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Abstract: We propose a fully efficient joint fractional imputation method for han-

dling bivariate ordinal responses with missing observations. We show that the

method is ideally suited for bivariate ordinal responses to create a single imputed

data file and provides valid and efficient inferences for the joint and marginal

probabilities, association measures, as well as regression analysis. Asymptotic

properties of estimators based on the joint fractionally imputed data set are

developed and their superiority over existing methods, including available-case

analysis, propensity score adjustment, and sequential regression multiple imputa-

tion methods, is demonstrated through theoretical results and simulation studies.

The proposed joint fractional imputation strategy employs modelling procedures

that could be used for the sequential regression multiple imputation method but

creates a single imputed data set which can be easily analyzed using existing soft-

wares with minor modifications. Variance estimation and tests of independence

are also discussed under the proposed joint fractional imputation method.
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1. Introduction

Ordinal responses are categorical variables with an ordered scale and are

routinely collected and analyzed by researchers from many scientific fields.

For example, ordinal variables are commonly used in medical studies to

measure the severity of injuries (i.e., minor, mild, severe or life-threatening),

the stage of progression of a disease, the effect of a treatment, and many

others. Bivariate ordinal responses are also commonly observed, such as

conditions on two related parts of the body or measures of two contrasting

treatments.

There are two major problems in statistical analysis of bivariate ordinal

responses: contingency table analysis and regression analysis. Contingency

table analysis focuses mainly on the joint and the marginal distribution

of the two variables and, more importantly, the interrelation between re-

sponses; regression modelling explores the dependence of both responses

on covariates while simultaneously taking into consideration the correla-

tion between the two response variables. Statistical methods developed for

bivariate nominal responses are also applicable to ordinal contingency ta-

bles. Agresti (2010, 2013) contain an excellent review of related techniques.
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There have been methods developed specifically for ordinal responses to bet-

ter handle the ordering nature of the variables. Kendall (1945), Goodman

and Kruskal (1954), and Somers (1962) proposed different association mea-

sures to summarize correlation between ordinal responses. Alternatively,

several association models were built to characterize the dependence, see, for

instance, Haberman (1974) and Goodman (1979, 1985). Regression analysis

with ordinal responses did not attract much attention until the emergence of

generalized linear models (McCullagh and Nelder (1989)). The generalized

estimating equation (GEE) method, initially proposed by Liang and Zeger

(1986) as a tool for longitudinal and clustered data, can be applied for re-

gression analysis with ordinal responses. See, for example, Lumley (1996),

Parsons et al. (2006), and Touloumis et al. (2013). Transitional models

which include other responses as predictors are another approach to incor-

porating correlation between responses. For more detailed discussions on

modeling techniques for ordinal responses, see Supplementary Material.

If one or both ordinal responses contain missing observations, none of

the existing analysis tools is directly applicable. There have been a consid-

erable development recent years of the theory and application of methods

for handling missing data. Multiple imputation (MI), formally proposed

by Rubin (1987), has gained tremendous popularity among users of in-
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complete data. However, most studies focus on cases with continuous or

nominal responses and little attention has been given to ordinal responses.

The sequential regression multiple imputation (SRMI) method, proposed

by Raghunathan et al. (2001), and also known as multiple imputation with

chained equations (MICE) (van Buuren and Groothuis-Oudshoorn (2011)),

is a flexible and practical procedure for generating multiple imputed data

sets, and the method is technically applicable to ordinal responses. In Sup-

plementary Material, we elaborate on key steps to implement the method

for bivariate ordinal responses with missing values. One of the major draw-

backs of SRMI is the lack of theoretical justifications. The popularity of

SRMI in practical applications rests largely on empirical studies rather than

theoretical arguments (White et al. (2011)).

Multiple imputation requires the creation of multiple data files and sep-

arate storage and analysis of those files by the users. From an operational

point of view, and for large survey agencies, it is more appealing to have a

single imputed data file, especially if the file is to be released for public use

with multiple users (Brick and Kalton (1996)). Single imputation, however,

is criticized for its lack of efficiency due to the potential variation, known as

the imputation variance, induced by random imputation procedures. Frac-

tional imputation (FI), originally proposed by Kalton and Kish (1984), and
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later studied by Kim and Fuller (2004) and Kim (2011), is an attractive

alternative to multiple imputation for reducing imputation variance. It re-

places each missing observation by a cluster of plausible values with each

imputed value receiving a fractional weight. Observed components are du-

plicated for fractionally imputed units, resulting in a single enlarged data

file. With appropriate fractional weights, standard analyses can be applied

directly to the imputed data file with minor modifications to incorporate

the weights and lead to valid and efficient inferences. See Yang and Kim

(2016) for an insightful review of recent developments in the FI literature.

In this paper, we propose a fully efficient joint fractional imputation

(JFI) procedure for handling incomplete bivariate ordinal responses by cre-

ating a single imputed data file that can be released for public use. The

proposed method is fully efficient in the sense that it does not incur any

additional variation from the imputation and leads to valid inferences for

the joint and marginal probabilities, association measures, and regression

analysis. Tests of independence can also be carried out based on the as-

sociation estimators. We justify the validity of our proposed procedure by

revealing its deep link to the EM algorithm (Dempster et al. (1977)).

The rest of the paper is organized as follows. Section 2 introduces

basic settings, and notation and inferential problems with bivariate ordinal

Statistica Sinica: Preprint 
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responses. In Section 3, we present our proposed method and establish its

theoretical results. Results from simulation studies with comparisons to

existing methods are reported in Section 4. Some concluding remarks are

given in Section 5.

