Uniform Four-Level Designs From Two-level Designs: A New Look

Kashinath Chatterjeea, Zujun Oub, Frederick K. H. Phoac, and Hong Qind,*

a Department of Statistics, Visva-Bharati University, Santiniketan, India
b College of Mathematics and Statistics, Jishou University, Jishou 416000, China
c Institute of Statistical Science, Academia Sinica, Taipei 11529, Taiwan
d Faculty of Mathematics and Statistics, Central China Normal University, Wuhan 430079, China

Abstract

Literature reviews reveal that the research on the issue of constructing efficient uniform designs has been very active in the last decade. In addition, coding theory is widely used in the context of constructing good optimal designs. The present paper explores the construction of highly efficient four-level uniform designs via two transformations: a modified Gray map code and a mapping between quaternary codes and the sequence of three binary codes. The efficiency is based on the viewpoint of uniformity measured by the centered L_2- and wrap-around L_2-discrepancies of the four-level designs’ binary images. Some theoretical results related to the lower bounds of the above uniformity measures for such designs are also considered in this study.

MSC: 62K15; 62K05; 62K99

Keywords: Efficiency; Lower bound; Modified Gray map; Quaternary code; Uniform design.

*Corresponding author. E-mail address: qinhong@mail.ccnu.edu.cn (H. Qin).