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Abstract: Maximin distance designs as an important class of space-filling designs

are widely used in computer experiments, yet their constructions are challenging.

We develop an efficient procedure to generate maximin Latin hypercube designs,

as well as maximin multi-level fractional factorial designs, from existing orthog-

onal or nearly orthogonal arrays via level permutation and expansion. We show

that the distance distributions of the generated designs are closely connected

with the distance distributions and generalized word-length patterns of the ini-

tial designs. Examples are presented to show that our method outperforms many

current prevailing methods.

Key words and phrases : Computer experiment, Fractional factorial design, Gen-

eralized minimum aberration, Latin hypercube design, Orthogonal array, Space-

filling design.
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1 Introduction

Computer experiments are widely used in scientific researches and product developments

to simulate real-world problems with complex computer codes (Santner, Williams, and

Notz (2013); Fang, Li, and Sudjianto (2006); Morris and Moore (2015)). The most suitable

designs for computer experiments are space-filling Latin hypercube designs (LHDs), yet their

construction is challenging, especially for those with a large number of runs and factors.

Many researchers have studied orthogonal LHDs; see, among others, Steinberg and Lin

(2006), Cioppa and Lucas (2007), Lin, Mukerjee, and Tang (2009), Sun, Liu, and Lin (2010)

and Yang and Liu (2012). However, orthogonal LHDs are not necessarily space-filling, e.g.

design (a) in Figure 1. Another approach is through computer search using some optimal-

ity criteria based on discrepancy or distance. Hickernell (1998) defined several discrepancy

criteria, and among them the centered L2-discrepancy (CD) is the most widely accepted.

Johnson, Moore, and Ylvisaker (1990) proposed the maximin and minimax distance crite-

ria. In this paper, we adopt the maximin distance criterion which seeks to scatter design

points over the experimental domain such that the minimum distance between points is

maximized. Johnson, Moore, and Ylvisaker (1990) showed that maximin distance designs

are asymptotically optimal under a Bayesian setting. Morris and Mitchell (1995) proposed

the criterion

φp =

(
n∑
i=2

i−1∑
j=1

1

dpi,j

) 1
p

, (1)

where di,j is the distance between the ith and jth row of the design. When p is sufficiently

large, φp is asymptotically identical to the maximin distance criterion. Morris and Mitchell
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Figure 1: Comparison of 9-run 2-factor LHDs

(1995), Joseph and Hung (2008), Ba, Myers, and Brenneman (2015), and many others

proposed algorithms to construct maximin LHDs; see Lin and Tang (2015) for a summary.

To the best of our knowledge, the R package SLHD by Ba, Myers, and Brenneman (2015)

is currently the most efficient algorithm.

Tang (1993) proposed to generate orthogonal array-based LHDs (OALHDs) by expand-

ing levels in randomized orthogonal arrays (OAs). Though these OALHDs have desirable

sampling and projection properties, most of them are not space-filling, e.g. designs (b) and

(c) in Figure 1. A searching scheme can be applied to OALHDs (Leary, Bhaskar, and Keane

(2003)), but the results are not satisfactory. Ba, Myers, and Brenneman (2015) used a level

expansion procedure similar to that of Tang (1993) when generating SLHDs with multiple

slices. They justified their method from a geometric perspective but did not provide theo-

retical support. We provide some theoretical results to complement the work of Tang (1993)

and Ba, Myers, and Brenneman (2015). We show that OAs, or nearly OAs if OAs do

not exist, are good initial designs as they tend to generate robust space-filling designs. To

avoid searching over the entire space of OALHDs generated via level expansion, we propose
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to perform level permutations on the initial designs and restrict level expansions only to

the maximin OAs. Tang, Xu, and Lin (2012), Tang and Xu (2013), and Zhou and Xu

(2014) used the level permutation method for constructing uniform and maximin fractional

factorial designs, but their method cannot be used to construct LHDs and relies on the ex-

istence of multi-level OAs. We propose a procedure, the maximin distance level expansion

(MDLE) method, to construct maximin designs by combining the strength of level permu-

tation and expansion while avoiding their weaknesses. Our procedure is efficient, providing

better designs using less time compared with existing methods. It is general, not only in the

capability of constructing both maximin fractional factorial designs and maximin LHDs, but

also in the flexibility to use multiple phases in level expansion that can significantly reduce

the computation needed.

This paper is organized as follows. We present our theoretical results in Section 2.

In Section 3, we introduce the procedure, searching algorithm, and justifications for our

MDLE method. In Section 4, examples are given to show that our method outperforms the

ordinary level expansion method, the OMLHD method, the R package SLHD, and the level

permutation method. In Section 5, we introduce a multi-phase method for constructing large

maximin designs. Section 6 concludes, and all proofs are given in the Appendix.

2 Some Theoretical Results

Let D(n, sk) be an n-run, k-factor, and s-level (labelled as 1, 2, . . . , s) balanced design where

each level appears exactly n/s times in every column. From the initial design D(n, sk) we
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can generate a set of designs D
′
(n, (ms)k) with ms levels by a level expansion procedure. For

each column in the initial design D, we replace the n/s positions of entry l (l = 1, 2, . . . , s) by

a random sequence of n/(ms) replicates of numbers: (l−1)m+1, (l−1)m+2, . . . , (l−1)m+m,

where n, k, s,m are all integers larger than 1 and n is divisible by ms. When m = n/s, the

generated D
′
s are LHDs.

Example 1. As an illustration, we perform the level expansion procedure to generate a

D
′
(8, 42) from a D(8, 22). For each column in D, we first replace all four entries of 1 with

a random permutation of numbers: 1, 1, 2, 2, and then replace all four entries of 2 with a

random permutation of numbers: 3, 3, 4, 4, thus generating a 4-level design D
′
. In all we

have 1296 possible D
′
s. Here is an example:

D =

 1 1 1 1 2 2 2 2

1 2 1 2 1 2 1 2


T

⇒ D
′
=

 1 2 1 2 3 4 4 3

2 3 1 3 1 4 2 4


T

.