2. Basic Settings and Notation

Suppose that the sample data set is given by D =
{

(yi, δi,xi), i =

1, . . . , n
}

, where yi = (yi1, yi2) are ordinal responses on R-level and J-level

scales, respectively, and that both are partially observed. Let δi = (δi1, δi2)

be the corresponding response indicators: δit = 1 if yit is observed and

δit = 0 otherwise, t = 1, 2. The vector xi consists of fully observed auxiliary

variables in the data file. We assume that the data set is an independent

sample of size n from (y, δ,x). Units in the sample can be partitioned into

four groups, depending on the missing pattern of the responses:

R =
{
i : δi1 = 1, δi2 = 1

}
, P1 =

{
i : δi1 = 1, δi2 = 0

}
,

P2 =
{
i : δi1 = 0, δi2 = 1

}
, M =

{
i : δi1 = 0, δi2 = 0

}
.

We consider scenarios where the responses are missing-at-random (MAR) as

termed by Little and Rubin (2002) such that (δ ⊥ ymis) | (yobs,x), where

ymis and yobs are respectively the missing and the observed component(s)

of y. This implies that P (δ1 = 1, δ2 = 0 |y,x) = P (δ1 = 1, δ2 = 0 | y1,x),

Statistica Sinica: Preprint 
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P (δ1 = 0, δ2 = 1 |y,x) = P (δ1 = 0, δ2 = 1 | y2,x) and P (δ1 = 0, δ2 =

0 |y,x) = P (δ1 = 0, δ2 = 0 |x). The MAR assumption is less restric-

tive than the monotone missingness often used for longitudinal data and is

sufficient for the justification of our proposed procedure in Section 3.

In the absence of missing values, observations for bivariate ordinal re-

sponses can be cross-classified into an R × J table of cell counts based

on the response values. For a fixed sample size n, the cell counts of the

contingency table follow a multinomial distribution. We denote the proba-

bility of the bivariate ordinal responses falling into the cell in the rth row

and jth column by πrj = P (y1 = r, y2 = j), r = 1, . . . , R, j = 1, . . . , J .

Let π = (π11, . . . , π1J , . . . , πR1, . . . , πRJ)′ be the vector of all cell proba-

bilities. We have
∑R

r=1

∑J
j=1 πrj = 1. The marginal distributions of the

responses are of basic interest and are denoted by π1 = (π1+, . . . , πR+)′

and π2 = (π+1, . . . , π+J)′, where πr+ =
∑J

j=1 πrj and π+j =
∑R

r=1 πrj. As

dependence between the two ordinal responses is often the main focus for

analysis of bivariate data, measures of association are of primary concern.

A simple example is the conditional distribution of y1 given y2 at level j:

π1|j = (π1|j, . . . , πR|j)
′, j = 1, . . . , J , where πr|j = P (y1 = r | y2 = j) =

πrj/π+j. Another popular example is a set of different types of ordinal

odds ratios, including the local, the cumulative and the global odds ratios.

Statistica Sinica: Preprint 
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See Supplementary Material for detailed definitions.

It is sometimes more appealing to characterize the association between

two ordinal variables by a single summary index rather than a set of odds

ratios. Several such measures have been proposed based on the probabilities

of concordance and discordance. Two ordinal observations (yi1, yi2) and

(ym1, ym2) are concordant if the subject ranking higher on y1 also ranks

higher on y2; while they are discordant if the one ranking higher on y1 ranks

lower on y2. Goodman and Kruskal (1954) proposed to use the parameter

gamma defined as

γ =
(∏

c
−
∏

d

)/(∏
c

+
∏

d

)
, (2.1)

where
∏

c = 2
∑

r<k

∑
j<l πrjπkl and

∏
d = 2

∑
r<k

∑
j>l πrjπkl , corre-

sponding to the probabilities of concordance and discordance for two ran-

domly selected observations. The value of γ ranges from −1 to 1. When

|γ| = 1, there is a monotone relationship between y1 and y2, but not nec-

essarily strictly monotone. For example, γ = 1 indicates that if yi1 < ym1

then yi2 ≤ ym2. When y1 and y2 are independent, we have γ = 0, but the re-

verse statement is not true. Other examples of association measures include

Kendall’s Tau-b (Kendall (1945)) and Somers’ d (Somers (1962)), both hav-

ing the same numerator
∏

c−
∏

d . The plug-in estimator of
∏

c−
∏

d is

given by C−D, where C = 2
∑

r<k

∑
j<l π̂rjπ̂kl andD = 2

∑
r<k

∑
j>l π̂rjπ̂kl.
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doi:10.5705/ss.202016.0396



FRACTIONAL IMPUTATION FOR ORDINAL RESPONSES 9

Simon (1978) showed that any estimated measures based on C − D are

equivalent in terms of efficacy for testing independence. The Wald-type

test statistic for independence is given by

z =
(
C −D

)
/σ̂C−D , (2.2)

where σ̂C−D can be the nonnull standard error of C−D or the null standard

error using the relations πrj = πr+π+j under independence. Agresti (2010)

recommended use of the latter and claimed that the test statistic with null

standard error converges to the normal distribution faster under the null

hypothesis. The Pearson χ2 test is also applicable, but it is designed for a

general alternative and may not have good power for testing a trend, which

is of primary interest for ordinal responses. The z statistic given in (2.2)

is very natural for alternative hypotheses such as
∏

c >
∏

d or
∏

c <
∏

d ,

corresponding to a positive and negative trend.

When one or both ordinal responses contain missing values, the naive

“available-case analysis” (ACA) approach by deleting observations with

missing values is usually invalid unless the missing rate is very low or the

data are missing completely at random (MCAR) (Little and Rubin (2002)).

Two existing approaches for handling missing values in this case are propen-

sity score adjustment (PSA) and sequential regression multiple imputation

(SRMI). Details of these two methods are given in Supplementary Material

Statistica Sinica: Preprint 
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and their performances compared to our proposed method are presented in

Section 4.

3. Fully Efficient Joint Fractional Imputation

In this section we present our proposed joint fractional imputation ap-

proach to bivariate ordinal responses with missing values. We combine the

modelling strategies from the SRMI method with the specific feature of or-

dinal variables to create a single fractionally imputed data set which is well

suited for both marginal and joint analyses. The efficiency of the approach

is demonstrated through a maximum likelihood interpretation of the pro-

cedure, asymptotic properties of the estimators and results of simulation

studies.

