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MOTIVATION AND MODEL

In measurement error problems we are often interested in estimating a regression curve

g(x) = E(Y |X = x) from data on (W,Y ), or in estimating the density fX of X from data

on W , where W represents a contaminated version of X .

A typical model is

Y = g(X) + ǫ , W = X + U , (1)

where U ∼ fU , X ∼ fX , U , X and ǫ are independent, E(ǫ2) = σ2 and E(ǫ) = 0. In this

model the variable U is unobserved and represents measurement error.

Identifiability of fX or g from data generated by the model at (1) requires fU to be known,

and so we shall make this assumption. It is straightforward to extend our methodology to

cases where fU is unknown and estimated from replicated data.

The presence of the noise variable, U , in (1) makes the model ill-posed. The solution to

this inverse problem inevitably has reduced statistical performance, relatively to the case

where U ≡ 0.
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INFERENCE UNDER CONSTRAINTS

It is often of interest to estimate g, and perhaps also fX , nonparametrically but under shape

restrictions. In principle, a shape constraint can be quite general, for example monotonic-

ity, convexity, log-concavity or unimodality. In practice, it is usually motivated by prior

information that we have about a particular problem.

In the context of errors-in-variables regression the most appropriate constraint is mono-

tonicity. For example, when the explanatory variable, X , represents the value taken by a

treatment or dosage, the conditional mean of the response, Y , is often anticipated to be a

monotone function of X .

Indeed, if this regression mean is not monotone (in the appropriate direction) then the

medical or commercial value of the treatment is likely to be significantly reduced, at least

for values of X that lie beyond the point at which monotonicity fails. In the case of a

probability density, common shape constraints include log-concavity and unimodality.
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BRIEF LITERATURE SURVEY

The literature on nonparametric inference in errors-in-variables problems is vast, but can

be accessed relatively easily through the monograph by Carroll, Ruppert, Stefanski and

Crainiceanu (2006). In earlier work on errors-in-variables problems, Meister (2009) sug-

gested a test for local monotonicity of a density function, and Cordy and Thomas (1997)

estimated a distribution function under a unimodality constraint.

More generally, recent contributions to nonparametric or semiparametric methodology,

without shape constraints, include those of Schennach (2004), Huang et al. (2006), Delaigle

and Meister (2007) and Delaigle, Fan and Carroll (2009).

We shall use a tilting-based approach to enforce constraints. This method was proposed

in a special case by Grenander (1956), and substantially generalised by Hall and Presnell

(1999). Recent examples of the use of this methodology can be found in work of Müller et

al. (2005) and Schick and Wefelmeyer (2009).
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ESTIMATORS

First we describe methods for constructing unconstrained estimators of the density fX and

regression mean g in the model

Y = g(X) + ǫ , W = X + U .

If K is a conventional kernel function and h is a bandwidth then the estimators are

f̂X(x) =
1

h

n∑

j=1

KU

(x−Wj

h

)
, ĝ(x) =

ĝfX(x)

f̂X(x)
=

n∑

j=1

Sj(x)Yj ,

where

ĝfX(x) =
1

nh

n∑

j=1

Yj KU

(x−Wj

h

)
, Sj(x) =

KU{(x−Wj)/h}∑
k KU{(x−Wk)/h}

,

KU(u) =
1

2π

∫
e−itu KFt(t)

fFt
U (t/h)

dt ,

and the subscript Ft denotes “Fourier transform.” (Thus, fFt
U is the characteristic function

corresponding to the density fU of U .)
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CONSTRAINED ESTIMATORS – (1)

First we perturb the conventional estimators,

f̂X(x) =
1

h

n∑

j=1

KU

(x−Wj

h

)
, ĝ(x) =

n∑

j=1

Sj(x)Yj ,

by tilting them to:

f̂X(x | p) =
1

h

n∑

j=1

pj KU

(x−Wj

h

)
, ĝ(x | p) = n

n∑

j=1

pj Sj(x)Yj ,

where the vector p = (p1, . . . , pn) is a multinomial probability distribution: each pj ≥ 0 and∑
j pj = 1.

Next we choose p to minimise the distance of that vector from the uniform probability

distribution, p0 = (1/n, . . . , 1/n), subject to the constraint being satisfied. The constraint

might be, say unimodality for f̂X( · | p); we shall focus on the constraint of monotonicity

for ĝ( · | p).
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CONSTRAINED ESTIMATORS – (2)

The concept of “tilting through the least distance subject to the constraint being satisfied”

results in greatest fidelity to the data, subject to the constraint.