Let xi,l be the (ith,lth) element and xi be the ith row of the initial design D. After level

expansion, they are x
′

i,l and x
′
i of the generated design D

′
, respectively. Let hi,j be the

Hamming distance (number of positions where the corresponding entries in the pair of rows

are different) between rows xi and xj. Take dil,jl = |xi,l − xj,l|. Denote the L1-distance

between two rows xi and xj as di,j =
∑k

l=1 dil,jl. In this paper, we focus on constructing

maximin designs in regard to the L1-distance. Let dmin(D) be the minimum L1-distance

among all pairs of rows in design D. In the same way, we define h
′
i,j, d

′

il,jl, d
′
i,j and dmin(D

′
)

for the generated design D
′
, respectively. For any balanced design D, we define the distance
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distribution as (# denotes the count)

Bl(D) = n−1#{(i, j) : di,j = l;xi, xj ∈ D, i, j = 1, 2, . . . , n}.

It is easy to show that a design without repeated runs has B0(D) = 1. The maximin design

is defined as the one that sequentially minimizes the distance distribution B0(D), B1(D),

B2(D), B3(D), . . .. Designs with smaller φp values defined in (1) are more space-filling and

have better distance distributions.

Lemma 1. (a) For i, j = 1, . . . , n and i 6= j, upper and lower bounds for the L1-distance

between the ith and jth row in the generated design D
′

are

mdi,j − (m− 1)hi,j ≤ d
′

i,j ≤ mdi,j + (m− 1)k.

(b) Upper and lower bounds for the minimum pairwise L1-distance of the generated design

D
′

are

mdmin(D)− (m− 1)hmax(D) ≤ dmin(D
′
) ≤ mdmin(D) + (m− 1)k,

where hmax(D) is the largest pairwise Hamming distance in design D.

Given n, s, and k from different initial designs D(n, sk), by level expansion we can

generate different sets of designs D
′
(n, (ms)k). By Lemma 1, the upper bound for dmin(D

′
) is

determined by dmin(D). If we can generate a design D
′
opt with dmin(D

′
opt) = mdmin(DMm) +

(m − 1)k where DMm is the maximin initial design, it is clear that D
′
opt has the largest

minimum distance among all possible D
′
s from all possible initial designs D. In Lemma

1, the lower bound of dmin(D
′
) is also positively related with dmin(D). Therefore, in order

6
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to generate good maximin designs via level expansion, initial designs with better distance

distributions should be used.

From any initial design D, by level expansion we have ((n/s)!/(r!)m)sk possible generated

designs D
′
, where r = n/(ms).

Theorem 1. For i, j = 1, . . . , n and i 6= j, the expectation and variance of the pairwise

L1-distances in the generated designs D
′

via level expansion have the following relationship

with the pairwise L1-distance in the initial balanced design D:

E(d
′

i,j) = mdi,j + (k − hi,j)γ and Var(d
′

i,j) = C1,0 + C1,1hi,j,

where γ = n(m2 − 1)/[3m(n− s)], C1,0 = kn(m2 − 1)(m2n+ 2n− 3m2s)/[18m2(n− s)2],

and C1,1 = (m2 − 1)[2n2(m2 − 1)− 3m2s(n− s)]/[18m2(n− s)2].

Thus the expected value of d
′
i,j is a function of both di,j and hi,j. For a 2-level design,

the L1-distance di,j equals the Hamming distance hi,j. For a design with more than 2 levels,

di,j is greater than or equal to hi,j. In addition, the coefficient (m) for di,j is almost three

times as large as the absolute value of the coefficient (γ) for hi,j. Therefore, the expected

value of d
′
i,j is dominated by di,j. Generally speaking, a large di,j value leads to a large d

′
i,j

value on average.

When s > 2, we can improve designs’ minimum distances by level permutation (Zhou and

Xu (2014)). When permuting levels for one or more factors of a design, the pairwise Hamming

distances do not change, but its pairwise L1-distances vary. Given a design D(n, sk), we

can generate in total (s!)k level-permuted designs (including isomorphic designs) and then
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consider all possible level expansions for each design. Let Θ denote the set of all designs

generated by all level permutations and expansions.

Lemma 2. When all possible level permutations and expansions are considered, for i 6= j,

the expectation and variance of the pairwise L1-distances in generated designs D′ are

EΘ(d
′

i,j) = kγ + (m
s+ 1

3
− γ)hi,j

V arΘ(d
′

i,j) = C1,0 +

(
C1,1 +m2 (s+ 1)(s− 2)

18

)
hi,j,

where γ, C1,0, and C1,1 are constants defined in Theorem 1.

Now we study the space-filling property for the generated design D′. For D′ ∈ Θ, let

d̄′ =
∑n

i6=j=1 d
′
i,j/(n(n − 1)) be the average distance in the generated design D′. It is easy

to show that d̄′ = kn(m2s2 − 1)/(3ms(n− 1)) because D′ is level balanced for each column.

Next, we show that the expectation of sum of squared distances in D′ is minimized when

the initial design is an OA. The concepts of generalized word-length pattern (GWLP) and

generalized minimum aberration (GMA) from Xu and Wu (2001) are needed to describe this

result. For design D(n, sk), the GWLP is the vector (A1(D),A2(D), . . . Ak(D)), where the

value of Aj(D) (j = 1, 2 . . . , k) represents the total aliasing between the general mean and all

j-factor interactions in the full ANOVA model. The GMA criterion sequentially minimizes

the GWLP.

Theorem 2. When all possible level permutations and expansions are considered,

EΘ(
n∑

i6=j=1

(d
′

i,j)
2) = C2,1A2(D) + C2,0,

where C2,1 = 2n2(m(s+ 1)/3− γ)2/s2 and C2,0 is a constant.
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From Theorem 2, we haveEΘ(
∑n

i6=j=1(d
′
i,j−d̄′)2) = EΘ(

∑n
i6=j=1(d

′
i,j)

2)−EΘ(
∑n

i6=j=1(d̄
′
)2) =

C2,1A2(D) + constant. Since C2,1 > 0, the expectation of the variation of pairwise L1-

distances in D′ is minimized when A2(D) = 0. For a level balanced design, A1(D) = 0. Xu

and Wu (2001) showed that D is an OA of strength two if and only if A1(D) = A2(D) = 0.