3.1. Joint fractional imputation

The imputation models we use are inspired by the transitional modelling

mentioned in Section 1 and the sequential regression modelling used by

the SRMI method. We impose a marginal regression model on one of the

responses and a transitional regression model on the other with the first

response as a predictor. To be more specific, we consider the following

Statistica Sinica: Preprint 
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models

Marginal: g1(ηr1) = αr1 − β′1x,

Transitional: g2(ηj2) = αj2 − β′2x−
R∑

r=2

νrI(y1 = r),

(3.1)

where ηr1 = P (y1 ≤ r |x) and ηj2 = P (y2 ≤ j | y1,x) are the cumulative

probabilities given the covariates, and g1 and g2 are link functions. Let

θ1 = (α11, ..., αR1,β
′
1)
′ be the parameters in the marginal model and θ2 =

(α12, ..., αJ2,β
′
2, ν2, ..., νR)′ be the parameters in the transitional model. Both

models in (3.1) belong to the cumulative link model family. Popular choices

for the link functions include the logit, probit and c-log-log functions. There

exists an interesting latent variable interpretation for models with different

links. See She (2017) for further details. Our proposed method can be

easily adapted to more complex parametric forms of (3.1), for example, one

with nonlinear systematic components, and other ordinal regression models

based on continuation ratios or adjacent-categories.

A practical question regarding (3.1) is on which response variable to be

used for the marginal model. The decision could be based on results from

two preliminary model fittings for each response variable using available-

case analysis, choosing the better fitted model. Another important factor to

consider is the observed sample sizes for the four groups of units discussed

in Section 2. Modelling the response with a larger proportion of observed

Statistica Sinica: Preprint 
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values provides a more accurate starting point. Let y1 be the response

variable chosen for the marginal model.

The joint, marginal, and conditional probabilities of (y1, y2) given x

are fully determined by (3.1). Here P (y1 = r |x;θ1) and P (y2 = j |x, y1 =

r;θ2) are directly available from (3.1), and hence

P (y1 = r, y2 = j |x;θ1,θ2) = P (y1 = r |x;θ1)P (y2 = j |x, y1 = r;θ2) .

(3.2)

It follows that

P (y2 = j |x;θ1,θ2) =
R∑

r=1

P (y1 = r, y2 = j |x;θ1,θ2) , (3.3)

which further leads to

P (y1 = r |x, y2 = j;θ1,θ2) =
P (y1 = r, y2 = j |x;θ1,θ2)

P (y2 = j |x;θ1,θ2)
. (3.4)

The two models specified by (3.1) and the relations described in (3.2)

- (3.4) are used for our proposed joint fractional imputation method. The

single imputed data set is created in two stages.

Stage One: Create imputed values for the bivariate ordinal responses

We impute each missing value by using all possible outcomes while

keeping observed values unchanged. For fully observed units in R, the cor-

responding observations remain the same. Imputed values for the missing

responses are created based on the missing patterns.

Statistica Sinica: Preprint 
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(1) For units in P1 with only y2 missing, we replicate each observation J

times and impute the missing y2 with values 1, 2, . . . , J .

(2) For units in P2 with only y1 missing, we replicate each observation R

times and impute the missing y1 with values 1, 2, . . . , R.

(3) For units inM with both y1 and y2 missing, each observation is replicated

RJ times with the missing responses (y1, y2) replaced by all possible

combinations (r, j), r = 1, 2, . . . , R and j = 1, 2, . . . , J .

Table 1 shows the structure of the imputed data set for a toy example

with n = 4 observations, one for each of the four groups R, P1, P2 andM.

The bivariate ordinal response variables each has two levels (R = J = 2)

and there are three auxiliary variables. The imputed data set is an enlarged

data file with the same number of variables as the initial sample and a

total number of n∗ = nr + Jnp1 + Rnp2 + RJnm observations, where nr,

np1, np2 and nm are the sizes of groups R, P1, P2 and M, respectively.

For the simple example shown in Table 1 we have nr = np1 = np2 =

nm = 1, J = R = 2 and n∗ = 9. We re-index the imputed data set

with subscript m and the fractionally imputed data can be represented by

D∗ =
{

(y∗m, δ
∗
m,x

∗
m, w

∗
m), m = 1, . . . , n∗

}
, where values of y∗m = (y∗m1, y

∗
m2)

are either observed or imputed, indicated by δ∗m = (δ∗m1, δ
∗
m2). The imputed

Statistica Sinica: Preprint 
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Table 1: A Simple Example of Fractionally Imputed Data Set with n = 4

and R = J = 2.

i yi1 yi2 δi1 δi2 xi1 xi2 xi3 m w∗m

1 y11 y12 1 1 x11 x12 x13 1 w∗1

2 y21 1 1 0 x21 x22 x23 2 w∗2

2 y21 2 1 0 x21 x22 x23 3 w∗3

3 1 y32 0 1 x31 x32 x33 4 w∗4

3 2 y32 0 1 x31 x32 x33 5 w∗5

4 1 1 0 0 x41 x42 x43 6 w∗6

4 1 2 0 0 x41 x42 x43 7 w∗7

4 2 1 0 0 x41 x42 x43 8 w∗8

4 2 2 0 0 x41 x42 x43 9 w∗9

data file has an added column for the fractional weights w∗m. This is a

crucial part of the data file production and details are given below in “Stage

Two”. For public-use data files, the columns for δ∗m1 and δ∗m2 and those for

components of x that are of sensitive nature might be removed before the

release of the file for confidentiality considerations.

Stage Two: Calculate fractional weights

Statistica Sinica: Preprint 
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Each observation in the imputed data set is accompanied by a fractional

weight w∗m that can be calculated iteratively as follows.