Distance measures that can be used include those suggested by Cressie and Read (1984)

and Read and Cressie (1988):

Dρ(p) =
1

ρ(1− ρ)

{
n−

n∑

j=1

(npj)
ρ

}
, D0(p) = −

n∑

j=1

log(npj) , D1(p) = n
n∑

j=1

pj log(npj) ,

where 0 < ρ < 1 in the definition of Dρ.

These distance measures are generally not metrics, and for example the two Kullback-

Leibler divergences, D0 and D1, are asymmetric in terms of the roles played by p and p0.

They can nevertheless be readily interpreted from a statistical viewpoint.

The distance D0 is arguably not as satisfactory as the others, since it takes the value infinity

when one or more of the pjs is zero and therefore strongly resists setting any of the pjs to

zero. This can result in other pjs being altered unnecessarily.

7



COMPUTATIONAL CONSIDERATIONS

A constrained density or regression estimator can be implemented by choosing p to min-

imise

Dρ(p) + λPen(p) ,

where Pen(p) is a positive penalty function of p which increases as the estimated curve

departs further from the shape constraint, and λ is a parameter used to control the strength

of the penalty. In practice we start with a small λ and repeat the procedure for successively

larger values of λ until the constraint is satisfied.

For example, the condition that g is monotone increasing on a specific interval I = [a, b],

say, can be imposed computationally by dividing I up into a regular, discrete grid of

points, a = x1 < . . . < xm = b, and adding to the distance measure Dρ(p) the penalty

λPen(p) = λ
m−1∑

k=1

∣∣ĝ(xk | p)− ĝ(xk+1 | p)
∣∣r I

{
ĝ(xk | p)− ĝ(xk+1 | p) > 0

}
,

where I(·) is the indicator function, ĝ( · | p) is our tilted regression estimator, and r denotes

a positive integer.
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REMARKS ON CONSTRAINING BY TILTING – (1)

Remark 1. Many standard methods, for example those based on splines and ridging,

can be constrained using the above tilting-based approach. Our choice of kernel methods

enables us to develop relatively detailed theoretical properties, which can be expected to

reflect those in other cases where such a concise account is out of reach. In the kernel case

our work extends easily to local polynomial estimators (Delaigle, Fan and Carroll, 2009).

Remark 2. Note that, for 0 ≤ ρ ≤ 1, we have Dρ(p
0) = 0 and Dρ(p) > 0 if p 6= p0. In our

numerical work we found that D1 generally gave very good performance, although results

for other Dρ, for ρ > 0, were often similar.
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REMARKS ON CONSTRAINING BY TILTING – (2)

Remark 3. Each of the distance measures has the advantage that it is not well-defined

unless each pj ≥ 0, or in fact pj > 0 in the case of D0. This means that we do not need

to impose nonnegativity as an additional constraint. In contrast, the standard quadratic

measure of distance between p and p0 does not automatically ensure that the components

of p are nonnegative.

Remark 4. The other required constraint,
∑

1≤j≤n pj = 1, can be ensured quite readily, for

example by replacing p1 by 1−
∑

2≤j≤n pj.
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SUMMARY OF THEORETICAL PROPERTIES

Under conventional regularity conditions, and assuming that the true regression function

g satisfies the constraints, the constrained regression estimator ĝ( · | p) attains optimal con-

vergence rates, both pointwise and uniformly.

Additionally, optimal convergence rates to derivatives of g are enjoyed by the respective

derivatives of ĝ( · | p).

Moreover, the probability distribution p = (p1, . . . , pn) can be chosen so that ĝ( · | p), and its

derivatives, converge to a general smooth function γ, and its respective derivatives.

This shows that the tilting approach is particularly flexible: p can be chosen so that the ℓth

derivative γ(ℓ) of any function γ that satisfies mild regularity conditions can be consistently

estimated by the tilted estimator ĝ(ℓ)( · | p), defined to be the ℓth derivative of ĝ( · | p).
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APPLICATIONS TO HYPOTHESIS TESTING

The operation of choosing p, subject to each pj ≥ 0 and
∑

j pj = 1, to ensure that f̂X( · | p) or

ĝ( · | p) satisfies a shape constraint on I , produces an empirical probability distribution p̂.

We can interpret Dρ(p̂) as the distance through which we have to tilt the data in order to

ensure that the estimator ĝ( · | p̂) satisfies the shape constraint.

We expect that, as the shape of g moves further from that prescribed by the null hypothesis

H0, the value of Dρ(p̂) will increase. Therefore we suggest testing H0 by rejecting it if Dρ(p̂)

is too large.
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IMPLEMENTING THE TEST – (1)

We use bootstrap methods to calibrate the test, as follows.