Thus, if the initial design is an OA of strength two or higher, generated designs tend to have

small variations among all pairwise L1-distances and large minimum pairwise L1-distance.

In other words, designs generated from OAs via level permutation and expansion tend to

have robust space-filling properties.

Example 2. Consider constructing 32-run LHDs with 8 factors from five different 2-level

designs with different A2 or A3 values. The first two designs are regular 28−3 designs (with

A2 = 0) and the other three designs have 1, 2, 3 pairs of duplicated columns, indicated by

A2 = 1, 2, 3, respectively. Given a 2-level design, we randomly generated 105 LHDs via

level permutation and expansion and computed the minimum pairwise L1-distance for each

of them. Table 1 compares the minimum, first quartile (Q1), median, third quartile (Q3)

and maximum of the 105 minimum distances for five different initial designs. It is evident

that initial designs with smaller A2 values are more likely to generate designs with larger

minimum distances via level permutation and expansion.

It is possible, but tedious, to extend Theorem 2 and link EΘ(
∑n

i6=j=1(d
′
i,j)

r) with the

values of A2(D), . . . , Ar(D) for r > 2, similar to Theorem 4 of Zhou and Xu (2014). We do

not pursue this here.
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Table 1: Summary of minimum pairwise L1-distances

Design (A1, A2, A3, A4) Min Q1 Median Q3 Max

Design 1 (0, 0, 0, 3) 15 36 39 42 52

Design 2 (0, 0, 1, 2) 15 35 38 41 51

Design 3 (0, 1, 0, 2) 14 33 36 39 49

Design 4 (0, 2, 0, 1) 11 32 35 38 48

Design 5 (0, 3, 0, 3) 10 29 32 34 45

3 Maximin Distance Level Expansion (MDLE) Method

3.1 Procedures of MDLE

Based on the results in the previous section, we propose the MDLE method that combines

both level permutation and expansion. The method starts from OAs, or nearly-OAs if the

corresponding OAs are not available, and expands their levels with one or more phases. Here

we first discuss how to construct maximin designs from OAs with only one phase of level

expansion. Refer to Section 5 for generalizations. To generate D
′
(n, (ms)k), we start from

an OA(n, sk0) with k0 ≥ k. The MDLE method has three steps.

1. Select the GMA k-column subset from anOA(n, sk0) and denote this design byD(n, sk).

2. If s > 2, perform level permutation for design D from Step 1. Select the maximin

design and denote it by Dp(n, s
k).
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3. For each column in Dp from Step 2, replace the n/s positions of entry l (l = 1, 2, . . . , s)

by a random sequence of n/(ms) replicates of numbers: (l−1)m+1, (l−1)m+2 . . . , (l−

1)m+m. Select the maximin design as the final design D
′
(n, (ms)k).

We usually start from saturatedOA(n, sk0), or nearly saturated OAs with k0 ≤ (n− 1)/(s− 1).

When k0!/(k!(k0−k)!) is small, we can enumerate and compare all subsets to find the GMA

subset in Step 1; otherwise, we adopt a simple searching method: randomly generate and

compare ngma subsets and select the GMA subset where ngma ranges from 1000 to 5000

based on the design size and computation available. We use the concept of minimum mo-

ment aberration (Xu (2003)) to efficiently determine GMA subsets. For 2-level regular

designs we choose existing minimum aberration designs from the R package FrF2. In Steps

2 and 3, we adopt a threshold accepting (TA) algorithm modified from that of Dueck and

Scheuer (1990). Compared with the simulated annealing algorithm by Kirkpatrick (1984)

and Morris and Mitchell (1995), TA converges faster.

To implement the TA algorithm, we need to specify neighbour designsN (Dc) for a current

design Dc in Steps 2 and 3. To generate neighbour designs N (Dc) in Step 2, we randomly

choose two levels from a randomly chosen column of Dc and exchange all elements of these

two levels. In Step 3, we define neighbour designs N (Dc) by exchanging the levels in two

positions from a randomly chosen column of Dc, where these two positions have different

values in Dc and the same value in Dp from Step 2.

We choose φ(D) = φp(D) defined in (1) as the objective function to be minimized in our

TA algorithm. The pseudo code for our TA algorithm is given in Algorithm 1. Based on the
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design size and time limits, typically we set nseq equal to 2000, choose nrounds from 30 to 75,

and choose nsteps from 3000 to 7500.

Algorithm 1 Pseudo code for threshold accepting (TA) algorithm

Initialize nseq (number of steps to compute threshold sequences)

Initialize nrounds (number of rounds) and nsteps (number of steps)

Initialize a starting design Dc and let Dmin = Dc

for i = 1 to nseq do

Generate a new design Dn from its neighbors N (Dc) and let ∆i = |φ(Dc)− φ(Dn)|

end for

Compute the empirical distribution of ∆i , i = 1, 2, . . . , nseq, denoted it as F (x)

for r = 1 to nrounds do

Generate threshold τr = F−1 (0.5(1− r/nrounds))

for j = 1 to nsteps do

Generate a new design Dn from the neighbors N (Dc) and let δ = φ(Dn)− φ(Dc)

if δ < τr then let Dc = Dn

if φ(Dc) < φ(Dmin) then let Dmin = Dc

end for

end for

Return Dmin
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3.2 Justifications for the Procedures of MDLE

Zhou and Xu (2014) showed that from GMA initial designs we can generate designs with the

best distance distributions on average via all possible level permutations. Thus, choosing

GMA design D in Step 1 can benefit finding maximin design Dp in Step 2. Further, Lemma 1

and Theorem 1 in Section 2 show that from the maximin design Dp we can generate D
′
s with

the best distance distributions on average in Step 3. By Theorem 2, GMA initial designs

minimize the expectation of the variation of distances in generated designs via level permu-

tation and expansion. Therefore, this 3-step procedure is robust and efficient in generating

good space-filling designs.

We further justify our method from a geometric point of view. Ba, Myers, and Brenneman

(2015) discussed a relevant geometric idea, but it only applies to SLHDs with multiple slices.