(1) Choose initial values θ
(0)
1 ,θ

(0)
2 for the parameters in the models (3.1).

(2) Define the general weight function as

W (y, δ,x;θ1,θ2) = δ1δ2 + δ1(1− δ2)P (y2 = y2 |x, y1 = y1;θ2)

+ (1− δ1)δ2 P (y1 = y1 |x, y2 = y2;θ1,θ2)

+ (1− δ1)(1− δ2)P (y1 = y1, y2 = y2 |x;θ1,θ2). (3.5)

By the relations described in (3.2) - (3.4), the weight function is fully

determined by the models in (3.1).

(3) Calculate the initial fractional weights

w∗(0)m = W (y∗m, δ
∗
m,x

∗
m;θ

(0)
1 ,θ

(0)
2 ), m = 1, . . . , n∗. (3.6)

(4) Fit the two models in (3.1) using the imputed data set D∗ with the

weights w
∗(0)
m for the first iteration or the weights w

∗(1)
m from Step (5) for

subsequent iterations and obtain updated estimates θ
(1)
1 and θ

(1)
2 .

(5) Update the fractional weights as

w∗(1)m = W (y∗m, δ
∗
m,x

∗
m;θ

(1)
1 ,θ

(1)
2 ), m = 1, . . . , n∗.

Statistica Sinica: Preprint 
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(6) Repeat Steps (4) and (5) until the fractional weights converge. Denote

the final converged weights by w∗ = (w∗1, . . . , w
∗
n∗).

From the general weight function defined in Step (2), it can be seen that

fully observed units from R receive weight 1. The imputed observations

for units from the other three groups receive different fractional weights

depending on which group the corresponding original unit belongs to.

The initial values θ
(0)
1 ,θ

(0)
2 in Step (1) can be the estimates obtained by

the available-case analysis method for the models in (3.1): we can fit the

marginal model with data from R and P1, and fit the transitional model

with data from R alone and use the resulting estimates as θ
(0)
1 ,θ

(0)
2 . A

practical issue is that, when the size of groupR is too small, the transitional

model may not be numerically identifiable. Should that be the case, we take

initial values of νr in the transitional model as 0 and estimate the remaining

parameters in θ2 with data fromR and P2. Further details on using weights

for Step (4) are given in Section 3.2. Issues with convergence for the final

fractional weights are addressed in Section 3.3.

3.2. Analysis with fractionally imputed data set

With fractionally imputed data sets, estimation methods for complete

data can be applied with a simple modification to incorporate the fractional

Statistica Sinica: Preprint 
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weights. For example, the cell probabilities πrj can be estimated by

π̂fi
rj =

n∗∑
m=1

w∗mI(y∗m1 = r, y∗m2 = j)/
n∗∑

m=1

w∗m , (3.7)

where the superscript “fi” denotes “fractional imputation”. It is apparent

from the procedures described in Section 3.1 that
∑n∗

m=1w
∗
m = n. The

marginal probabilities πr+ of y1 can be similarly estimated by

π̂fi
r+ =

n∗∑
m=1

w∗mI(y∗m1 = r)/
n∗∑

m=1

w∗m . (3.8)

The association parameter γ can be estimated by γ̂fi =
(
Cfi−Dfi

)
/
(
Cfi+

Dfi
)
, where Cfi = 2

∑
r<k

∑
j<l π̂

fi
rj π̂

fi
kl and Dfi = 2

∑
r<k

∑
j>l π̂

fi
rj π̂

fi
kl .

In general, for parameters defined as g(π) where g(·) is a differentiable

function, we can use the simple plug-in estimator g(π̂fi), where π̂fi =

(π̂fi
11, . . . , π̂

fi
1J , . . . , π̂

fi
R1, . . . , π̂

fi
RJ) with elements given in (3.7).

Fitting regression models such as (3.1) with fractionally imputed data

sets and the incorporation of the fractional weights can be carried out in

similar ways as in (3.7) and (3.8) by solving weighted estimating equa-

tions. Further details can be found in She (2017). Variance estimation for

fractionally imputed estimators will be discussed in Section 3.5.

3.3. Maximum likelihood interpretation

We now demonstrate that the weights from the proposed joint fractional

imputation procedure do converge to a set of stable values. We show this

Statistica Sinica: Preprint 
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by starting from the likelihood approach to estimating parameters in (3.1).

In this section, the probability mass function of a discrete random variable

is denoted by f(·). The likelihood function of the observed data is given by

Lobs =
n∏

i=1

∫
f(δi |xi,yi)f(yi |xi;θ1,θ2)dµ(yi,mis) ,

where yi,mis is the missing part of the bivariate responses. Under the MAR

assumption, f(δ |x,y) = f(δ |x,yobs), which does not involve ymis and

hence can be taken to the outside of the integral. We can re-write Lobs as

Lobs =
n∏

i=1

f(δi |xi,yi,obs)
n∏

i=1

∫
f(yi1, yi2 |xi;θ1,θ2)dµ(yi,mis) ,

with only the second part involving parameters θ1 and θ2. As y1, y2 are

discrete variables, the integrals can be written as summations over all pos-

sible values. By considering the four groups of sampled units separately, we

can re-write Lobs as

Lobs ∝
∏
i∈R

f(yi1, yi2 |xi;θ1,θ2)×
∏
i∈P1

[ J∑
y2=1

f(yi1, y2 |xi;θ1,θ2)
]

