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I would like to congratulate Profs. Binyan Jiang, Rui Song, Jialiang Li,

and Donglin Zeng (JSLZ, henceforth) for an exciting development in con-

ducting inferences on optimal dynamic treatment regimes (DTRs) learned

via empirical risk minimization using the entropy loss as a surrogate. JSLZ’s

ingenuity was to carefully propagate the asymptotic distributions of M -

estimators through a backward induction using a roll out of estimated in-

dividualized treatment regimes (ITRs) learned by weighted entropy loss

minimization. This solved an open problem on how to conduct rigorous

inference on DTRs (Laber et al., 2014).

JSLZ’s approach leverages a rejection-and-importance-sampling esti-

mate of the value of a given decision rule based on inverse probability

weighting (IPW; see the first unnumbered display equation in JSLZ’s Sec-

tion 2.2) and its interpretation as a weighted (or cost-sensitive) classifica-

tion, a celebrated reduction (Beygelzimer and Langford, 2009; Zhao et al.,
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2012). Their use of smooth classification surrogates enables their careful

approach to analyzing asymptotic distributions. However, even for evalua-

tion purposes, the IPW estimate is problematic. The estimate is a weighted

average of rewards, where, for a horizon of T steps, the weights are the prod-

uct of T indicators of whether the decision rule’s recommendations agree

with the observed actions, divided by the product of T propensities for the

observed actions. With even just two actions per step, the numerator is

most often zero. At the same time, the denominator is invariably tiny, and

minor differences in probabilities translate into large differences in their in-

verse products. The result is weights that discard most of the data and

are extremely variable on whatever remains. This renders the estimator

practically useless for any horizon T longer than 2–3 and any reasonably

sized sample (see also Gottesman et al., 2019). So, while JSLZ’s careful

analysis enables us to conduct inferences on DTRs learned by optimizing

this estimate (via a surrogate), one might question whether DTRs learned

in this way are useful to begin with when T ≥ 3 and n is realistic, given

the unreliable evaluation.

In this comment, I discuss an optimization-based alternative to evaluat-

ing ITRs and DTRs, review several connections, and suggest directions for-

ward. In Kallus (2018a), I proposed an approach for evaluating and learn-
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ing ITRs based on optimal balance. Optimal balance – a technique I have

also developed for designing controlled experiments (Kallus, 2018c), design-

ing observational studies (Kallus, 2017a,b, 2018b; Kallus et al., 2018), and

estimating marginal structural models (Kallus and Santacatterina, 2018) –

directly targets the error objective of interest by optimally choosing weights

that minimize it, rather than relying on plug-in-and-pray approaches that

fail for practically sized samples, such as IPW. I show how optimal balance

extends to DTR evaluation and discuss why it holds promise.

Balanced Evaluation of ITRs

JSLZ motivate their approach by first considering ITRs; I will do the same.

Indeed, using backward induction, evaluating and learning DTRs reduces

to evaluating and learning ITRs. In their Eq. (2.1), JSLZ recall the central

identity of importance sampling, as applied to ITR evaluation, which I

repeat here using potential-outcome notation:

V (D | X) ≡ E
[
R(a)

∫
a∈A dD(a | X) | X

]
= E

[
D(A|X)
L(A|X)

R | X
]
, (1.1)

where R(a) is the potential reward of action a, for any possible action a ∈ A

(I make no assumptions on A; it can be discrete or continuous); X ∈ X are

the prognostic covariates; D(a | X) is the probability (usually Dirac) of the

decision rule choosing a when seeing X; A and R are the action and reward,
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respectively, observed in the data; L(a | X) is the probability of A, given X,

in the data; and we assume ignorable assignment: R(a) ⊥⊥ A | X ∀a ∈ A.

