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SUBSAMPLING FOR GENERAL STATISTICS UNDER LONG RANGE
DEPENDENCE WITH APPLICATION TO CHANGE POINT ANALYSIS

ANNIKA BETKEN AND MARTIN WENDLER

Abstract. In the statistical inference for long range dependent time series the shape of the limit distri-

bution typically depends on unknown parameters. Therefore, we propose to use subsampling. We show

the validity of subsampling for general statistics and long range dependent subordinated Gaussian processes

that satisfy mild regularity conditions. We apply our method to a self-normalized change-point test statistic

so that we can test for structural breaks in long range dependent time series without having to estimate

nuisance parameters. The finite sample properties are investigated in a simulation study. We analyze three

data sets and compare our results to the conclusions of other authors.
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1. Introduction

1.1. Long Range Dependence. While most statistical research is done for independent

data or short memory time series, in many applications there are also time series with long

memory in the sense of slowly decaying correlations: in hydrology (starting with the work

of Hurst (1956)), in finance (e.g. Lo (1989)), in the analysis of network traffic (e.g. Leland

et al. (1994)), and in many other fields of research.

As model of dependent time series we consider subordinated Gaussian processes: Let

(ξn)n∈N be a stationary sequence of centered Gaussian variables with Var(ξn) = 1 and co-

variance function γ satisfying

γ(k) := Cov(ξ1, ξk+1) = k−DLγ(k)
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2 ANNIKA BETKEN AND MARTIN WENDLER

for D > 0 and a slowly varying function Lγ. If D < 1, the spectral density f of (ξn)n∈N is

not continuous, but has a pole at 0. The spectral density has the form

f(x) = |x|D−1Lf (x)

for a function Lf which is slowly varying at the origin (see Proposition 1.1.14 in Pipiras

and Taqqu (2011)). Let G : R → R be a measurable function such that E[G2(ξ1)] < ∞.

The stochastic process (Xn)n∈N given by Xn := G(ξn) is called long range dependent if∑∞
n=0 |Cov(X1, Xn+1)| =∞, and short range dependent if

∑∞
n=0 |Cov(X1, Xn+1)| <∞.

In limit theorems for the partial sum Sn =
∑n

i=1 Xi, the normalization and the shape

of the limit distribution not only depend on the decay of the covariances γ(k) as k → ∞,

but also on the function G. More precisely, Taqqu (1979) and Dobrushin and Major (1979)

independently proved that

1

Lγ(n)r/2nH

n∑
i=1

(Xi − E[Xi])⇒ C(r,H)grZr,H(1)

if the Hurst parameter H := max{1− rD
2
, 1

2
} is greater than 1

2
. Here, r denotes the Hermite

rank of the function G, C(r,H) is a constant, gr is the first non-zero coefficient in the

expansion of G as a sum of Hermite polynomials, and Zr,H is a Hermite process. For more

details on Hermite polynomials and limit theorems for subordinated Gaussian processes we

recommend the book of Pipiras and Taqqu (2011). In this case (rD < 1), the process

(Xn)n∈N is long range dependent as the covariances are not summable. The limiting random

variable C(r,H)Zr,H(1) is Gaussian only if the Hermite rank r = 1.

If rD = 1, the process (Xn)n∈N might be short or long range dependent according to the

slowly varying function Lγ. If rD > 1, the process is short range dependent. In this case,

the partial sum
∑n

i=1(Xi−E[Xi]) has (with proper normalization) always a Gaussian limit.
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SUBSAMPLING UNDER LONG RANGE DEPENDENCE 3

There are other models for long memory processes: fractionally integrated autoregressive

moving average processes can show long range dependence, see Granger and Joyeux (1980);

general linear processes with slowly decaying coefficients were studied by Surgailis (1982).

1.2. Subsampling. In applications the parameters D, r, and the slowly varying function Lγ

are unknown and thus the scaling needed in the limit theorems and the shape of the asymp-

totic distribution are not known. That makes it difficult to use the asymptotic distribution

for statistical inference. The situation is even more complicated if one is not interested in

partial sums, but in nonlinear statistical functionals: U -statistics can have a limit distri-

bution that is a linear combination of random variables related to different Hermite ranks,

see Beutner and Zähle (2014); self-normalized statistics typically converge to quotients of

two random variables (e.g. McElroy and Politis (2007)); the change-point test proposed by

Berkes et al. (2006) converges to the supremum of a fractional Brownian bridge under the

alternative hypothesis.

To deal with the unknown shape of the limit distribution and to avoid the estimation

of nuisance parameters, one would like to use nonparametric methods. However, Lahiri

(1993) has shown that the popular moving block bootstrap might fail under long range

dependence. Another nonparametric approach is subsampling (also called sampling window

method), first studied by Politis and Romano (1994), Hall and Jing (1996), and Sherman

and Carlstein (1996). The idea is the following: Let Tn = Tn(X1, . . . , Xn) be a series of

statistics converging in distribution to a random variable T . As we typically have just one

sample, we observe only one realization of Tn and therefore cannot estimate its distribution

If l = ln is a sequence with ln →∞ and ln = o(n), then Tl also converges in distribution to T

and we have multiple (though dependent) realizations Tl(X1, . . . , Xl), Tl(X2, . . . , Xl+1),. . .,

Tl(Xn−l+1, . . . , Xn), that can be used to calculate the empirical distribution function.

We do not need to know the limit distribution. In our example (the self-normalized change

point test statistic, see Section 3), the shape of the distribution depends on two unknown
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4 ANNIKA BETKEN AND MARTIN WENDLER

parameters, but we can still apply subsampling. However, for other statistics, one needs an

unknown scaling to achieve convergence. If this is the case, one has to estimate the scaling

parameters before applying subsampling.

Under long range dependence the validity of subsampling for the sample mean X̄ =

1
n

∑n
i=1 Xi has been investigated in the literature starting with Hall, Jing, and Lahiri (1998)

for subordinated Gaussian processes. Nordman and Lahiri (2005) and Zhang et al. (2013)

studied linear processes with slowly decaying coefficients. For the case of Gaussian processes,

an alternative proof can be found in the book of Beran et al (2013).

It was noted by Fan (2012) that the proof in Hall et al. (1998) can be easily generalized

to other statistics than the sample mean. Unfortunately, the assumptions on the Gaussian

process are restrictive (see also McElroy and Politis (2007)). Their conditions imply that

the sequence (ξn)n∈N is completely regular, which might hold for some special cases (see

Ibragimov and Rozanov (1978)), but excludes many examples:

Example 1 (Fractional Gaussian Noise). Let (BH(t))t∈[0,∞) be a fractional Brownian motion,

that means a centered, self-similar Gaussian process with covariance function

E [BH(t)BH(s)] =
1

2

(
|t|2H + |s|2H − |t− s|2H

)
for some H ∈ (1

2
, 1). Then, (ξn)n∈N given by ξn = BH(n) − BH(n − 1) is called fractional

Gaussian noise. By self-similarity we have

corr

( n∑
i=1

ξi,
3n∑

j=2n+1

ξj

)
= corr (BH(n), BH(3n)−BH(2n))

= corr (BH(1), BH(3)−BH(2)) .
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SUBSAMPLING UNDER LONG RANGE DEPENDENCE 5

As a result, the correlations of linear combinations of observations in the past and future do

not vanish if the gap between past and future grows. Thus, fractional Gaussian noise is not

completely regular.