(i) Compute a conventional deconvolution-based estimator f̂X of fX , and a shape con-

strained estimator ĝ( · | p̂) of g, under the null hypothesis H0 of monotonicity, from the

dataset D = {(W1, Y1), . . . , (Wn, Yn)}.

(ii) Compute an estimator σ̂2 of the variance σ2 = var(ǫ). (Methods are given by Delaigle

and Hall, 2010).

(iii) Convert f̂X to a proper density function f̃X and sample data X∗
1 , . . . , X

∗
n from f̃X , sam-

ple U∗
1 , . . . , U

∗
n from fU , and sample ǫ∗1, . . . , ǫ

∗
p from a distribution with mean 0 and variance

σ̂2 (e.g. a normal distribution). Then set W ∗
j = X∗

j + U∗
j and Y ∗

j = ĝ(X∗
j | p̂) + ǫ∗j .
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IMPLEMENTING THE TEST – (2)

(iv) Compute, from the datasetD∗ = {(W ∗
1 , Y

∗
1 ), . . . , (W

∗
n , Y

∗
n )}, the bootstrap version ĝ∗(· | p)

of ĝ( · | p).

(v) Calculate the version p̂∗ of p̂ by tilting to ensure that ĝ∗(· | p̂∗) satisfies the shape con-

straint on I , and compute Dρ(p̂
∗).

(vi) Given a potential level, α ∈ (0, 1), for a test of H0, and using bootstrap simulation,

compute the upper α-level critical point ξ̂α of the conditional distribution of Dρ(p̂
∗).

(vii) Reject the null hypothesis if Dρ(p̂) > ξ̂α.
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SIMULATIONS – (1)

We considered a family of regression models introduced by Bowman, Jones and Gijbels

(1998), and defined by

g(x) = 1 + x− a exp
{
− 50 (x− 0.5)2

}
,

ǫ ∼ Normal (0, 0.052), X ∼ Normal (0.5, 0.1), where a is chosen so that g is clearly mono-

tone increasing (a = 0), only just monotone increasing (a = 0.15), slightly nonmonotone

increasing (a = 0.25) or more clearly nonmonotone (a = 0.45).

The measurement errors were Laplace, chosen so that the noise to signal ratio, var(U)/var(X),

was 20%. Sample size was n = 250.

The figure compares the estimator ĝ with its monotonised version ĝ(· | p̂), when a = 0 or

a = 0.15. We used the bandwidth suggested by Delaigle and Hall (2008).
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Figure 1: Quantile curves of the estimators: unrestricted estimator of g (left) or monotonized
estimators (middle), when the regression curve corresponds to a = 0.15 (top) or a = 0
(bottom). Right: kernel estimators of the density of log[ISE(ĝ)/ ISE{ĝ(· | p̂)}]; the vertical
line indicates the value 0 for reference.



SIMULATIONS – (2)

For both constrained and unconstrained estimators we show four curves corresponding

to the samples which gave the quantiles 0.2, 0.4, 0.6 and 0.8 of the values of the Integrated

Squared Error, ISE(ĝ) =
∫
(ĝ − g)2.

We also show kernel estimators of the density of log[ISE(ĝ)/ISE{ĝ(· | p̂)}], calculated from

the 200 samples. It can be seen that there is a slight skewness to the right, indicating a

slight reduction in ISE by constraining.

To explore this property we computed the Median Integrated Squared Errors (MISE), find-

ing an improvement of 12% when a = 0.15 (respectively 7% when a = 0). In addition, in

these cases the percentage of the times that the constrained estimator had smaller MISE

was 61% when a = 0.15 (and 67% when a = 0).
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REAL-DATA EXAMPLE – (1)

We applied our procedure to the peak expiratory flow rate (PEFR) data of Bland and Alt-

man (1986). The data concern measurements of the PEFR on 17 individuals, using two

procedures: two replicated accurate measurements obtained by a Wright peak flow meter,

and two replicated inaccurate measurements obtained by a mini Wright meter.

The aim was to determine whether the mini Wright readings are in agreement with the

Wright readings.

The variance of U was estimated from the replicated mini Wright readings, and for sim-

plicity of calculation we assumed a Laplace error.

The data and the two regression estimators (unrestricted and monotonised, respectively)

are plotted in the figure.
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Figure 2: Unrestricted and monotonized estimated curves g(x) for the Wright data.
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REAL-DATA EXAMPLE – (2)

Although the unrestricted estimator fluctuates somewhat, an application of our testing

procedure does not permit us to reject the hypothesis that the readings on the mini Wright

meter are a monotone function of the readings on the Wright meter. It is perhaps reason-

able to infer that the fluctuations are artifacts caused by the sample sample size, rather

than a true characteristic of the curve.
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