Given a sample {(Xi, Ai, Ri) : i ≤ n}, we can operationalize Eq. (1.1) by

taking an empirical average of D(Ai|Xi)
L(Ai|Xi)

Ri (e.g., JSLZ’s Eq (2.3)). However,

this can prove problematic in practice, because the density ratio D(Ai|Xi)
L(Ai|Xi)

can vary wildly, giving some units much higher weight than others and

leading to high-variance evaluation. Because of this fundamental problem,

there have been many variations and iterations of this basic estimator, in-

cluding weight normalization and clipping (Swaminathan and Joachims,

2015), “hybrid” clipping using estimates of E [R(a) | X] (Tsiatis and Da-

vidian, 2007; Wang et al., 2017), using such estimates as control variates

(Dud́ık et al., 2011), optimizing the choice of control variate (Cao et al.,

2009; Farajtabar et al., 2018), among others. However, these and other

estimators that do not rely completely on extrapolation via outcome mod-

eling need to account for the covariate shift between L and D and to weight

by the density ratio D(A|X)
L(A|X)

, and ultimately suffer from its fundamental in-

stability. This is particularly problematic when D(A | X) is Dirac, as is

usually the case since optimal policies are deterministic, because it means

that any data point that disagrees with D’s recommendation is discarded,

even if informative. Smoothing D(A | X) amounts to shrinking the esti-
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mate, by linearity. (When A is continuous, this means all data points are

discarded; smoothing, as in Kallus and Zhou, 2018, becomes a necessity.)

I briefly explain my optimal balancing proposal for ITR evaluation from

Kallus (2018a). Given any outcome-weighted estimator, V̂ = 1
n

∑
i≤nWiRi,

with W = W (X1:n, A1:n), its conditional mean squared error, given the data

upon which the weights depend, decomposes to:

E
[(
V̂ − 1

n

∑
i≤n V (D | Xi)

)2
| X1:n, A1:n

]
= B2(µ;W ) + 1

n2

∑
i≤nWiσ

2
i ,

where σ2
i = Var (Ri | Xi, Ai), µ(x, a) = E[Ri | Xi = x,Ai = a], and

B(f ;W ) = 1
n

∑
i≤n
∫
a∈A f(Xi, a)d(Wiδ(a− Ai)−D(a | Xi)),

which, for every W , is a linear operator on the space of functions [A×X →

R]. (A similar result holds if we augment the weighted estimator with an

estimate µ̂, as in AIPW.) Because µ (or the difference µ−µ̂) is unknown, this

suggests seeking weights W that make B(f ;W ) small for many functions

f ∈ F . Under appropriate conditions,

supf∈F B(f ;W ) = sup‖f‖≤1B(f ;W ) = ‖B( · ;W )‖∗,

where ‖·‖ is the gauge of F and ‖·‖∗ its dual. Thus, we seek weights W that

make the norm of the operator B( · ;W ) small, subject to some 2-norm reg-

ularization in order to control the variance. Because setting Wi = D(Ai|Xi)
L(Ai|Xi)

Statistica Sinica: Preprint 
doi:10.5705/ss.202019.0115



6

Table 1: ITR evaluation performance in Kallus (2018a, Example 1)

Weights
Outcome Weighting Augmented OW (DR) ‖W‖0

RMSE Bias SD RMSE Bias SD

IPW 2.209 −0.005 2.209 4.196 0.435 4.174 13.6± 2.9
NIPW 0.519 −0.181 0.487 0.754 0.408 0.634 13.6± 2.9

Balanced 0.280 0.227 0.163 0.251 −0.006 0.251 90.7± 3.2

makes B(f ;W ) a sum of independent mean-zero terms, a straightforward

empirical process argument (see, e.g., Pollard, 1990) shows that, under ap-

propriate conditions on F , these weights also make ‖B( · ;W )‖∗ → 0.

However, in practice, these plug-in weights still have all the problems of

extreme values and being mostly zeros. Instead, my proposal for optimally

balanced evaluation of ITRs is to choose weights that directly optimize the

error objective of interest:

W ∗ ∈ argminW≥0 : 1
n

∑
i≤nWi=1 ‖B( · ;W )‖2∗ + λ

n2‖W‖22, (1.2)

which is a linearly constrained convex optimization problem.

To illustrate how this works, I include an excerpt from Kallus (2018a)

in Table 1, where I apply this to an example with |A| = 5, n = 100, and

low overlap between L and D. For simplicity, I let F be the unit ball of

the RKHS with kernel K((x, a), (x′, a′)) = δ(a − a′)e−‖x−x′‖22 and λ = 1. I

include augmented (DR) estimators, using µ̂ fitted by XGBoost, as well as

normalized (Hájek) IPW. IPW discards about 86% of the data; the balanced

approach only 9%, and correspondingly performs much better.
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Balanced Evaluation of DTRs

When considering sequential decisions, the fragility of IPW only becomes

worse: the weights become even sparser and more extreme, because they

are now the ratio of the product of T indicators and the product of T

probabilities. Fortunately, the approach to balanced evaluation extends to

the case of DTRs, which holds promise for salvaging DTR value estimators

that rely on density ratio weighting in any way.