Jach, McElroy and Politis (2012) provide a more general result on the validity of sub-

sampling, but under assumptions that are difficult to check in practice (Hermite rank 1,

Lipschitz-continuity of G and of the test statistic Tn, see Jach, McElroy, and Politis (2016)).

The main aim of this paper is to establish the validity of the subsampling method for gen-

eral statistics Tn without assumptions on the continuity of the statistic, on the function G,

and only mild assumptions on the Gaussian process (ξn)n∈N. Independently of our research,

similar theorems have been proved by Bai, Taqqu, and Zhang (2016). We discuss their

results after our main theorem in Section 2. In Section 3 we will apply our theorem to a

self-normalized, robust change-point statistic. The finite sample properties of this test is

dealt with in a simulation study in Section 4. The proof of the main result, and the lemmas

needed, can be found in the the supplementary material, Sections S3 and S4.

2. Main Results

2.1. Statement of the Theorem. For a statistic Tn = Tn(X1, . . . , Xn), the subsampling

estimator F̂l,n of the distribution function FTn with FTn(t) = P (Tn ≤ t) is, for t ∈ R,

F̂l,n(t) =
1

n− l + 1

n−l+1∑
i=1

1{Tl(Xi,...,Xi+l−1)≤t}.

Next, we state our assumptions:

Assumption 1. (Xn)n∈N is a stochastic process and (Tn)n∈N is a sequence of statistics such

that Tn ⇒ T in distribution as n → ∞ for a random variable T with distribution function

FT .
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6 ANNIKA BETKEN AND MARTIN WENDLER

This is a standard assumption for subsampling, see for example Politis and Romano (1994).

If the distribution does not converge, we cannot expect the distribution of Tl to be close to

the distribution of Tn.

Assumption 2. Xn = G(ξn) for a measurable function G and a stationary, Gaussian process

(ξn)n∈N with covariance function

γ(k) := Cov(ξ1, ξ1+k) = k−DLγ(k)

such that

(1) D ∈ (0, 1] and Lγ is a slowly varying function with

max
k̃∈{k+1,...,k+2l′−1}

∣∣∣Lγ(k)− Lγ(k̃)
∣∣∣ ≤ K

l′

k
min {Lγ(k), 1}

for a constant K <∞ and all l′ ∈ {lk, . . . , k};

(2) (ξn)n∈N has a spectral density f with f(x) = |x|D−1Lf (x) for a slowly varying function

Lf bounded away from 0 on [0, π] such that limx→0 Lf (x) ∈ (0,∞] exists.

We do not impose any conditions on the function G: no finite moments or continuity are

required, so that our results are applicable for heavy-tailed random variables and robust test

statistics. In the next subsection we will show that Assumption 2 holds for some standard

examples of long range dependent Gaussian processes.

Assumption 3. Let (ln)n∈N be a non-decreasing sequence of integers such that l = ln →∞

as n→∞ and ln = O
(
n(1+D)/2−ε) for some ε > 0.

If the dependence of the underlying process (ξn)n∈N gets stronger, the range of possible

values for l gets smaller. A popular choice for the block length is l ≈ C
√
n (see for example

Statistica Sinica: Preprint 
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SUBSAMPLING UNDER LONG RANGE DEPENDENCE 7

Hall, Jing and Lahiri (1998)), which is allowed for all D ∈ (0, 1]. Now, we can state our

main result:

Theorem 1. Under Assumptions 1, 2 and 3 we have

FTn(t)− F̂l,n(t)
P−→ 0

as n→∞ for all points of continuity t of FT . If FT is continuous, then

sup
t∈R

∣∣∣FTn(t)− F̂l,n(t)
∣∣∣ P−→ 0.

As a result, we have a consistent estimator for the distribution function of Tn. It is possible

to build tests and confidence intervals based on this estimator.

If D > 1, the process (ξn)n∈N is strongly mixing due to Theorem 9.8 in the book of Bradley

(2007). The statements of Theorem 1 hold by Corollary 3.2 in Politis and Romano (1994)

for any block length l satisfying l→∞ and l = o(n).

In a recent article, Bai et al. (2016) have shown that subsampling is consistent for long

range dependent Gaussian processes without any extra assumptions on the slowly varying

function Lf , but with a stronger restriction on the block size l, namely l = o(n2−2HLγ(n)).

In another article by Bai and Taqqu (2015), the validity of subsampling is shown under the

mildest possible assumption on the block length (l = o(n)). The condition on the spectral

density is slightly stronger than our condition, the case limx→0 Lf (x) =∞ is not allowed.

2.2. Examples for our Assumptions.

Example 2 (Fractional Gaussian Noise). The covariance function of fractional Gaussian

Noise (ξn)n∈N with Hurst parameter H can be rewritten (with the a Taylor expansion) as

γ(k) =
1

2

(
|k − 1|2H − 2|k|2H + |k + 1|2H

)
= H(2H − 1)

(
k−D + h(k)k−D−1

)
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8 ANNIKA BETKEN AND MARTIN WENDLER

for D = 2 − 2H and a function h bounded by a constant M < ∞. Hence, Lγ(k) =

H(2H − 1)(1 + h(k)/k), and for all k̃ ≥ k

∣∣∣Lγ(k)− Lγ(k̃)
∣∣∣ ≤ H(2H − 1)

∣∣∣∣h(k)

k
− h(k̃)

k̃

∣∣∣∣ ≤ H(2H − 1)
M

k
=: K

1

k
,

implying part 1 of Assumption 2. For the second part note that the spectral density f

corresponding to fractional Gaussian noise is

f(λ) = C(H)(1− cos(λ))
∞∑

k=−∞

|λ+ 2kπ|D−3

= λD−1C(H)
1− cos(λ)

λ2

∑∞
k=−∞ |λ+ 2kπ|D−3

λD−3
,

see Sinai (1976). The slowly varying function

Lf (λ) = C(H)
1− cos(λ)

λ2

∑∞
k=−∞ |λ+ 2kπ|D−3

λD−3

is bounded away from 0 because this holds for the first factor (1− cos(λ))/λ2 and since

∑∞
k=−∞ |λ+ 2kπ|D−3

λD−3
≥ |λ+ 0π|D−3

λD−3
= 1.

Example 3 (Gaussian FARIMA processes). Let (εn)n∈Z be Gaussian white noise with vari-

ance σ2 = Var(ε0). Then, for d ∈ (0, 1/2), a FARIMA(0, d, 0) process (ξn)n∈N is given

by

ξn =
∞∑
j=0

Γ(j + d)

Γ(j + 1)Γ(d)
εn−j.