×
∏
i∈P2

[ R∑
y1=1

f(y1, yi2 |xi;θ1,θ2)
]
, (3.9)

where f(y1, y2 |x;θ1,θ2) = f(y1 |x;θ1)f(y2 | y1,x;θ2), which can be ob-

tained from (3.1). The term involving group M vanishes because the dou-

ble summation of the joint probability mass function equals 1. By taking

Statistica Sinica: Preprint 
doi:10.5705/ss.202016.0396



FRACTIONAL IMPUTATION FOR ORDINAL RESPONSES 19

derivatives of lobs = logLobs with respect to θ1 and θ2 and setting them

equal to zero, we obtain the set of score functions as

0 =
∑

i∈R,P1

S1(yi1,xi;θ1) +
∑
i∈P2

R∑
y1=1

S1(y1,xi;θ1)f(y1 | yi2,xi;θ1,θ2),

0 =
∑
i∈R

S2(yi2, yi1,xi;θ2) +
∑
i∈P2

R∑
y1=1

S2(yi2, y1,xi;θ2)f(y1 | yi2,xi;θ1,θ2),

(3.10)

where S1(y1,x;θ1) = ∂ log f(y1 |x;θ1)/∂θ1 and S2(y2, y1,x;θ2) = ∂ log f

(y2 | y1,x;θ2)/∂θ2 are the score functions of θ1 and θ2 when the marginal

model and the transitional model are fitted separately with complete data,

and

f(y1 | y2,x;θ1,θ2) =
f(y1 |x;θ1)f(y2 | y1,x;θ2)∑R

y1=1 f(y1 |x;θ1)f(y2 | y1,x;θ2)
(3.11)

is the derived conditional probability mass function of y1 given y2 and x.

It is difficult to solve the score equations (3.10) directly. An alternative

approach is to apply the EM algorithm (Dempster et al. (1977)) to find

the maximum likelihood estimators of θ1,θ2. Let θ = (θ′1,θ
′
2)
′ be all the

parameters and θ(t) = (θ
(t)
1

′
,θ

(t)
2

′
)′ be the values after the tth iteration.

E-step: Calculate Q(θ |θ(t)) = E
{∑n

i=1 log f(yi |xi;θ) |yobs, δ,x;θ(t)
}

,

where yobs denotes the observed part of y. Following the same partition as

Statistica Sinica: Preprint 
doi:10.5705/ss.202016.0396



20 XICHEN SHE AND CHANGBAO WU

used for Lobs, we can re-write Q(θ |θ(t)) as:

Q(θ |θ(t)) =
∑
i∈R

log f(yi1, yi2 |xi;θ)

+
∑
i∈P1

J∑
y2=1

[
log f(yi1, y2 |xi;θ)

]
f(y2 | yi1,xi;θ

(t)
2 )

+
∑
i∈P2

R∑
y1=1

[
log f(y1, yi2 |xi;θ)

]
f(y1 | yi2,xi;θ

(t)
1 ,θ

(t)
2 )

+
∑
i∈M

R∑
y1=1

J∑
y2=1

[
log f(y |xi;θ)

]
f(y |xi;θ

(t)) . (3.12)

M-step: Obtain θ(t+1) to maximize Q(θ |θ(t)) with respect to θ. Here

θ1 and θ2 in Q(θ |θ(t)) are separable. This leads to simpler forms of score

functions. For example, for θ1, the maximum point satisfies

0 =
∑
i∈R

S1(yi1,xi;θ1) +
∑
i∈P1

J∑
y2=1

f(y2 | yi1,xi;θ
(t)
2 )S1(yi1,xi;θ1)

+
∑
i∈P2

R∑
y1=1

f(y1 | yi2,xi;θ
(t)
1 ,θ

(t)
2 )S1(y1,xi;θ1)

+
∑
i∈M

R∑
y1=1

J∑
y2=1

f(y |xi;θ
(t))S1(y1,xi;θ1) . (3.13)

For our following arguments, (3.13) are the same as the score equations

obtained by fitting the marginal model with the imputed data set weighted

by w∗(t) = (w
∗(t)
1 , ..., w

∗(t)
n∗ ), where w

∗(t)
m = W (y∗m, δ

∗
m,x

∗
m;θ

(t)
1 ,θ

(t)
2 ). The

same results can be shown for θ2. Thus our proposed joint fractional im-

putation procedures have the same spirit as the EM algorithm.
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The convergence properties of the EM algorithm were studied by Wu

(1983). In our case, Q(θ |θ(t)) is continuous with respect to θ and θ(t), and

hence the EM sequence
{
θ
(t)
1 ,θ

(t)
2

}
converges to a stationary point (θ̂1, θ̂2)

that is the solution to the score equations (3.10).

Theorem 3.1. The fractional weights
{
w∗(t)

}
defined in the proposed joint

fractional imputation procedures converge to a stable set of values denoted

by w∗ as t→∞, and the mth element of w∗ is given by

w∗m = W (y∗m, δ
∗
m,x

∗
m; θ̂1, θ̂2),

where (θ̂1, θ̂2) is the solution to the score equations (3.10).

From (3.9), data from group M can be omitted for estimating θ1 and

θ2, which makes the fourth term in (3.12) unnecessary. This implies that

our proposed JFI procedures can be simplified by excluding imputed units

of groupM in iterations of Steps (4) and (5), only updating the fractional

weights for these units with the final estimates θ̂1, θ̂2.

3.4. Asymptotic properties of fractionally imputed estimators

We begin with the estimator π̂fi = (π̂fi
11, ..., π̂

fi
1J , ..., π̂

fi
R1, ..., π̂

fi
RJ)′ of the

vector π of joint cell probabilities, where π̂fi
rj is given in (3.7). Note that π̂fi

rj

is a weighted sum of indicator functions of “non-independent” observations

in the imputed data file. To investigate the asymptotic behaviour of π̂fi
rj , it
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is essential to write it in the form of the original sample.