Here we discuss the situations for fractional factorial designs and general LHDs, including

SLHDs with only one slice. We relate a design’s geometric structure with its GMA structure.

To get a space-filling n-run and k-factor design, a straightforward idea is to divide the design

space equally into n k-dimensional lattices, put one point in each lattice, and properly adjust

each point’s position within its lattice. This geometric structure of “one point per lattice”

can be achieved by performing level expansion to full factorial initial designs. For example,

see OALHDs in Figure 1(b),(c), and (d) generated by the level expansion process from full

factorial D(9, 32). These designs have only one point per lattice formed by the solid lines,

but the positions of points within the lattices are different. By either the level permutation

or level expansion process, the “one point per lattice” structure is not changed, but their
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positions within the lattice are adjusted, and thus the distance distribution of the design can

be improved. By our MDLE method with full factorial initials, we can find the design with

best distance distribution while keeping the “one point per lattice” structure, e.g., design

(d) in Figure 1.

As a generalization, when n < sk, an initial design with the most low-dimensional pro-

jections that are full factorials is ideal for our MDLE method, and GMA designs have such a

property in many cases. Box and Hunter (1961) pointed out that any p-dimensional (p < r)

projection of a 2-level regular design with resolution r is a full-factorial design. Chen (1998)

proved that for a 2-level regular design,
(
n
p

)
−
∑p

j=r

(
n−j
p−j

)
Aj(D) p-dimensional projections

(p = r, . . . , br+ (r− 1)/2)c) are full-factorial designs. Under these cases, since the GMA ini-

tials have largest resolutions and sequentially minimize Aj(D) (j = 1, 2, . . . k), they have the

most parts that are full-factorials in p-dimensional projection spaces (p ≤ br + (r− 1)/2)c).

GMA nonregular designs have similar projection properties; see Xu, Phoa, and Wong (2009)

for a review. As a result, GMA initial designs tend to generate better space-filling designs

via level expansion.

4 Results and Comparisons

4.1 Construction of Maximin LHDs

First, we compared our MDLE method with the ordinary level expansion (OLE) method

of Tang (1993) and Leary, Bhaskar, and Keane (2003) in generating maximin OALHDs.
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The OLE method first randomly selects a required number of columns from a saturated or

nearly saturated OA to be the initial design, then performs level expansion, and searches

for the maximin generated LHDs. In order to make a fair comparison, we replaced the

simulated annealing algorithm in Leary, Bhaskar, and Keane (2003) with our more efficient

TA algorithm.

Table 2 lists some arbitrarily chosen cases for comparison, where “d(pair)” represents the

minimum pairwise L1-distance (and the number of pairs with the minimum distance). For

all tables, we use bold font to represent the better results. For the 32, 64 and 128-run cases,

the MDLE method starts from the respective 2-level minimum aberration initial designs that

are available in R package FrF2, whereas the OLE method starts from the corresponding

saturated OAs. For the 27, 54, 81, and 125-run cases, both methods start from initial designs

OA(27, 313), OA(54, 325), OA(81, 340), and OA(125, 531), respectively; these are available in

R package DoE.base. All codes were run in R on a laptop with an Intel 2.50GHz I7 CPU.

Time used by our MDLE method ranged from 5 minutes to an hour for the different cases

here. For all cases, we let the OLE method use at least twice as much time as the MDLE

method.

From Table 2, it is clear that the MDLE method generates better OALHDs than the OLE

method for all cases. Compared with the MDLE method, the OLE method only includes

Step 3, but does not have the first two steps of the MDLE method. Thus, Table 2 shows the

usefulness of the first two steps in the MDLE method which provides good initial designs

for level expansion. When the MDLE method starts with 2-level initial designs, Step 2 is
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Table 2: Comparisons of constructions of maximin LHDs

MDLE OLE OMLHD SLHD

n k d(pair) ψp d2 d(pair) d(pair) ψp d(pair) d2

27 9 72(2) 0.012 28.8 68(5) 60(1) 0.025 63(1) 28.2

32 20 205(1) 0.005 55.6 205(2) 177(1) 0.012 190(1) 55.1

54 5 54(1) 0.0311 28.1 45(1) 47(2) 0.0393 44(1) 27.8

54 20 329(1) 0.0034 88.4 317(1) 279(1) 0.0083 294(1) 88.2

54 25 425(3) 0.0022 102.7 399(1) 360(1) 0.012 382(1) 100.9

64 6 83(1) 0.0209 40.6 61(1) 70(3) 0.0299 67(1) 39.1

64 20 378(1) 0.0034 105.2 369(1) 310(1) 0.0084 340(1) 102.6

64 40 813(1) 0.0025 157.4 804(1) 698(1) 0.0048 771(1) 155.7

81 8 152(1) 0.0111 64.2 102(1) 123(2) 0.0198 121(1) 62.7

81 25 604(2) 0.0022 147.9 577(1) 504(1) 0.0028 540(1) 146.7

81 40 1016(1) 0.0016 194.9 962(1) 899(1) 0.0016 934(1) 194.5

125 10 284(2) 0.0072 111.8 199(1) 237(3) 0.0136 232(1) 110.6

125 23 797(1) 0.0021 206.9 640(1) 668(1) 0.0021 726(1) 206.8

125 31 1126(1) 0.0014 251.1 971(1) 955(1) 0.0076 1038(1) 250.8

128 12 378(1) 0.0051 135.5 284(1) 314(1) 0.0092 313(1) 132.6

128 49 1893(1) 0.0014 337.6 1873(1) 1643(1) 0.0057 1801(1) 335.3

128 64 2512(1) 0.0017 395.2 2479(1) 2239(1) 0.0061 2497(1) 392.1

16

Statistica Sinica: Preprint 
doi:10.5705/ss.202016.0423



skipped since level permutations do not change designs’ distance distributions. Thus, the

usefulness of Step 1 alone can be seen from the 32, 64 and 128-run cases in Table 2. From the

54-run/25-factor, 81-run/40-factor and 125-run/31-factor cases, we can see the usefulness of

Step 2 alone since Step 1 is skipped.