According to Pipiras and Taqqu (2011), Section 1.3, it has the specral density

f(λ) =
σ2

2π
|1− e−iλ|−2d = |λ|D−1 σ

2

2π

(
|λ|

|1− e−iλ|

)1−D

Statistica Sinica: Preprint 
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SUBSAMPLING UNDER LONG RANGE DEPENDENCE 9

with D = 1 − 2d ∈ (0, 1). As |1 − e−iλ| ≤ λ, part 2 of Assumption 2 holds. For part 1 we

have, by Corollary 1.3.4 of Pipiras and Taqqu (2011), that

γ(k) = σ2 Γ(1− 2d)

Γ(1− d)Γ(d)

Γ(k + d)

Γ(k − d+ 1)
.

Using Stirling’s formula,

γ(k) = σ2 Γ(1− 2d)

Γ(1− d)Γ(d)
e−2d+1k2d−1

(k + d

k

)k+d( k

k − d+ 1

)k−d+1(
1 +O

(1

k

))
.

A Taylor expansion of (k+d)
(

log(k+d)− log(k)
)

+(k−d+1)
(

log(k)− log(k−d+1)
)

gives

γ(k) = k−DLγ(k) with Lγ(k) = C + O(1/k) for some constant C. Part 1 of Assumption 2

follows in the same way as in Example 2.

It would be interesting to know, if the sampling window method is also consistent for long

range dependent linear processes and general statistics without the assumption of Gaussian-

ity. However, this is beyond the scope of this article.

3. Applications

3.1. Robust, Self-Normalized Change-Point Test. Our main motivation for consid-

ering subsampling procedures to approximate the distribution of test statistics consists in

avoiding the choice of unknown parameters. As an example we consider a self-normalized

test statistic that can be applied to detect changes in the mean of long range dependent and

heavy-tailed time series.

Statistica Sinica: Preprint 
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10 ANNIKA BETKEN AND MARTIN WENDLER

Given observations X1, . . . , Xn with Xi = µi +G(ξi) we are concerned with a decision on

the change-point problem

H : µ1 = . . . = µn

against

A : µ1 = . . . = µk 6= µk+1 = . . . = µn for some k ∈ {1, . . . , n− 1} .

Under the hypothesis H we assume that the data generating process (Xn)n∈N is stationary,

while under the alternative A there is a change in location at an unknown point in time.

This problem has been widely studied: Csörgő and Horváth (1997) give an overview of

parametric and non-parametric methods that can be applied to detect change-points in

independent data.

Many testing procedures are based on Cusum (cumulative sum) test statistics. When

applied to data sets generated by long range dependent processes, these change-point tests

often falsely reject the hypothesis of no change in the mean (see also Baek and Pipiras (2014))

and are sensitive to outliers in the data.

Testing procedures that are based on rank statistics have the advantage of not being

sensitive to outliers in the data. Rank-based tests were introduced by Antoch et al. (2008) for

detecting changes in the distribution function of independent random variables. Wilcoxon-

type rank tests have been studied by Wang (2008) in the presence of linear long memory

time series and by Dehling, Rooch, and Taqqu (2013) for subordinated Gaussian sequences.

The normalization of the Wilcoxon change-point test statistic, as proposed in Dehling

et al. (2013), depends on the slowly varying function Lγ, the LRD parameter D, and the

Hermite rank r of the class of functions 1{Xi≤x} − F (x), x ∈ R. Many authors assume r = 1

and, while there are well-tried methods to estimate D, estimating Lγ does not seem to be

Statistica Sinica: Preprint 
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SUBSAMPLING UNDER LONG RANGE DEPENDENCE 11

an easy task. For this reason, the Wilcoxon change-point test does not seem to be suitable

for applications.

To avoid these issues, Betken (2016) proposed an alternative normalization for the Wilcoxon

change-point test. This normalization approach was originally established by Lobato (2001)

for decision on the hypothesis that a short range dependent stochastic process is uncorrelated

up to a lag of a certain order. The normalization has recently been applied to change-point

test statistics: Shao and Zhang (2010) define a self-normalized Kolmogorov-Smirnov test

statistic that serves to identify changes in the mean of short range dependent time series;

Shao (2011) adopted the normalization so as to define an alternative normalization for a

Cusum test that detects changes in the mean of short range dependent as well as long range

dependent time series.

To construct a robust test statistic, we introduce the ranksRi := rank(Xi) =
∑n

j=1 1{Xj≤Xi}

for i = 1, . . . , n. It seems natural to transfer the normalization that has been used in Shao

(2011) to the Cusum test statistic of the ranks in order to establish a self-normalized version

of the Wilcoxon test statistic, which is robust to outliers in the data. The corresponding

two-sample test statistic is

Gn(k) :=

∑k
i=1Ri − k

n

∑n
i=1 Ri{

1
n

∑k
t=1 S

2
t (1, k) + 1

n

∑n
t=k+1 S

2
t (k + 1, n)

}1/2
,

where

St(j, k) :=
t∑

h=j

(
Rh − R̄j,k

)
with R̄j,k :=

1

k − j + 1

k∑
t=j

Rt.

The self-normalized Wilcoxon change-point test rejects the hypothesis for large values of

maxk∈{bnτ1c,...,bnτ2c} |Gn(k)|, where 0 < τ1 < τ2 < 1. The proportion of the data that is

included in the calculation of the supremum is restricted by τ1 and τ2. A common choice for

these parameters is τ1 = 1− τ2 = 0.15; see Andrews (1993).
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12 ANNIKA BETKEN AND MARTIN WENDLER

For long range dependent subordinated Gaussian processes (Xn)n∈N, the asymptotic dis-

tribution of the test statistic under the hypothesis H can be derived by the Continuous

Mapping Theorem (see Theorem 1 in Betken (2016)):

Tn(τ1, τ2) := max
k∈{bnτ1c,...,bnτ2c}

|Gn(k)|

⇒ sup
τ1≤λ≤τ2

|Zr(λ)− λZr(1)|{ ∫ λ
0

(Zr(t)− t
λ
Zr(λ))2dt+

∫ 1−λ
0

(Z?
r (t)− t

1−λZ
?
r (1− λ))2dt

}1/2
.

Here, Zr is an r-th order Hermite process with Hurst parameter H := max{1 − rD
2
, 1

2
}

and Z?
t (r) = Zr(1) − Zr(1 − t). A comparison of Tn(τ1, τ2) with the critical values of its

limit distribution still presupposes determination of these parameters. We can bypass the

estimation of D and r by applying the subsampling procedure since Assumption 1 holds.

Under the alternative A (change in location), we also have to find the quantiles of the

distribution under the hypothesis (stationarity). As the block length l is much shorter

than the sample size n, most blocks are not contaminated by the change-point so that the

distribution of the test statistic does not change much. The accuracy and the power of the

test will be investigated by a simulation study in Section 4.

If the distribution of Xi is not continuous, there might be ties in the data and consideration

of the ranks Ri =
∑n

j=1 1{Xj≤Xi} may not be appropriate. We propose to use a modified

statistic based on the modified ranks R̃i =
∑n

j=1(1{Xj<Xi} + 1
2
1{Xj=Xi}) in this case. The

convergence of the corresponding self-normalized change point test follows from results of

Dehling, Rooch and Wendler (2017), see the supplementary material, Section S1, for details.