For the joint fractionally imputed data set, each observation in the

original sample with one or both missing responses corresponds to a “bundle

of observations” in the imputed file. For example, the i0th observation

(yi01, ∗, 1, 0,xi0) from group P1 with yi02 missing corresponds to the bundle{
(yi01, 1, 1, 0,xi0), . . . , (yi01, J, 1, 0,xi0)

}
. Suppose that this bundle of J

imputed data points are listed from the m0th to (m0+J−1)th observations

in the imputed data file D∗. By the definition of w∗m in Theorem 3.1, it is

easy to see that
∑m0+J−1

m=m0
w∗m = 1. Since the J imputed values for yi02 are

deterministically filled as 1, . . . , J , we further have

m0+J−1∑
m=m0

w∗mI(y∗m1 = r, y∗m2 = j) =

m0+J−1∑
m=m0

w∗mI(yi01 = r,m−m0 + 1 = j),

and at most one term on the right hand side is non-zero, w∗m0+j−1 I(yi01

= r) = W ((yi01, j), (1, 0),xi0 ; θ̂1, θ̂2)I(yi01 = r). Similar arguments can be

made for observations from other groups. Define the estimating function
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for πrj as

Urj(y, δ,x; πrj,θ1,θ2) = δ1δ2 I(y1 = r, y2 = j)

+ δ1(1− δ2)W ((y1, j), (1, 0),x;θ1,θ2)I(y1 = r)

+ (1− δ1)δ2W ((r, y2), (0, 1),x;θ1,θ2)I(y2 = j)

+ (1− δ1)(1− δ2)W ((r, j), (0, 0),x;θ1,θ2)− πrj .

(3.14)

It can be seen that π̂fi
rj given in (3.7) is the same as the solution to the

estimating equation

0 =
n∑

i=1

Urj(yi, δi,xi; πrj, θ̂1, θ̂2), (3.15)

which depends on preliminary estimators of θ1 and θ2. This two-step es-

timator π̂rj can be more conveniently handled as a component of solutions

to an extended system of estimating equations. Let

S
(1)
obs(y, δ,x;θ1,θ2) = E

[
S1(y1,x;θ1) |yobs, δ,x;θ1,θ2

]
,

S
(2)
obs(y, δ,x;θ1,θ2) = E

[
S2(y2, y1,x;θ2) |yobs, δ,x;θ1,θ2

]
. (3.16)

The estimators (θ̂1, θ̂2) are initially defined as the solution to the score

equations (3.10) and can be re-written as the solution to

0 =
n∑

i=1

S
(1)
obs(yi, δi,xi;θ1,θ2), 0 =

n∑
i=1

S
(2)
obs(yi, δi,xi;θ1,θ2). (3.17)
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Let U(π,θ1,θ2) = (U11, ..., U1J , ..., UR1, ..., URJ)′, Sobs(θ1,θ2) = (S
(1)
obs

′
,

S
(2)
obs

′
)′ and S(θ1,θ2) = (S′1,S

′
2)
′, where Urj, S

(1)
obs, S

(2)
obs, S1, and S2 are

short forms of functions defined in (3.14), (3.10), and (3.16). The following

theorem summarizes the asymptotic properties of π̂fi. Proofs are outlined

in the Supplementary Material.

Theorem 3.2. Let π0, θ10 and θ20 be the true values of π, θ1, and θ2.

Under the regularity conditions specified in Supplementary Material, π̂fi

with elements given by (3.7) is a consistent estimator of π. Furthermore,

n1/2(π̂fi − π0) ∼ N
(
0, V ar

[
U(π0,θ10,θ20) + κI−1obsSobs(θ10,θ20)

])
,

where “∼” represents “is asymptotically distributed as”,

Iobs =
(
E
[
−∂Sobs(θ1,θ2)/∂θ1

]
, E
[
−∂Sobs(θ1,θ2)/∂θ2

])
,

evaluated at the true values of the parameters, κ = (κ′11, ..., κ
′
1J , ..., κ

′
R1, ...,

κ′RJ)′, and

κrj = E
{
I(y1 = r, y2 = j)

[
S((r, j),x;θ10,θ20)− Sobs((r, j), δ,x;θ10,θ20)

]′}
.

Corollary 3.2.1. Let g(π) be a differentiable function of π, either scalar

or vector valued. If the asymptotic variance of n1/2(π̂fi − π0) given in

Theorem 3.2 is Σfi, then g(π̂fi) is a consistent estimator of g(π) and

n1/2
[
g(π̂fi)− g(π0)

]
∼ N

(
0, ΓΣfiΓ′

)
,
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where Γ = ∂g(π)/∂π and is evaluated at π0.

The corollary follows directly from the Continuous Mapping Theorem

and the Delta method. The marginal probabilities, various types of odds

ratios, and association measures are all special cases with different g(·). For

example, the marginal probabilities of y1 can be written as π1 = Cπ, where

C = diag(1′, . . . ,1′) is aR× (RJ) block diagonal matrix and 1 = (1, . . . , 1)′

with length J . It follows that Γ = C in this case.

3.5. Variance estimation

We now briefly discuss issues with variance estimation. The lineariza-

tion method uses the expressions of asymptotic variances given in Corollary

3.2.1 and replaces unknown population quantities by estimates using the

imputed data set. For example, the quantity κrj defined in Theorem 3.2

can be estimated by κ̂rj, which is computed as

1
n

∑n∗

m=1 I(y∗m1 = r, y∗m2 = j)
[
S((r, j),x∗m; θ̂1, θ̂2)− Sobs((r, j), δ

∗
m,x

∗
m; θ̂1, θ̂2)

]
.

The linearization method, however, requires detailed derivations of the

asymptotic variance, which can be cumbersome for parameters with a com-

plex structure such as γ. More importantly, the linearization method relies

on full access to the information used in the imputation procedure, includ-

ing the response indicators δi and all of the covariates xi. For public-use
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data files, some information is suppressed and not available to the data

users, in which cases, the linearization method is not applicable.

Resampling methods such as the jackknife (Rao and Shao (1992)) and

the bootstrap (Efron (1994)) are an attractive alternative approach for vari-

ance estimation with imputed estimators. Let bi = (yi, δi,xi) denote the

ith observation in the original data file D. The bootstrap variance estimator

of g(π̂fi) can be computed through the following steps.