In the sequential setting, we are interested in evaluating the DTR value:

V (D1:T ) ≡
∑

t≤T

{
Vt(D1:t) ≡ E

∫
a1:t∈A1:t

Rt(a1:t)dD1:t(a1:t | X1:t(a1:t−1), a1:t−1)
}
,

where D1:t(a1:t | X1:t(a1:t−1), a1:t−1) =
∏

s≤tDs(as | X1:s(a1:s−1), a1:s−1) and,

for each t and sequence of actions a1:t ∈ A1:t = A1× · · · ×At, we now have

potential outcomes for both the reward at time t and the time-dependent

covariates at time t + 1. Our data consist of observations of trajectories

X1:T , A1:T , R1:T , assuming sequentially ignorable assignment:

Rt:T (a1:T ), Xt+1:T (a1:T−1) ⊥⊥ At(a1:t−1) | X1:t(a1:t−1), A1:t−1(a1:t−2).

As in the case of ITRs, consider estimating Vt(D1:t) by a weighted average

of outcomes. To streamline the already cumbersome notation, I discuss this

in terms of population averages. Thus, I consider the weighted average of

observables V̂t = E[W1:tRt], for some weights W1:t =
∏

s≤tWs where Ws =
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Ws(X1:s, A1:s). Then, iteratively applying sequential ignorability yields a

decomposition similar to the ITR case:

V̂t − Vt(D1:t) =
∑

s≤tBs(µt,s;Ws), (1.3)

Bs(f ;Ws) ≡ E
∫
as∈As

f (X1:s, A1:s−1, as) d (Wsδ (as − As)−Ds(as | X1:s, A1:s−1)),

µt,s(x1:s, a1:s) ≡ W1:s−1(x1:s−1, a1:s−1)E
[
RDt,s(a1:s) | X1:s = x1:s, A1:s−1 = a1:s−1

]
,

RDt,s(a1:s) ≡
∫
as+1:t∈As+1:t

Rt(a1:t)dDs+1:t(as+1:t | X1:t(a1:t−1), a1:t−1).

This looks rather complicated, but has a simple message: the error is a

sum over s = 1, . . . , t of a particular moment mismatch (Bs) in variables

X1:s, A1:s between the weighted data distribution and the distribution in-

duced by deviating and following Ds at step s. Therefore, to obtain a good

estimate, we require weights that make this mismatch small for many func-

tions f : X1:s×A1:s → R. As before, setting Ws = Ds(As|X1:s,A1:s−1)
Ls(As|X1:s,A1:s−1)

achieves

this at the population level or for very large samples, but can fail horribly in

realistically sized samples. (JSLZ actually use weights
∏T

s=1
Ds(As|X1:s,A1:s−1)
Ls(As|X1:s,A1:s−1)

on
∑

t≤T Rt, which is also unbiased, but even more unstable; when estimat-

ing the average reward at time t, multiplying by density ratios for times

after t is superfluous and just increases the variance.) However, given any

sample and some function class Fs, we can seek weights that minimize the

(empirical) worst-case mismatches ‖Bs( · ;Ws)‖s∗, subject to some 2-norm
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Table 2: DTR evaluation performance

Weights
T = 3 T = 5 T = 7

RMSE Bias SD RMSE Bias SD RMSE Bias SD

IPWT 5e2 0.96 5e2 4e4 −42.94 4e4 2e2 28.61 2e2
IPW 2e2 0.41 2e2 1e4 −11.52 1e4 1e4 −2.08 1e4
NIPWT 11.82 8.39 8.32 38.07 38.01 2.03 63.10 63.09 0.64
NIPW 6.90 4.64 5.10 26.94 26.27 5.96 51.57 51.22 5.98

Bal. KG 6.28 −0.57 6.26 11.73 9.69 6.61 18.65 17.44 6.61
Bal. KM 6.87 −0.26 6.87 12.71 10.06 7.78 19.43 17.80 7.78

regularization to control the variance. Doing so amounts to nothing more

than solving Eq. (1.2), for each of t = 1, . . . , T , to obtain Wt, each time

considering X1:t, A1:t−1 as the “prognostic covariates” being balanced and

at as the “action.” (We could have also placed the W1:s−1 term in Bs, rather

than in µt,s, which would have amounted to a simple reweighting of the mo-

ment conditions being balanced; however, I focus on the simplest reduction

to repeatedly solving problems of the form of Eq. (1.2). We can also apply

Eq. (1.3) to the residuals and use an augmented DR-style estimator.)