The test statistic Tn(τ1, τ2) is designed for the detection of a single change-point. An ex-

tension of the testing procedure that allows for multiple change-points is possible by adapting

Shao’s testing procedure which takes this problem into consideration (see Shao (2011)). For

convenience, we describe the construction of the modified test statistic in the case of two

Statistica Sinica: Preprint 
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SUBSAMPLING UNDER LONG RANGE DEPENDENCE 13

change-points. The general idea consists in dividing the sample given by X1, . . . , Xn ac-

cording to the pair (k1, k2) of potential change-point locations and to compute the original

test statistic with respect to the subsamples X1, . . . , Xk2 and Xk1+1, . . . , Xn. We reject the

hypothesis for large values of the sum of the corresponding single statistics.

For ε ∈ (0, τ2−τ1) consider the test statistic Tn(τ1, τ2, ε) := sup(k1,k2)∈Ωn(τ1,τ2,ε) |Gn(k1, k2)|,

where Ωn(τ1, τ2, ε) := {(k1, k2) : bnτ1c ≤ k1 < k2 ≤ bnτ2c, k2 − k1 ≥ bnεc} and

Gn(k1, k2) :=

∣∣∣∑k1
i=1R

(1)
i − k1

k2

∑k2
i=1 R

(1)
i

∣∣∣{
1
n

∑k1
t=1

(
S

(1)
t (1, k1)

)2
+ 1

n

∑k2
t=k1+1

(
S

(1)
t (k1 + 1, k2)

)2
}1/2

+

∣∣∣∑k2
i=k1+1R

(2)
i − k2−k1

n−k1

∑n
i=k1+1R

(2)
i

∣∣∣{
1
n

∑k2
t=k1+1

(
S

(2)
t (k1 + 1, k2)

)2
+ 1

n

∑n
t=k2+1

(
S

(2)
t (k1 + 1, n)

)2
}1/2

,

with

R
(1)
i :=

k2∑
j=1

1{Xj≤Xi}, R
(2)
i . =

n∑
j=k1+1

1{Xj≤Xi},

S
(h)
t (j, k) :=

t∑
i=j

(
R

(h)
i − R̄

(h)
j,k

)
with R̄

(h)
j,k :=

1

k − j + 1

k∑
t=j

R
(h)
t .

The distribution of the test statistic converges to a limit T (r, τ1, τ2, ε) (see the supplementary

material, Section S2), so subsampling can be applied. The critical values corresponding to

the asymptotic distribution of the test statistic are reported in Table 1.

3.2. Data Examples. We revisit some data sets from the literature. We use the self-

normalized Wilcoxon change-point test combined with subsampling and compare our findings

to the conclusions of other authors.

The plot in Figure 1 depicts the annual volume of discharge from the Nile river at Aswan

in 108 m3 for the years 1871 to 1970. The data set has been analyzed for the detection

Statistica Sinica: Preprint 
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14 ANNIKA BETKEN AND MARTIN WENDLER

Table 1. Simulated critical values for the distribution of T (1, τ1, τ2, ε) when
[τ1, τ2] = [0.15, 0.85] and ε = 0.15. The sample size is 1000, the number of
replications is 10, 000.

10% 5% 1%
H = 0.501 17.79 19.76 24.13
H = 0.6 19.80 22.38 27.68
H = 0.7 22.08 24.95 30.46
H = 0.8 24.24 27.61 34.04
H = 0.9 26.50 30.11 37.78
H = 0.999 28.28 32.32 41.24
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Figure 1. Measurements of the annual discharge of the river Nile at Aswan
in 108 m3 for the years 1871-1970. The dotted line indicates the location of the
change-point; the dashed lines designate the sample means for the pre-break
and post-break samples.

of a change-point by numerous authors under differing assumptions concerning the data

generating random process and by usage of diverse methods. Amongst others, Cobb (1978),

Macneill, Tang, and Jandhyala (1991), Wu and Zhao (2007), and Shao (2011) provided

statistically significant evidence for a decrease of the Nile’s annual discharge toward the end
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of the 19th century. The construction of the Aswan Low Dam between 1898 and 1902 serves

as a popular explanation for an abrupt change in the data.

The value of the self-normalized Wilcoxon test statistic computed with respect to the

data is given by Tn(τ1, τ2) = 13.48729. For a level of significance of 5%, the self-normalized

Wilcoxon change-point test rejects the hypothesis for every possible value of H ∈
(

1
2
, 1
)
.

Furthermore, we approximate the distribution of the self-normalized Wilcoxon test statistic

by the sampling window method with block size l = b
√
nc = 10. The subsampling-based

test decision also indicates the existence of a change-point in the mean of the data, even if

we consider the 99%-quantile of F̂l,n.

Previous analysis of the Nile data done by Wu and Zhao (2007) and Balke (1993) suggests

that the change in the discharge volume occurred in 1899. We applied the self-normalized

Wilcoxon test and the sampling window method to the corresponding pre-break and post-

break samples. Neither of these two approaches leads to rejection of the hypothesis, so that it

seems reasonable to consider both samples as stationary. Based on the whole sample, local

Whittle estimation with bandwidth parameter m = bn2/3c suggests the existence of long

range dependence characterized by an Hurst parameter Ĥ = 0.962, whereas the estimates

for the pre-break and post-break samples given by Ĥ1 = 0.517 and Ĥ2 = 0.5, respectively,

should be considered as indication of short range dependent data. In this regard, our findings

support the conjecture of spurious long memory caused by a change-point and therefore agree

with the results of Shao (2011).

The second data set consists of the seasonally adjusted monthly deviations of the tem-

perature (degrees C) for the northern hemisphere during the years 1854 to 1989 from the

monthly averages over the period 1950 to 1979. The data results from spatial averaging of

temperatures measured over land and sea. At first sight, the plot in Figure 2 may suggest

an increasing trend as well as an abrupt change of the temperature deviations. Statistical
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Figure 2. Monthly temperature of the northern hemisphere for the years
1854-1989 from the data base held at the Climate Research Unit of the Uni-
versity of East Anglia, Norwich, England. The temperature anomalies (in
degrees C) are calculated with respect to the reference period 1950-1979. The
dotted line indicates the location of the potential change-point; the dashed
lines designate the sample means for the pre-break and post-break samples.

evidence for a positive deterministic trend implies affirmation of the conjecture that there

has been global warming during the last decades.

The question of whether the Northern hemisphere temperature data acts as an indicator

for global warming of the atmosphere is a controversial issue. Deo and Hurvich (1998) pro-

vided some indication for global warming by fitting a linear trend to the data. Beran and

Feng (2002) considered a more general stochastic model by the assumption of so-called semi-

parametric fractional autoregressive (SEMIFAR) processes. Their method did not deliver
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sufficient statistical evidence for a deterministic trend. Wang (2007) applied another method

for the detection of gradual change to the global temperature data and did not detect a trend,

either. He offers an alternative explanation for the occurrence of a trend-like behavior by

pointing out that it may have been generated by stationary long range dependent processes.

In contrast, it is shown in Shao (2011) that the existence of a change-point in the mean

yields yet another explanation for the performance of the data.