(1) Draw a simple random sample of size n from the original sample D with

replacement; denote the bootstrap sample as B1 = {b̃(1)i , i = 1, . . . , n}.

(2) Apply the joint fractional imputation procedure to the bootstrap sample

B1; let θ̂(1) = (θ̂
(1)′

1 , θ̂
(1)′

2 )′ and π̂(1) be the resulting estimate of θ =

(θ′1,θ
′
2)
′ and π; compute g

(
π̂(1)

)
.

(3) Repeat Steps (1) and (2) a large number B times; let
{
g
(
π̂(1)

)
, . . . ,

g
(
π̂(B)

)}
be the resulting estimates from the repeated bootstrap sam-

ples. The bootstrap variance estimator of g(π̂fi) is computed as

var
[
g(π̂fi)

]
=

1

B

B∑
k=1

[
g
(
π̂(k)

)
−B−1

B∑
k=1

g
(
π̂(k)

)]2
.

The validity of the bootstrap variance estimator is discussed in the

Supplementary Material. The resampling methods are often preferred for
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creating public-use files, where the fractional weights based on the boot-

strap samples are attached as additional columns of replication weights to

the data file and variance estimation is done by repeatedly applying the

standard analysis with these replication weights.

A practical issue with the resampling methods, especially for the boot-

strap approach, is that when the sample size is small, the algorithm may

not converge numerically for some bootstrap samples. In our simulation

studies discussed in Section 4 with sample size n = 200 and n = 500, the

occurrence rate of such “singular” cases is negligible. For smaller sample

sizes, this problem needs to be properly dealt with. From the arguments

given in the Supplementary Material, most of the variation of the boot-

strap estimator θ̂(k) = (θ̂
(k)′

1 , θ̂
(k)′

2 )′ can be captured by first-order Taylor

expansion around θ̂. Therefore, a possible workaround is to use the one-

step Newton method discussed in Yang and Kim (2016), where for every

bootstrap sample, θ̂(k) is calculated by one-step iteration from θ̂ = (θ̂′1, θ̂
′
2)
′:

θ̂(k) = θ̂−


n(k)∗∑
m=1

◦
H(y∗m, δ

∗
m,x

∗
m; θ̂1, θ̂2)


−1

n(k)∗∑
m=1

H(y∗m, δ
∗
m,x

∗
m; θ̂1, θ̂2)

 ,

where n(k)∗ is the size of the imputed data file created in Stage One based

on the kth bootstrap sample,

H(y, δ,x;θ1,θ2) = W (y, δ,x;θ1,θ2)S(y,x;θ1,θ2),
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and
◦
H(θ1,θ2) = ∂H(θ1,θ2)/∂(θ′1,θ

′
2). We then obtain the fractional

weights and estimator π̂(k) based on θ̂(k).

4. Simulation Studies

We report results from simulation studies on the finite sample perfor-

mance of the proposed estimators under the joint fractional imputation,

with comparisons to existing methods. We considered bivariate ordinal

responses (y1, y2), each with three categories, and two covariates: a contin-

uous variable x1 generated from Exp (1) and a discrete variable x2 following

Bernoulli (0.5). The responses (y1, y2) followed the marginal and the tran-

sitional models given in (3.1). To apply the PSA method, we simulated the

response indicators in a way that the propensity scores followed a baseline-

category logit model.

The parameters in the propensity score models were carefully chosen

such that the proportions of units in the four groups R, P1, P2 and M

were controlled to have desirable patterns to mimic two real-world scenar-

ios. The first scenario had the majority of the sample fully observed, with

proportions (0.5, 0.2, 0.2, 0.1) for the four groups. For the second scenario,

only one of the two responses was observed for the majority of sampled

units, with the proportions (0.2, 0.3, 0.4, 0.1). The simulation studies con-

sisted of three parts: point estimators, variance estimators, and tests of
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independence.

Table 2: ARB (in %) and MSE (×104) for Estimating π+1

RP n COMP ACA PSA SRMI5 JFI

5221 200 ARB 0.2 7.1 0.04 1.0 0.03

MSE (8.9) (14.7) (12.1) (11.8) (11.6)

500 ARB 0.33 7.7 0.3 0.2 0.3

MSE (3.6) (8.3) (5.2) (5.0) (4.9)

2341 200 ARB — 8.8 0.008 1.5 0.1

MSE — (20.6) (12.9) (12.5) (12.2)

500 ARB — 8.5 0.2 0.2 0.3

MSE — (10.5) (5.1) (5.1) (4.9)

Table 2 presents results from the first part of the simulation on Abso-

lute Relative Bias (ARB, in %) and Mean Squared Error (MSE, multiplied

by 104) of different estimators of the first element π+1 of the marginal prob-

abilities of y2 under the two response patterns (RP, indicated by 5221 and

2341) and two sample sizes n = 200 and n = 500. The complete sample

estimator without any missing values is denoted by COMP and is listed

as the gold-standard reference; the estimator from available-case analysis
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is denoted as ACA; the propensity score adjusted estimator is indicated by

PSA; the SRMI method with 5 imputed data sets is denoted by SRMI5.

Our proposed joint fractional imputation estimator is denoted by JFI. Sim-

ulation results for the association measure γ are summarized in Table 3.

Table 3: ARB (in %) and MSE (×104) for Estimating γ

RP n COMP ACA PSA SRMI5 JFI

5221 200 ARB 0.5 8.7 0.9 1.5 0.04

MSE (7.3) (15.0) (25.4) (13.2) (12.7)

500 ARB 0.04 9.1 0.4 1.1 0.1

MSE (2.8) (6.9) (13.1) (5.3) (5.0)

2341 200 ARB — 10.9 5.0 10.6 0.5

MSE — (42.3) (87.8) (27.9) (25.1)

500 ARB — 12.5 3.9 7.8 0.03

MSE — (17.2) (56.8) (11.3) (9.5)

The simulation results show clearly that the ACA estimator is not con-

sistent for either the marginal probability π+1 or the association measure

γ, while PSA, SRMI5, and JFI provide comparable results for estimating

marginal probabilities with negligible biases. For the estimation of γ, the
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PSA estimator is far less efficient than the two imputation-based estima-

tors. The SRMI estimator is close to the proposed JFI estimator under the

first response pattern but has unreasonably large biases under the second

scenario where there are only 20% of the sampled units having both re-

sponses observed. Our proposed JFI estimator performs well for all cases

and is uniformly better than the alternative methods considered in the sim-

ulation.

