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Empirical Bayes Methodology

◮ Empirical Bayes (EB) methods (Robbins, Stein)

◮ EB replaces the hyperparameters of a Bayes procedure by
maximum likelihood, method of moments or other estimates
from the data.

◮ These methods allow one to estimate statistical quantities
(probabilities, functions of parameters, etc.) of an individual
by combining information from the individual and other
subjects in an empirical study.

◮ Hyperparameter estimation

◮ Nonparametric empirical Bayes (Robbins: Poisson rates)
◮ Parametric empirical Bayes (Stein, James & Stein, Efron &

Morris: normal means)
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Insurance Rate-Making: Credibility Models

◮ Standard credibility models (Bühlmann & Gisler, 2005) are essentially
linear empirical Bayes.

◮ Suppose there are I risk classes and let Yij denote the j th claim of the i th

class. Assume that (Yij , θi) are independent with E[Yij |θi ] = θi and
Var[Yij |θi ] = σ2

i , (1 ≤ j ≤ ni , 1 ≤ i ≤ I ).

◮ Assuming a normal prior N(µ, τ 2) for θi , the Bayes estimate of θi (that
minimizes the Bayes risk) is

E[θi |Yi1, · · · ,Yi,ni ] = αi Ȳi + (1− αi )µ,

where αi = τ 2/(τ 2 + σ2
i /ni ) and Ȳi =

1
ni

∑ni
j=1 Yij .
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Insurance Rate-Making: Credibility Models

◮ Since E[Yij ] = E[E[Yij |θi ]] = E[θi ] = µ,

Var[Yij ] = Var[θi ] + E[Var[Yij |θi ]] = τ 2 + σ2
i ,

we can estimate µ, σ2
i and τ 2 by the method of moments:

µ̂ = (
∑I

i=1

∑ni
j=1 Yij )/

∑I

i=1 ni ,

σ̂2
i =

∑ni
j=1(Yij − Ȳi )

2/(ni − 1),

τ̂ 2 =
∑I

i=1 ni(Ȳi − µ̂)2/
∑I

i=1 ni .

◮ Plugging these into the Bayes estimates yields the EB estimate (known as
the credibility formula):

Ê[θi |Yi1, · · · ,Yi,ni ] = α̂i Ȳi + (1− α̂i )µ̂,

where α̂i = τ̂ 2/(τ̂ 2 + σ̂2
i /ni ) is the credibility factor for the i th class.

◮ An important extension, introduced by Hachemeister, is the credibility
regression model that relates claim sizes to certain covariates. The
credibility factor in this case has the form of a matrix.
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Insurance Rate-Making: Credibility Models

◮ Frees, Young and Luo unified various credibility models into the
framework of linear mixed models (LMM) of the form

Yij = β
′
xij + b

′
izij + ǫij ,

with fixed effects forming the vector β, subject-specific random effects
forming the vector bi s.t. E[bi ] = 0, and 0-mean random disturbances ǫij
that have variance σ2 and are uncorrelated with the random effects and
the covariates xij and zij .

◮ The credibility model Yij = θi + ǫij can be rewritten as Yij = β + bi + ǫij ,
where β = µ and bi = θi − µ has mean 0 & variance τ 2.

◮ Estimation of bi in LMM when the parameters β and σ2
i are known uses

Henderson’s best linear unbiased predictor (BLUP).
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Evolutionary Credibility and Dynamic EB Methods

◮ To generalize the linear EB theory, consider longitudinal data Yit for each
individual i . For example, insurers data consist of claims of risk classes
over successive periods.

◮ Frees, Young and Luo (1999) incorporated the setting of longitudinal
data by replacing Yij with Yit in their LMM approach; t denotes time.

◮ Bühlmann and Gisler (2005) further developed an evolutionary credibility
theory that assumes a dynamic Bayesian model for the prior means over
time.
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Evolutionary Credibility and Dynamic EB Methods

◮ For longitudinal data Yit , 1 ≤ i ≤ n, 1 ≤ t ≤ T , the linear Bayes estimator
of the mean θit of Yit assumes a prior distribution that has mean µt for
every t. A dynamic Bayesian model specifies how µt evolves with time.