The value of the self-normalized Wilcoxon test statistic for this data set is Tn(τ1, τ2) =

18.98636. Consequently, this test would reject the hypothesis of stationarity for every value

of H ∈
(

1
2
, 1
)

at a level of significance of 1%. An application of the sampling window method

with respect to the self-normalized Wilcoxon test statistic based on comparison of Tn(τ1, τ2)

with the 99%-quantile of the sampling distribution F̂l,n yields a test decision in favor of the

alternative hypothesis for any choice of the block length l ∈ {bnγc| γ = 0.3, 0.4, . . . , 0.9} =

{9, 19, 40, 84, 177, 371, 778}. All in all, both testing procedures provide strong evidence for

the existence of a change in the mean.

According to Shao (2011) the change-point is located around October 1924. Based on the

whole sample local Whittle estimation with bandwidth m = bn2/3c provides an estimator

Ĥ = 0.811. The estimated Hurst parameters for the pre-break and post-break sample

are Ĥ1 = 0.597 and Ĥ2 = 0.88, respectively. Neither subsampling with respect to the

self-normalized Wilcoxon test statistic nor comparison of the value of Tn(τ1, τ2) with the

corresponding critical values of its limit distribution, provides evidence for another change-

point in the pre-break or post-break sample.

Computation of the test statistic that allows for two change-points yields Tn(τ1, τ2, ε) =

17.88404 (for τ1 = 1 − τ2 = ε = 0.15). If compared to the values in Table 1, the test

statistic only surpasses the critical value corresponding to H = 0.501 and a significance

level of 10%, but does not exceed any of the other values. Subsampling with respect to the

test statistic Tn(τ1, τ2, ε) does not support the conjecture of two changes, either. In fact,
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subsampling leads to a rejection of the hypothesis when the block length is l = bn0.7c = 177

(based on a comparison of Tn(τ1, τ2, ε) with the 95%-quantile of the corresponding sampling

distribution F̂l,n), but yields a test decision in favor of the hypothesis for block lengths

l ∈ {bnγc| γ = 0.5, 0.6, 0.8, 0.9} = {40, 84, 371, 778} and for comparison with the 90%-

quantile of F̂l,n.

It seems safe to conclude that the appearance of long memory in the post-break sample

is not caused by another change-point in the mean. The pronounced difference between

the local Whittle estimators Ĥ1 and Ĥ2 suggests a change in the dependence structure of

the times series. Another explanation could be a gradual change of the temperature in

the post-break period. We conjecture that our test has only low power in the case of a

gradual change, because the denominator of our self-normalized test statistic is inflated as

the ranks systematically deviate from the mean rank of the first and second part. When

using subsampling, the trend also appears in subsamples so that we fail to approximate the

distribution under the hypothesis.

As pointed out by one of the referees, the Northern hemisphere temperature data does

not seem to be second-order stationary as the variance in the first part of the time series

seems higher. A change in variance should also result in a loss of power,. The ranks in the

part with the higher variance are more extreme, so that the distance to the mean rank of

this part is larger. This leads to a higher value of the denominator of our self-normalized

test statistic, and consequently to a lower value of the ratio.

The third data set consists of the arrival rate of Ethernet data (bytes per 10 milliseconds)

from a local area network (LAN) measured at Bellcore Research and Engineering Center in

1989. For more information on the LAN traffic monitoring we refer to Leland and Wilson

(1991) and Beran (1994). Figure 3 reveals that the observations are strongly right-skewed.

As the self-normalized Wilcoxon test is based on ranks, we do not expect that this affects

our analysis.
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Figure 3. Ethernet traffic in bytes per 10 milliseconds from a LAN measured
at Bellcore Research Engineering Center.

Coulon, Chabert, and Swami (2009) examined this data set for change-points before. The

method proposed in their paper is based on the assumption that a FARIMA model holds for

segments of the data. The number of different sections and the location of the change-points

are chosen by a model selection criterion. The algorithm proposed by Coulon et al. (2009)

detects multiple changes in the parameters of the corresponding FARIMA time series.

In contrast, an application of the self-normalized Wilcoxon change-point test does not

provide evidence for a change-point in the mean: the value of the test statistic is given by

Tn(τ1, τ2) = 3.270726. Even for a level of significance of 10%, the self-normalized Wilcoxon

change-point test does not reject the hypothesis for any value H ∈
(

1
2
, 1
)
. Subsampling

with respect to the self-normalized Wilcoxon test statistic does not lead to a rejection of

the hypothesis , either (for any choice of block length l ∈ {bnγc| γ = 0.3, 0.4, . . . , 0.9} =
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{12, 27, 63, 144, 332, 761, 1745} and for comparison with the 90%-quantile of the correspond-

ing sampling distribution F̂l,n).

Taking into consideration that the data set contains ties (the value 0 appears several

times), we also applied the self-normalized Wilcoxon test statistic based on the modified

ranks R̃i and used subsampling with respect to this statistic. Both approaches did not lead

to a rejection of the hypothesis.

An application of the test statistic constructed for the detection of two changes yields

a value of Tn(τ1, τ2, ε) = 15.24527 when ε = τ1 = 1 − τ2 = 0.15. This does not lead to

a rejection of the hypothesis for any value of the parameter H. Subsampling based on

comparison of Tn(τ1, τ2, ε) with the 90%-quantile of the corresponding sampling distribution

F̂l,n does not provide evidence for the assertion of multiple changes for any block lenght

l ∈ {bnγc| γ = 0.5, 0.6, 0.7, 0.8} = {63, 144, 332, 761} in the data, either.

These results do not coincide with the analysis of Coulon et al. (2009). This may be due

to the fact that our methods differ considerably from the testing procedures applied before.

The change-point estimation algorithm proposed in Coulon et al. (2009) is not robust to

skewness or heavy-tailed distributions and decisively relies on the assumption of FARIMA

time series. This seems to contradict observations made by Bhansali and Kokoszka (2001)

as well as Taqqu and Teverovsky (1997) who stress that the model that fits the Ethernet

traffic data is very unlikely to be FARIMA.

Estimation of the Hurst parameter by the local Whittle procedure with bandwidth pa-

rameter m = bn2/3c yields an estimate of Ĥ = 0.845, so it indicates the existence of long

range dependence. This is consistent with the results of Leland et al. (1994) and Taqqu and

Teverovsky (1997).

In the three data examples, we find that the results obtained by subsampling and by

parameter estimation are in good accordance with each other. The methods take into account
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long range dependence or heavy tails, but still detect a change in location in the first two

examples. For the third data example our analysis supports the hypothesis of stationarity.

4. Simulations

We investigated the finite sample performance of the subsampling procedure with respect

to the self-normalized Wilcoxon test and with respect to the classical Wilcoxon change-point

test. We compared these results to the performance of the tests when the test decision

is based on critical values obtained from the asymptotic distribution of the test statistic.