Next, we compared our MDLE method with the OMLHD method of Joseph and Hung

(2008) and the R package SLHD of Ba, Myers, and Brenneman (2015) in generating space-

filling LHDs. Joseph and Hung (2008) proposed the multi-objective criterion

ψp = ωρ2 + (1− ω)
φp − φp,lb
φp,ub − φp,lb

, (2)

where φp is defined in (1) with p = 15, ρ2 is the average of squared column-wise correlations, ω

is the weight which is set to 0.5, φp,lb and φp,ub are the smallest and largest possible φp values.

Joseph and Hung (2008) used a modified simulated annealing algorithm to search for LHDs

that minimize ψp values. Table 2 lists some cases for comparison, where ψp is defined in (2)

and d2 represents designs’ minimum pairwise L2-distances. For the OMLHD method, we ran

the code from Y. Hung’s homepage (http://stat.rutgers.edu/home/yhung/index.htm)

with nstart = 5 and default settings, and chose the best results. For the SLHD method,

we ran the command maximinSLHD with slice parameter t = 1 and default settings for 200

times, and chose the best results.

For all cases in Table 2, the MDLE method generates better space-filling designs than the

OMLHD method in regard to both the L1-distance and the ψp criterion. Our MDLE method

searches designs toward the L1-distance alone. Designs from our method have small pairwise

correlations, since they can always collapse to OAs or nearly OAs. Further, the MDLE
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method generates better maximin designs than the SLHD method under both the L1- and

L2-distances. In order to make a fair comparison with the SLHD package, the φp criterion

used in the MDLE method adopted the L1- and L2-distance for each case respectively.

Our MDLE method was implemented in R whereas the SLHD and OMLHD methods were

implemented in C++. The R package SLHD provides an interface to call the C++ program.

Our MDLE method used less than half of the time used by the SLHD and OMLHD methods,

although C++ is more efficient than R in terms of computation.

4.2 Construction of Maximin Fractional Factorial Designs

First, we compared our MDLE method with the level permutation (LP) method of Zhou and

Xu (2014) in generating maximin fractional factorial designs (FFDs). Zhou and Xu (2014)

included a table of 10 maximin designs with n ≤ 32 that are comparable here, and we list

them in Table 3 (a). We further selected another eight larger cases with n ≥ 48 in Table 3

(b) to compare the two methods. All designs are 4-level FFDs. For the MDLE method, in

the 16, 32, 64, and 128-run cases, 2-level minimum aberration initial designs were used; in

the 48 and 80-run cases, OA(48, 247) and OA(80, 279) were used as the initial designs. For

the LP method, in the 48, 64, 80 and 128-run cases, initial designs OA(48, 413), OA(64, 411),

OA(80, 411) and OA(128, 440) were used, respectively. Both methods’ codes were run in R.

For all cases, the LP method used at least twice as much time as the MDLE method.

In Table 3 (a), for the first nine cases both methods generated designs with the same

minimum pairwise distances. For the last case in Table 3 (a) and all cases in Table 3 (b),
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Table 3: Comparisons in the constructions of four-level maximin FFDs

(a)

MDLE LP

n k d(pair) d(pair)

16 3 2(12) 2(12)

16 4 4(60) 4(56)

16 5 4(1) 4(4)

32 3 2(156) 2(156)

32 4 2(8) 2(8)

32 5 4(100) 4(106)

32 6 5(48) 5(58)

32 7 6(24) 6(28)

32 8 8(132) 8(128)

32 9 9(62) 8(6)

(b)

MDLE LP

n k d(pair) d(pair)

48 10 9(6) 8(3)

48 13 13(15) 12(10)

64 9 8(395) 6(38)

64 11 10(77) 9(12)

80 7 5(177) 4(48)

80 11 9(1) 8(29)

128 29 30(42) 29(79)

128 40 43(1) 40(2)
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the MDLE method outperforms the LP method. Furthermore, the LP method relies on

existing OA initials that have the same number of runs, factors and levels as the generated

designs. These OAs are often difficult to find or even do not exist. For example, there

is no OA(24, 68) that can be used to generate maximin D
′
(24, 68). Compared with the LP

method, our MDLE method has more flexibility in design size, since we can start from 2-level

designs to generate multi-level designs. For example, we can start from a 2-level OA(24, 223)

to generate the 24-run/6-level maximin design with up to 23 factors.

Next, we compared designs from our MDLE method with some existing uniform de-

signs listed on the uniform design homepage (http://uic.edu.hk/isci/). These uniform

designs (UD-page designs) were searched by Kaitai Fang and his collaborators toward the

centered L2-discrepancy (CD) criterion where smaller CD values indicate more space-filling

designs. In order to make a fair comparison, in Table 4 we also include a modified version

of our MDLE method (MDLE-CD) which searches best designs using the CD criterion in

Step 3. We selected some 4-level and 6-level cases for comparison in Table 4. Both the

MDLE and MDLE-CD methods started from the initial designs OA(32, 231), OA(40, 239),

and OA(48, 247) to generate the 4-level designs, and OA(36, 313), OA(48, 247), OA(54, 318),

and OA(60, 230) to generate the 6-level designs for the corresponding cases.

Table 4 shows that designs by the MDLE method are always better than the UD-page

designs in regard to maximin distance criterion. Designs from the MDLE-CD method are

better than the UD-page designs toward the CD criterion.
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Table 4: Comparison in the construction of four-level and six-level uniform designs

MDLE MDLE-CD UD-page designs

n k s CD d(pair) CD d(pair) CD d(pair)

32 7 4 0.074 6(18) 0.070 5(6) 0.071 4(1)

32 13 4 0.0343 13(5) 0.0343 13(5) 0.0344 12(2)

40 13 4 0.3186 13(4) 0.3067 12(5) 0.3068 11(1)

40 15 4 0.5080 16(56) 0.4969 13(1) 0.4987 14(1)

48 11 4 0.1841 10(11) 0.1758 8(1) 0.1767 7(1)

48 15 4 0.461 15(13) 0.447 13(1) 0.449 12(1)

36 12 6 0.1744 20(15) 0.1673 19(14) 0.1691 17(1)

48 12 6 0.1416 19(21) 0.1362 16(2) 0.1374 16(1)

54 9 6 0.0601 12(13) 0.0564 8(1) 0.0568 10(3)

54 12 6 0.1362 17(14) 0.1268 16(1) 0.1299 16(2)

60 9 6 0.0576 12(11) 0.0544 8(1) 0.0546 9(2)

5 Multi-phase MDLE Method

In constructing maximin designs D
′
(n, (ms)k) from initial designs D(n, sk), when m is very

large, the one-phase MDLE method introduced in Section 3 is not efficient because level ex-

pansion produces too many designs. In addition, when n and k are too large given the com-

putation constraint, we need to further restrict the searching space in the MDLE method.

