·) +
∑5

k=1 ξ̂tkϕ0,k (·) (dash). Both appear

to be faithful representations of the raw EEG data (crosses), with R2 values

(0.985, 0.959) and (0.969, 0.948) , respectively, for the spline and Fourier basis

trajectories and the two raw data segments. This further corroborates that for

this EEG data, the Fourier FPCs in (4.1) are appropriate.

7. Conclusion

We investigate the properties of the FACF for FMA(∞), and propose a

two-step tensor-product spline estimator for the FACF, which is asymptotically

equivalent to an infeasible estimator at the rate of Op

(
n−1/2

)
. We establish an

asymptotic SCE that can be use to test any hypothesis on the FACF, such as

equality to zero. For EEG time series, strong evidence points to an FMA of

finite lag and Fourier-form FPCs. The theoretically justified SCE is a powerful

inference tool, and is expected to find wide application in various scientific fields.

Supplementary Material

The online Supplementary Material contains detailed proofs for the main
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results.
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Gu, L., Wang, L., Härdle, W. and Yang, L. (2014). A simultaneous confidence corridor for

varying coefficient regression with sparse functional data. TEST 23, 806-843.

Gu, L., Wang, S. and Yang, L. (2021). Smooth simultaneous confidence band for the error

distribution function in nonparametric regression. Comput. Stat. Data. Anal 155, 107106.

Gu, L. and Yang, L. (2015). Oracally efficient estimation for single-index link function with

simultaneous confidence band. Electron. J. Stat 9, 1540-1561.

Guo, J. and Chen, Y. (2019). An L2-norm based ANOVA test for the equality of weakly depen-

dent functional time series. Stat. Interface 12, 167-180.

Guo, J., Zhou, B. and Zhang J. (2019). New tests for equality of several covariance functions

for functional data. J. Am. Stat. Assoc 114, 1251-1263.

Hall, P., Fisher I.N. and Hoffmann, B. (1994). On the nonparametric estimation of covariance

Statistica Sinica: Preprint 
doi:10.5705/ss.202021.0121



30 CHEN ZHONG AND LIJIAN YANG

function. Ann. Statist 22, 2115-2334.
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Table 1: Coverage frequencies for C0 (·, ·) in Case 1 by SCE (4.5) with p = 4

(n,N) r 1− α = 0.95 1− α = 0.99

(160, 200) [
√
n] 0.912 0.986

[n/4] 0.912 0.975

(400, 500) [
√
n] 0.953 0.991

[n/4] 0.952 0.991

(900, 1000) [
√
n] 0.946 0.992

[n/4] 0.952 0.990

(1600, 2000) [
√
n] 0.952 0.992

[n/4] 0.956 0.992

Table 2: Coverage frequencies for C1 (·, ·) in Case 1 by SCE (4.5) with p = 4

(n,N) r 1− α = 0.95 1− α = 0.99

(160, 200) [
√
n] 0.914 0.988

[n/4] 0.906 0.982

(400, 500) [
√
n] 0.939 0.995

[n/4] 0.946 0.992

(900, 1000) [
√
n] 0.954 0.994

[n/4] 0.954 0.987

(1600, 2000) [
√
n] 0.954 0.994

[n/4] 0.950 0.994
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Table 3: Coverage frequencies for C2 (·, ·) in Case 1 by SCE (4.5) with p = 4

(n,N) r 1− α = 0.95 1− α = 0.99

(160, 200) [
√
n] 0.954 0.997

[n/4] 0.966 0.997

(400, 500) [
√
n] 0.958 0.998

[n/4] 0.963 0.995

(900, 1000) [
√
n] 0.952 0.994

[n/4] 0.956 0.991

(1600, 2000) [
√
n] 0.950 0.994

[n/4] 0.963 0.995

Table 4: Coverage frequencies for C0 (·, ·) in Case 3 by SCE (4.5) with p = 4

(n,N) r 1− α = 0.95 1− α = 0.99

(160, 200) [
√
n] 0.898 0.954

[n/4] 0.904 0.951

(400, 500) [
√
n] 0.939 0.981

[n/4] 0.942 0.977

(900, 1000) [
√
n] 0.939 0.993

[n/4] 0.945 0.982

(1600, 2000) [
√
n] 0.953 0.995

[n/4] 0.951 0.992
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Table 5: Coverage frequencies for C1 (·, ·) in Case 3 by SCE (4.5) with p = 4

(n,N) r 1− α = 0.95 1− α = 0.99

(160, 200) [
√
n] 0.902 0.963

[n/4] 0.909 0.950

(400, 500) [
√
n] 0.948 0.986

[n/4] 0.941 0.982

(900, 1000) [
√
n] 0.949 0.996

[n/4] 0.944 0.986

(1600, 2000) [
√
n] 0.951 0.995

[n/4] 0.944 0.986

Table 6: Coverage frequencies for C2 (·, ·) in Case 3 by SCE (4.5) with p = 4

(n,N) r 1− α = 0.95 1− α = 0.99

(160, 200) [
√
n] 0.921 0.979

[n/4] 0.913 0.982

(400, 500) [
√
n] 0.946 0.985

[n/4] 0.942 0.982

(900, 1000) [
√
n] 0.940 0.992

[n/4] 0.945 0.986

(1600, 2000) [
√
n] 0.943 0.993

[n/4] 0.955 0.994
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(a) (b)

(c) (d)

Figure 1: Plots of the true C1 (·, ·) in Case 1 and two-step

estimate Ĉ1 (·, ·) (middle surfaces), with 95% SCEs (upper and

lower surfaces), r = [n/4]. (a)–(d) correspond to (n,N) =

(160, 200) , (400, 500) , (900, 1000) , (1600, 2000) , respectively.
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(a) (b)

(c) (d)

Figure 2: Plots of the true C2 (·, ·) in Case 1 and two-step

estimate Ĉ2 (·, ·) (middle surfaces), with 95% SCEs (upper and

lower surfaces), r = [n/4]. (a)–(d) correspond to (n,N) =

(160, 200) , (400, 500) , (900, 1000) , (1600, 2000) , respectively.
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(a) (b)

(c) (d)

Figure 3: Plots of the true Ch (·, ·) in Case 2 and two-step estimate Ĉh (·, ·)
(middle surfaces), with 95% SCEs (upper and lower surfaces), r = [n/4].

(a)–(d) correspond to h = 0, 1, 2, 3, respectively.
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(a) (b)

(c) (d)

(e) (f)

Figure 4: Plots of the true Ch (·, ·) in Case 3 and two-step estimate Ĉh (·, ·)
(middle surfaces), with 95% SCEs (upper and lower surfaces), r = [n/4].

(a)–(f) correspond to h = 0, 1, 2, 3, 4, 5, respectively.
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Figure 5: Two-step estimate Ĉ1 (·, ·) of EEG data with r = [n/4] (middle

surface) and its 95% SCE (upper and lower surfaces).

(a) (b)

Figure 6: Null hypothesis zero plane and SCEs (upper and lower surfaces)

for C1 (·, ·) of EEG data with (a) α = 0.05, (b) α = 0.01.
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(a) (b)

Figure 7: Null hypothesis middle surface a0 +∑2
k=1 {2ak cos (2kπx) cos (2kπx′) + 2bk sin (2kπx) sin (2kπx

′)} and SCEs

(upper and lower surfaces) of C0 (x, x
′) of EEG data with (a) α = 0.05, (b)

α = 0.326.
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Figure 8: Randomly selected segments of raw EEG data (crosses), spline

trajectories (solid), and trajectories based on trigonometric FPCs (dash).
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