We considered subordinated Gaussian time series (Xn)n∈N, Xn = G(ξn), where (ξn)n∈N was

fractional Gaussian noise (introduced in Examples 1 and 2) with Hurst parameter H ∈

{0.6, 0.7, 0.8, 0.9} and covariance function

γ(k) ∼ k−D
(

1− D

2

)
(1−D) ,

where D = 2 − 2H. Initially, we took G(t) = t, so that (Xn)n∈N has normal marginal

distributions. We also considered the transformation

G(t) =

(
βk2

(β − 1)2(β − 2)

)− 1
2
(
k(Φ(t))−

1
β − βk

β − 1

)

(with Φ denoting the standard normal distribution function) so as to generate Pareto-

distributed data with parameters k, β > 0 (referred to as Pareto(β, k)). In both cases,

the Hermite rank r of 1{G(ξi)≤x} − F (x), x ∈ R, is r = 1 and

∣∣∣∣∫
R
J1(x)dF (x)

∣∣∣∣ =
1

2
√
π

;

see Dehling et al. (2013).

Under these conditions, the critical values of the asymptotic distribution of the self-

normalized Wilcoxon test statistic were reported in Table 2 in Betken (2016). The limit
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of the Wilcoxon change-point test statistic can be found in Dehling et al. (2013), the corre-

sponding critical values can be taken from Table 1 in Betken (2016).

The frequencies of rejections of both testing procedures are reported in Table 2 and Table

3 for the self-normalized Wilcoxon change-point test, and in Table 4 and Table 5 for the

classical Wilcoxon test (without self-normalization). The calculations are based on 5, 000

realizations of time series with sample size n = 300 and n = 500. We chose block lengths

l = ln = bnγc with γ ∈ {0.4, 0.5, 0.6}. As level of significance we chose 5%, comparing

the values of the test statistic with the 95%-quantile of its asymptotic distribution and the

95%-quantile of the empirical distribution function F̂l,n, respectively.

For the usual testing procedures the estimation of the Hermite rank r, the slowly varying

function Lγ and the integral
∫
J1(x)dF (x) was neglected. For every simulated time series we

estimate the Hurst parameterH by the local Whittle estimator Ĥ proposed in Künsch (1987).

This estimator is based on an approximation of the spectral density by the periodogram at

the Fourier frequencies. It depends on the spectral bandwidth parameter m = m(n) which

denotes the number of Fourier frequencies used for the estimation. If the bandwidth m

satisfies 1
m

+ m
n
−→ 0 as n −→ ∞, the local Whittle estimator is a consistent estimator for

H; see Robinson (1995). For convenience we always chose m = bn2/3c. The critical values

corresponding to the estimated values of H were determined by linear interpolation.

Under the alternative A we analyzed the power of the testing procedures by considering

different choices for the height of the level shift (denoted by h) and the location [nτ ] of the

change-point. In the tables the columns that are superscribed by “h = 0” correspond to the

frequency of a type 1 error.

For the self-normalized Wilcoxon change-point test based on the asymptotic distribution,

the empirical size almost equals the level of significance of 5% for normally distributed data

(see Table 2). The sampling window method yields rejection rates that slightly exceed this

level. For Pareto(3, 1) time series both testing procedures lead to similar results and tend
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to reject the hypothesis too often when there is no change. With regard to the empirical

power, it is notable that for fractional Gaussian noise time series the sampling window

method yields considerably better power than the test based on asymptotic critical values.

If Pareto(3, 1)-distributed time series are considered, the empirical power of the subsampling

procedure is still better than the empirical power that results from using asymptotic critical

values. However, in this case, the deviation of the rejection rates is rather small. While the

empirical size is not much affected by the Hurst parameter H, the empirical power is lower

for H = 0.8, 0.9.

Considering the classical Wilcoxon test (without self-normalization), for both procedures

the empirical size is in most cases not close to the nominal level of significance (5%), ranging

from 1.1% to 20.8% using subsampling and from 2.6% to 36.0% using asymptotic critical

values. In general, the sampling window method becomes more conservative for higher values

of the Hurst parameter H, while the test based on the asymptotic distribution becomes

more liberal. Under the alternative, the usual application of the Wilcoxon test yields better

power than the sampling window method, especially for high values of H. But it should be

emphasized that this comparison is problematic because the rejection frequencies under the

hypothesis differ.

We conclude that the self-normalized Wilcoxon change-point test is more reliable than

the classical change-point test. The reason can be that in the scaling of the classical test,

the estimator Ĥ of the Hurst parameter enters as a power of the sample size n. Thus, a

small error in this estimation can lead to a large error in the value of the test statistic. By

using the sampling window method for the self-normalized version, we avoid the estimation

of unknown parameters so that the performance is similar to the performance of the classical

testing procedure which compares the values of the test statistic with the corresponding

critical values.
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In most cases covered by our simulations the choice of the block length for the subsampling

procedure does not have a big impact on the frequency of a type 1 error. Considering the

self-normalized Wilcoxon change-point test, an increase of the block length tends to go along

with a decrease in power, especially for big values of the Hurst parameter H and Pareto-

distributed random variables. For smaller values of H the effect is not pronounced. We

recommend using a block length bn0.4c or bn0.5c for the self-normalized change-point test as

the choice l = bn0.6c implies worse properties in most cases.

An application of the subsampling testing procedure to the classical (non-self-normalized)

Wilcoxon test for different choices of the block length shows the opposite effect on the

rejection rate under the alternative: an increase of the block length results in a higher

frequency of rejections. Here, the block length bn0.6c leads to better results in many cases,

but we do not recommend to use this test, but rather to self-normalize the test statistic.

An alternative way of choosing the block length is to apply the data-driven block selection

rule proposed by Götze and Račkauskas (2001) and Bickel and Sakov (2008). Although the

algorithm had originally been implemented for applications of the m-out-of-n bootstrap to

independent and identically distributed data, it also lead to satisfactory simulation results

in applications to long range dependent time series (see Jach et al. (2012)). Another general

approach to the selection of the block size in the context of hypothesis testing is given by

Algorithm 9.4.2 in Politis, Romano and Wolf (1999).

Supplementary Material

In the online supplement, additional information about the change point test for long

range dependent data with ties can be found (see Section S1). More details on the test for

multiple change points is given in Section S2. The technical lemmas in Section S3 are needed

for the proof of Theorem 1, in Section S4.
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Table 2. Rejection rates of the self-normalized Wilcoxon change-point test
obtained by subsampling with block length l = n0.4, n0.5, n0.6, and by compar-
ison with asymptotic critical values for fractional Gaussian noise of length n
with Hurst parameter H.