A DTR Evaluation Example

To demonstrate how this works, I include a simple example. Let T vary and,

for t ≤ T , let At = {−1,+1}, Xt = R2, Rt(a1:t) = 5at +Xt,1(at−1) + εt, εt ∼

N (0, 1), X1,j ∼ N (0, 1), Xt+1,j(a1:t) = at + Xt,j(at−1) + ξt,j, ξt,j ∼ N (0, 1),

L(+1 | x1:t, a1:t−1) = expit(2(Xt,1 + Xt,2)At−1), and D(+1 | x1:t, a1:t−1) =

I [(Xt,1 +Xt,2)At−1 < 0]. I consider 2,000 replications of n = 800 for each
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T ∈ {3, 5, 7}. To apply balanced evaluation, I let Ft be the unit ball of

the RKHS with kernel K((x1:t, a1:t), (x
′
1:t, a

′
1:t)) = δ(at−1:t−a′t−1:t)Kx(xt, x′t),

where Kx is either the Gaussian (KG) or Matérn (KM , ν = 5/2) kernel. I

compare this with IPW and normalized IPW. I also include the variation

in JSLZ in which we multiply
∑

t≤T Rt by density ratios up to T , referred

to as IPWT .

The results appear in Table 2. The large variance of IPW renders it

unusable even with a reasonably sized data set. The variance is so large

that it throws off the bias estimated by 2,000 replications (zero in theory).

NIPW mitigates this variance, but is actually equal to the uniform weights

37%, 99%, or 100% of the time, for T = 3, 5, 7, respectively, and has corre-

spondingly large bias. Balancing has both low bias (indistinguishable from

that estimated for IPW) and low variance (comparable to NIPW).

Estimating DTR value when horizons are long is a fundamentally dif-

ficult task. Whereas IPW discards most of the data, estimating reward

and transition models requires strong modeling assumptions and precarious

extrapolations. Balancing could provide a fruitful middle ground: rather

than throwing away imperfectly matching trajectories, we imbue the prob-

lem with some structure to allow these to be used, while ensuring that our

weights achieve the same consistency guarantees afforded by IPW asymp-

Statistica Sinica: Preprint 
doi:10.5705/ss.202019.0115



11

totically (see, e.g., Kallus, 2017b, 2018a).

Beyond Evaluation: Learning and Inference

I have argued the merits of using optimal balance to evaluate DTRs. An

immediate question is how to use this to learn DTRs. As before, we can

optimize the value estimate. Although computationally challenging, this is

the approach I took in Kallus (2018a) for ITRs. To apply this to DTRs

requires just an application of backward induction with roll out.

With regard to inference (JSLZ’s primary concern), this remains open

for the balanced approach, but there may be promising directions. Asymp-

totically, under appropriate conditions on F and the class of rules be-

ing considered, optimal sample weights will uniformly concentrate, so we

may consider the distribution when we use the optimal population weights.

However, it remains unclear how the estimated rules are distributed (even

ITRs). A possible hybrid approach is to use JSLZ’s Eq. (2.8), but to re-

place
∏

s≥t+1
Ds(As|X1:s,A1:s−1)
Ls(As|X1:s,A1:s−1)

with the optimal balancing weights W ∗
t+1:T ,

while keeping Dt(At|X1:t,A1:t−1)
Lt(At|X1:t,A1:t−1)

and replacing its numerator with a smooth

surrogate. This will at least alleviate issues with longer horizons by limit-

ing IPW to one step, while still being an M -estimator.

While JSLZ’s advance is a breakthrough, further advances are neces-
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sary. Currently, using IPW and its derivatives to evaluate and learn DTRs

when T is moderate and n is realistic is woefully impractical.
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