Under such situations, we can apply a multi-phase MDLE method. The multi-phase MDLE

method shares the same Steps 1 and 2 as the one-phase MDLE. The difference lies in Step
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3: instead of directly generating D
′
(n, (ms)k) from Dp(n, s

k), we gradually expand the lev-

els from s to ms in multiple phases. For example, in a two-phase MDLE method with

m = m1m2, in Step 3 we first generate maximin design D1(n, (m1s)
k) via level expansion

from Dp in Step 2; then from D1 we generate maximin design D2(n, (m2m1s)
k) which is

D
′
(n, (ms)k) via level expansion again. It is straightforward to generalize and justify this

process with more phases in both theory and geometry, as in Section 3.2.

The more phases we use, the more restrictions are put on the searching space. The

number of designs needed to be compared decreases dramatically with multiple phases. For

example, to generate D
′
(16, 82) from D(16, 22) for the one-phase MDLE method, we have

in total about 4 × 1013 possible D
′
s to be compared; for the two-phase MDLE method, we

only need to compare about 1.7× 106 designs. More restrictions on the searching space also

means that we are more likely to miss good designs, at least in theory. In practice, with

limited computations, the multiple-phase method can be more efficient than the one-phase

method, especially for large designs.

Table 5 compares the one-phase and two-phase MDLE methods in generating maximin

LHDs with time constraints. For both methods, we started from the respective full factorial

designs for the first five cases, the minimum aberration designs for the 32- and 64-run cases,

OA(54, 324), OA(81, 340), and OA(125, 531) for the rest of cases, respectively. For the last

five cases, where the numbers of runs and factors are relatively large, the two-phase method

generates better designs in a shorter time than the one-phase method. Given adequate

computation time, the one-phase method eventually generates better designs than the two-
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Table 5: Comparison of one-phase and two-phase MDLE methods in constructing LHDs

One-phase Two-phase

n k d(pair) time d(pair) time sequence

27 3 14(4) 67 14(5) 107 3→ 9→ 27

32 5 37(1) 103 37(3) 101 2→ 8→ 32

64 6 83(1) 301 81(1) 306 2→ 8→ 64

81 4 50(1) 478 50(3) 490 3→ 9→ 81

125 3 38(5) 603 37(3) 950 5→ 25→ 125

32 15 151(1) 211 150(2) 218 2→ 8→ 32

54 12 173(1) 886 178(2) 806 3→ 9→ 54

54 20 309(1) 1346 322(2) 1275 3→ 9→ 54

64 40 805(1) 1062 810(1) 995 2→ 8→ 64

81 40 1005(1) 1479 1014(1) 936 3→ 9→ 54

125 31 1111(1) 2085 1116(1) 1548 5→ 25→ 125

Note: Time in seconds.

phase method; see the last four cases in Table 5 and corresponding results in Table 2 where

we ran the one-phase MDLE method for a longer time.

When OAs with different levels exist, generally speaking, it is better to use OA initials

with fewer levels given abundant computations. As an illustration, for the 128-run/12-factor

case, starting from the 2-, 4- and 8-level OA initials, the one-phase MDLE method generates

LHDs with the minimum L1-distances of 378, 375 and 368, respectively. The 2-level OA
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initial gives the best result here, but requires more than 5 times the computations to achieve

a stable result compared with the 8-level initial. Since any 8-level OA can be collapsed to a

2-level OA, the MDLE method is less likely to miss good results from 2-level OAs. For large

designs with computation constraints, OA initials with larger levels may work better since

the searching space is much smaller and less phases are needed.

6 Summary

We propose the MDLE method which can efficiently generate maximin LHDs and maximin

fractional factorial designs. To justify our method, we establish a relationship of the L1-

distance distributions between the initial and generated designs via level expansion. When

all possible level permutations of the initial designs are considered, we give expectations and

variances of the pairwise L1-distances for the generated designs. Various comparisons show

that our MDLE method outperforms the ordinary level expansion process, the OMLHD

algorithm, the SLHD package, and the level permutation method. We also find many more

space-filling designs compared to the existing uniform designs.

The MDLE method is easy to generalize for mixed-level cases. Starting from a mixed-

level initial design, we can individually set the level expansion path for each factor. In this

way, we can generate mixed-level factorial designs. Although the MDLE method cannot

generate maximin designs with any run size, it works well from nearly OAs (Xu (2002))

or optimal supersaturated designs (Xu and Wu (2005)), when suitable OA initials are not

available.
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Appendix: Proofs

Proof of Lemma 1. (a) For i 6= j, when xi,l = xj,l, d
′

il,jl takes on values of 0, 1, . . . ,m − 1;

when xi,l 6= xj,l, d
′

il,jl takes on values of m(dil,jl−1)+1, . . . ,m(dil,jl−1)+2m−1. Therefore,

the smallest possible d
′
i,j value is

min d
′

i,j = 0 ∗ (k − hi,j) +

hi,j∑
l=1

(m(dil,jl − 1) + 1) = mdi,j − (m− 1)hi,j

and the largest possible d
′
i,j value is

max d
′

i,j = (m− 1)(k − hi,j) +

hi,j∑
l=1

(m(dil,jl − 1) + 2m− 1) = mdi,j + k(m− 1).

Thus, we have mdi,j − (m− 1)hi,j ≤ d
′
i,j ≤ mdi,j + k(m− 1).