τ = 0.25 τ = 0.5

fGn n method h = 0 h = 0.5 h = 1 h = 0.5 h = 1

H = 0.6 300 subspl. l = 9 0.041 0.263 0.700 0.502 0.952
subspl. l = 17 0.064 0.313 0.742 0.570 0.964
subspl. l = 30 0.070 0.322 0.705 0.555 0.943

asymptotic 0.044 0.209 0.521 0.424 0.861

500 subspl. l = 12 0.053 0.396 0.859 0.697 0.994
subspl. l = 22 0.060 0.421 0.861 0.720 0.995
subspl. l = 41 0.069 0.411 0.829 0.697 0.991

asymptotic 0.049 0.303 0.687 0.577 0.958

H = 0.7 300 subspl. l = 9 0.057 0.155 0.412 0.291 0.759
subspl. l = 17 0.070 0.171 0.423 0.313 0.763
subspl. l = 30 0.077 0.177 0.403 0.314 0.737

asymptotic 0.053 0.108 0.268 0.228 0.611

500 subspl. l = 12 0.056 0.183 0.513 0.382 0.856
subspl. l = 22 0.059 0.193 0.508 0.382 0.854
subspl. l = 41 0.065 0.192 0.476 0.387 0.819

asymptotic 0.048 0.133 0.359 0.302 0.730

H = 0.8 300 subspl. l = 9 0.070 0.126 0.251 0.223 0.526
subspl. l = 17 0.067 0.117 0.234 0.208 0.494
subspl. l = 30 0.073 0.114 0.218 0.201 0.466

asymptotic 0.048 0.081 0.144 0.141 0.362

500 subspl. l = 12 0.066 0.121 0.295 0.217 0.591
subspl. l = 22 0.068 0.114 0.278 0.210 0.567
subspl. l = 41 0.069 0.119 0.257 0.205 0.532

asymptotic 0.053 0.085 0.198 0.163 0.462

H = 0.9 300 subspl. l = 9 0.093 0.126 0.208 0.209 0.462
subspl. l = 17 0.074 0.097 0.161 0.169 0.397
subspl. l = 30 0.073 0.095 0.145 0.165 0.367

asymptotic 0.057 0.065 0.106 0.125 0.308

500 subspl. l = 12 0.079 0.105 0.194 0.185 0.461
subspl. l = 22 0.067 0.091 0.166 0.162 0.416
subspl. l = 41 0.063 0.087 0.146 0.152 0.391

asymptotic 0.051 0.068 0.120 0.128 0.350
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Table 3. Rejection rates of the self-normalized Wilcoxon change-point test
obtained by subsampling with block length l = n0.4, n0.5, n0.6, and by com-
parison with asymptotic critical values for Pareto(3, 1)-transformed fractional
Gaussian noise of length n with Hurst parameter H.

τ = 0.25 τ = 0.5

Pareto n method h = 0 h = 0.5 h = 1 h = 0.5 h = 1

H = 0.6 300 subspl. l = 9 0.041 0.847 0.977 0.990 1.000
subspl. l = 17 0.067 0.871 0.946 0.990 1.000
subspl. l = 30 0.070 0.831 0.946 0.979 1.000

asymptotic 0.056 0.820 0.912 0.984 0.999

500 subspl. l = 12 0.055 0.947 0.997 0.999 1.000
subspl. l = 22 0.066 0.946 0.994 0.999 1.000
subspl. l = 41 0.071 0.921 0.976 0.996 1.000

asymptotic 0.061 0.920 0.970 0.996 1.000

H = 0.7 300 subspl. l = 9 0.057 0.571 0.821 0.990 0.994
subspl. l = 17 0.064 0.527 0.738 0.876 0.990
subspl. l = 30 0.077 0.527 0.738 0.842 0.975

asymptotic 0.070 0.529 0.702 0.856 0.982

500 subspl. l = 12 0.066 0.693 0.904 0.949 0.999
subspl. l = 22 0.068 0.684 0.893 0.942 0.998
subspl. l = 41 0.072 0.632 0.838 0.921 0.994

asymptotic 0.076 0.663 0.820 0.940 0.995

H = 0.8 300 subspl. l = 9 0.070 0.355 0.574 0.703 0.931
subspl. l = 17 0.068 0.284 0.454 0.666 0.905
subspl. l = 30 0.073 0.284 0.454 0.633 0.857

asymptotic 0.072 0.297 0.428 0.640 0.875

500 subspl. l = 12 0.064 0.401 0.609 0.738 0.948
subspl. l = 22 0.063 0.379 0.581 0.714 0.933
subspl. l = 41 0.064 0.345 0.509 0.688 0.903

asymptotic 0.069 0.369 0.510 0.715 0.920

H = 0.9 300 subspl. l = 9 0.093 0.253 0.396 0.597 0.832
subspl. l = 17 0.071 0.168 0.254 0.532 0.772
subspl. l = 30 0.073 0.168 0.254 0.482 0.729

asymptotic 0.073 0.165 0.236 0.499 0.738

500 subspl. l = 12 0.073 0.256 0.405 0.585 0.839
subspl. l = 22 0.064 0.219 0.340 0.547 0.802
subspl. l = 41 0.065 0.190 0.296 0.503 0.762

asymptotic 0.068 0.199 0.296 0.529 0.782
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Table 4. Rejection rates of the classical Wilcoxon change-point test obtained
by subsampling with block length l = n0.4, n0.5, n0.6, and by comparison with
asymptotic critical values for fractional Gaussian noise of length n with Hurst
parameter H.

τ = 0.25 τ = 0.5

fGn n method h = 0 h = 0.5 h = 1 h = 0.5 h = 1

H = 0.6 300 subspl. l = 9 0.066 0.200 0.232 0.386 0.591
subspl. l = 17 0.054 0.223 0.411 0.439 0.784
subspl. l = 30 0.059 0.264 0.529 0.663 0.870

asymptotic 0.026 0.096 0.160 0.223 0.727

500 subspl. l = 12 0.063 0.285 0.436 0.569 0.856
subspl. l = 22 0.058 0.345 0.663 0.627 0.952
subspl. l = 41 0.062 0.397 0.789 0.683 0.975

asymptotic 0.036 0.148 0.256 0.378 0.897

H = 0.7 300 subspl. l = 9 0.052 0.080 0.088 0.162 0.302
subspl. l = 17 0.049 0.095 0.158 0.206 0.466
subspl. l = 30 0.051 0.120 0.227 0.267 0.593

asymptotic 0.035 0.067 0.228 0.167 0.66

500 subspl. l = 12 0.042 0.104 0.153 0.249 0.539
subspl. l = 22 0.039 0.131 0.267 0.287 0.689
subspl. l = 41 0.046 0.160 0.373 0.343 0.789

asymptotic 0.030 0.079 0.259 0.225 0.714

H = 0.8 300 subspl. l = 9 0.028 0.030 0.031 0.054 0.092
subspl. l = 17 0.029 0.038 0.048 0.075 0.179
subspl. l = 30 0.034 0.057 0.088 0.070 0.272

asymptotic 0.077 0.153 0.421 0.245 0.673

500 subspl. l = 12 0.023 0.031 0.036 0.064 0.162
subspl. l = 22 0.028 0.044 0.070 0.097 0.273
subspl. l = 41 0.039 0.071 0.129 0.137 0.391

asymptotic 0.050 0.112 0.439 0.226 0.714

H = 0.9 300 subspl. l = 9 0.009 0.010 0.006 0.016 0.020
subspl. l = 17 0.009 0.014 0.009 0.021 0.060
subspl. l = 30 0.015 0.029 0.028 0.011 0.153

asymptotic 0.360 0.484 0.739 0.524 0.830

500 subspl. l = 12 0.008 0.006 0.003 0.015 0.026
subspl. l = 22 0.011 0.009 0.011 0.029 0.086
subspl. l = 41 0.021 0.021 0.032 0.058 0.197

asymptotic 0.319 0.439 0.743 0.511 0.845
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Table 5. Rejection rates of the classical Wilcoxon change-point test obtained
by subsampling with block length l = n0.4, n0.5, n0.6, and by comparison with
asymptotic critical values for Pareto(3, 1)-transformed fractional Gaussian
noise of length n with Hurst parameter H.