The second part of the simulation was on variance estimation. For

the SRMI method, the variance estimator used Rubin’s combining rule; for

the JFI method, two versions of variance estimators were considered: the

linearization method (JFIL) and the bootstrap method (JFIB). Table 4 re-

ports the Absolute Relative Bias (ARB, in %) of the variances estimators

for the parameters π+1 and γ. For estimating π+1, all variance estimators

have acceptable ARB. For estimating γ, the variance estimator of the SRMI

estimator has large negative biases, which suggests that the variance esti-

mator based on Rubin’s combining rule underestimates the true variance.

Both the linearization and the bootstrap variance estimators for the JFI

method are consistent.

The third part of the simulation was on tests of independence between

the two ordinal responses. We used the Wald-type test statistic given in
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Table 4: ARB (in %) of Variance Estimators for π+1 and γ

π+1 γ

RP n SRMI5 JFIL JFIB SRMI5 JFIL JFIB

5221 200 3.0 5.7 3.7 (−)16.9 5.1 3.3

500 8.0 1.3 2.2 (−)16.0 4.1 3.6

2341 200 4.4 4.0 3.7 (−)24.2 1.4 4.5

500 7.5 2.1 1.3 (−)26.4 2.3 2.3

(2.2) based on a particular pair of point and variance estimators with sig-

nificance level of 0.05. By tuning the parameters in (3.1), we simulated the

power of tests for a series of cases in which the true value of the associ-

ation measure γ increased from 0 to 1, departing gradually from the null

hypothesis of independence.

The power of a test was computed as the simulated rejection proba-

bility under the given scenario. Plots of the power function for missing

pattern 2341 are shown in Figures 1 and 2, corresponding to sample sizes

at n = 200 and 500. Each plot shows the power functions of three tests:

JFI_non, JFI_nul and SRMI. The first test uses the regular linearization

variance estimator without considering the null hypothesis; the second test

Statistica Sinica: Preprint 
doi:10.5705/ss.202016.0396



FRACTIONAL IMPUTATION FOR ORDINAL RESPONSES 33

uses the linearization variance estimator under the null hypothesis (i.e.,

πrj = πr+π+j); the third test uses the regular point and variance estimators

for the SRMI method. Test results using bootstrap variance estimators

are very similar to the ones using linearization variance estimators and are

not reported here. The horizontal line in each figure represents the nomi-

nal value 0.05 for the level of the test. Plots for missing pattern 5221 are

presented in Supplementary Material.

Here are three observations from the power functions. The test based on

the SRMI method has type I errors bigger than the nominal value 0.05, and

it becomes more pronounced when the sample size is small or the proportion

of units in R is small. The type I errors for the two JFI-based tests are

very close to the nominal value and both tests have similar power. The

response patterns have significant impact on the power of the tests, with

the pattern 5221 producing more powerful tests than the pattern 2341. The

first observation is in line with the results on underestimation of variance for

the SRMI method. The second observation shows that there is no significant

advantage of using the variance estimator under the null hypothesis. The

last observation is in agreement with common sense, since data with the

pattern 5221 provide more information on the association between the two

response variables than the other pattern.
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5. Concluding Remarks

Statistical analysis with missing data faces two scenarios. It could be

a data set of small or moderate size collected for specific scientific pur-

poses with the analysis carried out by specific researchers who have full

access to the data set and are equipped with a solid knowledge of statistics.

It is increasingly common, however, that data sets are collected by a large

research team or a statistical agency and contain information on many vari-

ables. The researchers handling missing data only serve as data suppliers

who create one or several complete data sets with missing values properly

treated. The processed data sets are supposed to be released to or can

be accessed by multiple users with possibly restricted access for different

research objectives. Imputation for missing values is widely accepted for

creating public-use data files to provide a consistent platform for multiple

users.

Our proposed joint fractional imputation method for bivariate ordinal

responses possesses several attractive features. It is fully capable of dealing

with the first scenario. The procedure produces a single imputed data set

that leads to valid and efficient inferences for commonly encountered anal-

ysis problems. Our discussions on validity and efficiency of analysis with

the fractionally imputed data set have focused on estimation of joint and
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marginal probabilities and association measures and on test of indepen-

dence. Regression analysis was only discussed as part of the model building

process for the imputation procedure. It is shown in She (2017) that the

fractionally imputed data set also leads to valid regression analysis involv-

ing one or both ordinal responses if the set of regressors for the analysis

model is the same or a subset of the covariates used in the imputation model

(3.1). The proposed procedure accompanied by the resampling methods de-

scribed in Section 3.5 is ideally suited for creating public-use data files in

the second scenario, particularly for large complex survey data. The fac-

tional weights become part of the survey weights and variance estimation

is done through the use of additional columns of replication weights. The

proposed procedure still provides valid inference even when the data users

only have partial access to the available information.

Supplementary Material

The Supplementary Material contains discussions on modeling tech-

niques for complete ordinal responses and a detailed review on existing

methods for handling missing ordinal observations. Regularity conditions,

the proof of Theorem 3.2, and justification of the bootstrap variance esti-

mator, as well as two additional plots for the power functions of the tests,

are also presented.
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Figure 1: Power Function with n = 200 and Pattern 2341
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Figure 2: Power Function with n = 500 and Pattern 2341
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