(b) Let xa and xb be the pair of rows in design D that forms the minimum pairwise

L1-distance dmin(D) (there could be many such pairs). Let x
′
c and x

′

d be the pair of rows

in design D
′

that forms the minimum pairwise L1-distance dmin(D
′
) (there could be many

such pairs). Then

dmin(D
′
) = d

′

c,d ≤ d
′

a,b ≤ mda,b + k(m− 1) = mdmin(D) + (m− 1)k,

dmin(D
′
) = d

′

c,d ≥ mdc,d − (m− 1)hc,d ≥ mdc,d − (m− 1)hmax(D)

≥ mda,b − (m− 1)hmax(D) = mdmin(D)− (m− 1)hmax(D).
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Thus, we have mdmin(D)− (m− 1)hmax(D) ≤ dmin(D
′
) ≤ mdmin(D) + (m− 1)k.

Proof of Theorem 1. We first calculate the probability distribution for d′il,jl with its range

given in Lemma 1. For i 6= j, when xi,l = xj,l, the probability distribution is

P (d
′

il,jl = 0) =
m
(
n/(ms)

2

)
m(m− 1)(n/(ms))2 +m

(
n/(ms)

2

) =
n−ms
m(n− s)

,

P (d
′

il,jl = t) =
2(m− t)(n/(ms))2

m(m− 1)(n/(ms))2 +m
(
n/(ms)

2

) =
2n(m− t)
m2(n− s)

for t = 1, 2, . . . ,m− 1. Thus,

E(d
′

il,jl) =
m−1∑
t=1

tP (d
′

il,jl = t) =
n(m2 − 1)

3m(n− s)
= γ, (3)

E((d
′

il,jl)
2) =

m−1∑
t=1

t2P (d
′

il,jl = t) =
n(m2 − 1)

6(n− s)
=
m

2
γ. (4)

When xi,l 6= xj,l, the probability distribution is

P (d
′

il,jl = d0 + t) =
t+ 1

m2
, for t = 0, 1, . . . ,m− 1,

P (d
′

il,jl = d0 + t) =
2m− t− 1

m2
, for t = m, . . . , 2m− 2,

where d0 = m(dil,jl − 1) + 1. It is straightforward to verify that

E(d
′

il,jl) =
2m−2∑
t=0

(d0 + t)P (d
′

il,jl = d0 + t) = mdil,jl, (5)

E((d
′

il,jl)
2) =

2m−2∑
t=0

(d0 + t)2P (d
′

il,jl = d0 + t) = m2d2
il,jl +

m2 − 1

6
. (6)

It is clear that dil,jl = 0 when xi,l = xj,l. Combining (3) and (5), we have

E(d
′

i,j) =
k∑
l=1

E(d
′

il,jl) =
k∑
l=1

mdil,jl + (k − hi,j)γ = mdi,j + (k − hi,j)γ. (7)
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Next, combining (4) and (6), we have

E

(
k∑
l=1

(d
′

il,jl)
2

)
=

k∑
l=1

E((d
′

il,jl)
2) = m2

k∑
l=1

d2
il,jl +

m2 − 1

6
hi,j + (k − hi,j)

mγ

2
. (8)

Further, we have

E((d
′

i,j)
2) = E

( k∑
l=1

d
′

il,jl

)2
 = E

(
k∑
l=1

(d
′

il,jl)
2

)
+ E

(
k∑

p6=q=1

d
′

ip,jpd
′

iq,jq

)
. (9)

Since d
′
ip,jp and d

′
iq,jq (p 6= q) are independently determined by the pth and qth columns in

the initial design D, with (3) and (5), we have

E

(
k∑

p6=q=1

d
′

ip,jpd
′

iq,jq

)
=

k∑
p6=q=1

E(d
′

ip,jp)E(d
′

iq,jq) = m2

k∑
p6=q=1

dip,jpdiq,jq+

+ 2(k − hi,j)γ
k∑
l=1

mdil,jl + (k − hi,j)(k − hi,j − 1)γ2. (10)

Combining (8), (9), and (10), after some simple algebra, we have

V ar(d
′

i,j) = E
(

(d
′

i,j)
2
)
−
(
E(d

′

i,j)
)2

= C1,0 + C1,1hi,j,

where C1,0 and C1,1 are constants given in Theorem 1.

Proof of Lemma 2. We need to distinguish two types of operations: level permutation and

level expansion. Let σ denote a level permutation and π denote a level expansion. Let

Eσ denote the expectation toward designs generated by all possible level permutations and

Eπ denote the expectation toward designs generated by all level expansions. As we per-

form level permutation first and level expansion second, using the properties of conditional

expectations, we have

EΘ(d
′

i,j) = Eσ[Eπ(d
′

i,j|σ)], (11)

V arΘ(d
′

i,j) = Eσ[V arπ(d
′

i,j|σ)] + V arσ[Eπ(d
′

i,j|σ)]. (12)
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For a given level permutation σ, let dσi,j denote the L1-distance of a level permuted design

generated by σ. Level permutation does not change pairwise Hamming distances of a design.

Applying Theorem 1 to each level permutation σ, we have

Eπ(d
′

i,j|σ) = mdσi,j + (k − hi,j)γ, (13)

V arπ(d
′

i,j|σ) = C1,0 + C1,1hi,j. (14)

Similar to the proof of Theorem 1, when considering all possible level permutations,

Eσ(dσi,j) =
s+ 1

3
hi,j, (15)

V arσ(dσi,j) = Eσ((dσi,j)
2)− [Eσ(dσi,j)]

2 =
(s+ 1)(s− 2)

18
hi,j. (16)

Combining (11), (13), and (15), we have

EΘ(d
′

i,j) = Eσ[mdσi,j + (k − hi,j)γ] = m
s+ 1

3
hi,j + (k − hi,j)γ

= kγ + (m
s+ 1

3
− γ)hi,j. (17)

Combining (12), (13), (14), and (16), we have

V arΘ(d
′

i,j) = Eσ[C1,0 + C1,1hi,j] + V arσ[mdσi,j + (k − hi,j)γ]