τ = 0.25 τ = 0.5

Pareto n method h = 0 h = 0.5 h = 1 h = 0.5 h = 1

H = 0.6 300 subspl. l = 9 0.170 0.949 0.742 0.991 0.923
subspl. l = 17 0.130 0.963 0.861 0.996 0.991
subspl. l = 30 0.109 0.962 0.871 0.998 0.998

asymptotic 0.108 0.938 0.985 0.998 1.000

500 subspl. l = 12 0.163 0.991 0.916 1.000 0.993
subspl. l = 22 0.132 0.997 0.976 1.000 0.999
subspl. l = 41 0.114 0.997 0.989 1.000 1.000

asymptotic 0.128 0.988 0.999 1.000 1.000

H = 0.7 300 subspl. l = 9 0.224 0.785 0.568 0.939 0.796
subspl. l = 17 0.175 0.802 0.680 0.955 0.949
subspl. l = 30 0.140 0.789 0.708 0.959 0.976

asymptotic 0.179 0.833 0.969 0.974 0.999

500 subspl. l = 12 0.208 0.921 0.763 0.989 0.956
subspl. l = 22 0.167 0.931 0.862 0.992 0.996
subspl. l = 41 0.143 0.925 0.891 0.994 0.998

asymptotic 0.191 0.940 0.994 0.996 1.000

H = 0.8 300 subspl. l = 9 0.203 0.508 0.326 0.743 0.565
subspl. l = 17 0.160 0.496 0.347 0.776 0.808
subspl. l = 30 0.137 0.484 0.364 0.791 0.881

asymptotic 0.204 0.729 0.925 0.918 0.993

500 subspl. l = 12 0.190 0.639 0.445 0.865 0.770
subspl. l = 22 0.160 0.649 0.513 0.886 0.929
subspl. l = 41 0.137 0.626 0.556 0.890 0.961

asymptotic 0.212 0.805 0.963 0.948 0.999

H = 0.9 300 subspl. l = 9 0.128 0.150 0.077 0.320 0.336
subspl. l = 17 0.097 0.128 0.071 0.403 0.550
subspl. l = 30 0.092 0.125 0.077 0.481 0.677

asymptotic 0.309 0.712 0.901 0.848 0.966

500 subspl. l = 12 0.112 0.159 0.089 0.402 0.436
subspl. l = 22 0.100 0.161 0.101 0.518 0.680
subspl. l = 41 0.095 0.170 0.106 0.571 0.771

asymptotic 0.270 0.726 0.911 0.851 0.975
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Künsch, H.R. (1987). Statistical aspects of self-similar processes in Proceedings of the first

World Congress of the Bernoulli Society VNU Science Press Utrecht, The Netherlands

vol. 1 67 – 74.

Lahiri, S.N. (1993). On the moving block bootstrap under long range dependence. Statistics

& Probability Letters 18, 405 – 413.

Leland, W.E., Taqqu, M.S., Willinger, W., and Wilson, D.V. (1994). On the self-similar

nature of Ethernet traffic (extended version). IEEE/ACM Transactions on networking 2,

1 – 15.

Leland, W.E. and Wilson, D.V. (1991). High time-resolution measurement and analysis of

LAN traffic: Implications for LAN interconnection in INFOCOM’91. Proceedings. Tenth

Annual Joint Conference of the IEEE Computer and Communications Societies. Network-

ing in the 90s., IEEE IEEE 1360 – 1366.

Lo, A.W. (1989). Long-term memory in stock market prices Tech. rep. National Bureau of

Economic Research.

Lobato, I.N. (2001). Testing that a dependent process is uncorrelated. Journal of the Amer-

ican Statistical Association 96, 1066 – 1076.

Macneill, I.B., Tang, S.M., and Jandhyala, V.K. (1991). A Search for the Source of the Nile’s

Change-Points . Environmetrics 2, 341 – 375.

McElroy, T. and Politis, D. (2007). Self-normalization for heavy-tailed time series with long

memory. Statistica Sinica 17, 199.

Statistica Sinica: Preprint 
doi:10.5705/ss.202015.0435



SUBSAMPLING UNDER LONG RANGE DEPENDENCE 33

Nordman, D.J. and Lahiri, S.N. (2005). Validity of the sampling window method for long-

range dependent linear processes. Econometric Theory 21, 1087 – 1111.

Pipiras, V. and Taqqu, M.S. (2011). Long-range dependence and self-similarity. Cambridge

University Press.

Politis, D.N. and Romano, J.P. (1994). Large sample confidence regions based on subsamples

under minimal assumptions. The Annals of Statistics, 2031 – 2050.

Politis, D.N., Romano, J.P., and Wolf, M. (1999). Subsampling. Springer, New York.

Robinson, P.M. (1995). Gaussian semiparametric estimation of long range dependence. The

Annals of Statistics, 1630 – 1661.

Shao, X. (2011). A simple test of changes in mean in the possible presence of long-range

dependence. Journal of Time Series Analysis 32, 598 – 606.

Shao, X. and Zhang, X. (2010). Testing for change points in time series. Journal of the

American Statistical Association 105, 1228 – 1240.

Sherman, M. and Carlstein, E. (1996). Replicate histograms. Journal of the American Sta-

tistical Association 91, 566 – 576.

Sinai, Y. G. (1976). Self-similar probability distributions. Theory of Probability & Its Appli-

cations 21, 64 – 80.

Surgailis, D. (1982). Zones of attraction of self-similar multiple integrals. Lithuanian Math-

ematical Journal 22, 327 – 340.

Taqqu, M.S. (1979). Convergence of integrated processes of arbitrary Hermite rank.

Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 50, 53 – 83.

Statistica Sinica: Preprint 
doi:10.5705/ss.202015.0435



34 ANNIKA BETKEN AND MARTIN WENDLER

Taqqu, M.S. and Teverovsky, V. (1997). Robustness of Whittle-type estimators for time

series with long-range dependence. Communications in statistics. Stochastic models 13,

723 – 757.

Wang, L. (2007). Gradual changes in long memory processes with applications. Statistics

41, 221 – 240.

Wang, L. (2008). Change-point detection with rank statistics in long-memory time-series

models. Australian & New Zealand Journal of Statistics 50, 241 – 256.

Wu, W. B. and Zhao, Z. (2007). Inference of trends in time series. Journal of the Royal

Statistical Society: Series B 69, 391 – 410.

Zhang, T., Ho, H.-C., Wendler, M., and Wu, W.B. (2013). Block sampling under strong

dependence. Stochastic Processes and their Applications 123, 2323 – 2339.

Ruhr-Universität Bochum, Germany

E-mail address: annika.betken@rub.de

Universität Greifswald, Germany

E-mail address: martin.wendler@uni-greifswald.de

Statistica Sinica: Preprint 
doi:10.5705/ss.202015.0435