= C1,0 + C1,1hi,j +m2V arσ[dσi,j]

= C1,0 + (C1,1 +m2 (s+ 1)(s− 2)

18
)hi,j. (18)
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Proof of Theorem 2. From (17) and (18), we have

EΘ(
n∑

i6=j=1

(d
′

i,j)
2) =

n∑
i6=j=1

EΘ((d
′

i,j)
2) =

n∑
i6=j=1

[V arΘ(d
′

i,j) + (EΘ(d
′

i,j))
2]

=
n∑

i6=j=1

[C1,0 + (C1,1 +m2 (s+ 1)(s− 2)

18
)hi,j] +

n∑
i6=j=1

[kγ + (m
s+ 1

3
− γ)hi,j]

2. (19)

Xu (2003) showed that the GWLP is related to moments of Hamming distances. In partic-

ular, for a balanced design with A1(D) = 0, we have the following relationships:

n∑
i6=j=1

hi,j =
kn2(s− 1)

s
, (20)

n∑
i6=j=1

h2
i,j =

n2

s2
{2A2(D) + (s− 1)k[1 + (s− 1)k]}. (21)

Then the result follows from (19), (20), and (21).

References

Ba, S., Myers, W. R. and Brenneman, W. A. (2015). Optimal sliced Latin hypercube designs.

Technometrics 57, 479–487.

Box, G. E. and Hunter, J. S. (1961). The 2k−p fractional factorial designs. Technometrics 3,

311–351.

Chen, H. (1998). Some projective properties of fractional factorial designs. Statistics & Prob-

ability Letters 40, 185–188.

Cioppa, T. M. and Lucas, T. W. (2007). Efficient nearly orthogonal and space-filling Latin

hypercubes. Technometrics 49, 45–55.

29

Statistica Sinica: Preprint 
doi:10.5705/ss.202016.0423



Dueck, G. and Scheuer, T. (1990). Threshold accepting: a general purpose optimization

algorithm appearing superior to simulated annealing, Journal of Computational Physics

90, 161–175.

Fang, K.-T., Li, R. and Sudjianto, A. (2006). Design and Modeling for Computer Experi-

ments, CRC Press.

Hickernell, F. J. (1998). A generalized discrepancy and quadrature error bound. Mathematics

of Computation 67, 299–322.

Johnson, M. E., Moore, L. M. and Ylvisaker, D. (1990). Minimax and maximin distance

designs. Journal of Statistical Planning and Inference 26, 131–148.

Joseph, V. R. and Hung, Y. (2008). Orthogonal-maximin Latin hypercube designs. Statistica

Sinica 18, 171–186.

Kirkpatrick, S. (1984). Optimization by simulated annealing: Quantitative studies. Journal

of Statistical Physics 34, 975–986.

Leary, S., Bhaskar, A. and Keane, A. (2003). Optimal orthogonal-array-based Latin hyper-

cubes. Journal of Applied Statistics 30, 585–598.

Lin, C. D., Mukerjee, R. and Tang, B. (2009). Construction of orthogonal and nearly or-

thogonal Latin hypercubes. Biometrika 96, 243–247.

Lin, C. D. and Tang, B. (2015). Latin hypercubes and space-filling designs, in Handbook of

30

Statistica Sinica: Preprint 
doi:10.5705/ss.202016.0423



Design and Analysis of Experiments, eds. Dean, A., Morris, M., Stufken, J. and Bingham,

D., New York: Chapman and Hall/CRC, pp. 593–625.

Morris, M. D. and Mitchell, T. J. (1995). Exploratory designs for computational experiments.

Journal of Statistical Planning and Inference 43, 381–402.

Morris, M. D. and Moore, L. M. (2015). Design of computer experiments: Introduction and

Background, in Handbook of Design and Analysis of Experiments, eds. Dean, A., Morris,

M., Stufken, J. and Bingham, D., New York: Chapman and Hall/CRC, pp. 577–591.

Santner, T. J., Williams, B. J. and Notz, W. I. (2013). The Design and Analysis of Computer

Experiments, New York: Springer.

Steinberg, D. M. and Lin, D. K. J. (2006). A construction method for orthogonal Latin

hypercube designs. Biometrika 93, 279–288.

Sun, F., Liu, M.-Q. and Lin, D. K. J. (2010). Construction of orthogonal Latin hypercube

designs with flexible run sizes. Journal of Statistical Planning and Inference 140, 3236–

3242.

Tang, B. (1993). Orthogonal array-based Latin hypercubes, Journal of the American Statis-

tical Association 88, 1392–1397.

Tang, Y. and Xu, H. (2013). An effective construction method for multi-level uniform designs.

Journal of Statistical Planning and Inference 143, 1583–1589.

31

Statistica Sinica: Preprint 
doi:10.5705/ss.202016.0423



Tang, Y., Xu, H. and Lin, D. K. J. (2012). Uniform fractional factorial designs. The Annals

of Statistics 40, 891–907.

Xu, H. (2002). An algorithm for constructing orthogonal and nearly orthogonal arrays with

mixed levels and small runs. Technometrics 44, 356–368.

Xu, H. (2003). Minimum moment aberration for nonregular designs and supersaturated

designs. Statistica Sinica, 691–708.

Xu, H., Phoa, F. K. H. and Wong, W. K. (2009). Recent developments in nonregular frac-

tional factorial designs. Statistics Surveys 3, 18–46.

Xu, H. and Wu, C. F. J. (2001). Generalized minimum aberration for asymmetrical fractional

factorial designs. The Annals of Statistics 29, 1066–1077.

Xu, H. and Wu, C. F. J. (2005). Construction of optimal multi-level supersaturated designs.

The Annals of Statistics, 33, 2811–2836.

Yang, J. and Liu, M.-Q. (2012). Construction of orthogonal and nearly orthogonal Latin

hypercube designs from orthogonal designs. Statistica Sinica 22, 433–442.

Zhou, Y.-D. and Xu, H. (2014). Space-filling fractional factorial designs. Journal of the

American Statistical Association 109, 1134–1144.

32

Statistica Sinica: Preprint 
doi:10.5705/ss.202016.0423