◮ One such model used in evolutionary credibility is

µt = ρµt−1 + (1− ρ)µ+ ηt ,

in which the ηt are i.i.d. with mean 0 and variance V .

◮ This is a linear state-space model, µt are unobserved states undergoing
AR(1). µt can be estimated from Yis , s ≤ t, by the Kalman filter µ̂t|t

defined recursively via

µ̂t|t = µ̂t|t−1 + ρ−1
Kt(Yt − µ̂t|t−11), µ̂t+1|t = ρµ̂t|t + (1− ρ)µ,

where Yt = (Y1t , · · · ,Ynt)
′, 1 = (1, · · · , 1)′ and Kt is the Kalman gain

matrix defined recursively in terms of the hyperparameters
V = Var[ηt ], vt = Var[Yit |µt ] and ρ.
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Evolutionary Credibility and Dynamic EB Methods

◮ The Kalman filter is the minimum-variance linear estimator of µt . It is
the Bayes estimator if Yit |µt and ηt are normal.

◮ The hyperparameters µ, ρ,V and vt in the Bayes estimate µ̂t|t of µt can
be consistently estimated using the method of moments. For example,
µ = E[µt ] can be consistently estimated up to t by µ̂(t) = (

∑t

s=1 Ȳs)/t.

◮ Note that to estimate the hyperparameters, one needs the cross-sectional
mean Ȳt−1 of n independent observations that have mean µt−1. An
alternative approach is to replace µt−1 directly by Ȳt−1, leading to

µt = ρȲt−1 + ω + ηt ,

where ω = (1− ρ)µ.
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Linear Dynamic EB via Linear Mixed Models (LMM)

◮ The alternative model of µt leads to the LMM

Yit = ρȲt−1 + ω + bi + ǫit ,

in which ηt is absorbed into ǫit . The random effects bi can be estimated
by BLUP.

◮ This is much easier to extend to nonlinear models, in contrast to the
hidden Markov modeling approach that involves nonlinear filtering.

◮ Also, due to the form of a regression model, one can easily include
additional covariates to increase the predictive power of the model in the
LMM

Yit = ρȲt−1 + ai + β
′
xij + b

′
izij + ǫit ,

where ai and bi are subject-specific random effects, xit represents a vector
of subject-specific covariates that are available prior to time t, and zit

denotes a vector of additional covariates that are associated with bi .
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Application to Baseball Batting Averages

◮ Batting average, a key performance measure in baseball, is the ratio of
hits (# of successful attempts) to at bats (# of qualifying attempts).

◮ Efron and Morris (1975, 1977) analyzed batting averages from the first

n = 45 at-bats of a small sample of batters in 1970 to predict their

batting average for the remainder of the season.

◮ Yi and pi denote the observed batting average and true
seasonal batting average of player i , s.t. E[Yi ] = pi .

◮ Yi are independently distributed with nYi ∼ Bin(n, pi ).
◮ Transformed data Xi = n1/2 arcsin(2Yi − 1) for

variance-stabilization.
◮ Use James-Stein estimator on Xi to demonstrate the benefits

of Empirical Bayes methodology.
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Application to Baseball Batting Averages

◮ Brown (2008) analyzed batting records of Major League players over the

2005 regular season.

◮ Use batting records from the 1st half season (t = 1) to predict
the second half season (t = 2) performance.

◮ Considered all players with at-bats Nit > 10 and have such
data in both half seasons.

◮ Assumed Hit , the number of “hits”, is Bin(Nit , pi) and used
variance-stabilizing transformation

Xit = arcsin

√

Hit + 1/4

Nit + 1/2
∼ N(arcsin(pi ),

1

4Nit

).

◮ Compared predictive performance of several estimators that are
“motivated from empirical Bayes and hierarchical Bayes
interpretations”: James-Stein estimator, nonparametric EB
estimator by Brown and Greenshtein (2009)

12 / 29



Application to Baseball Batting Averages

◮ Instead of a single season, use longitudinal data consisting of results from
the 5 most recent seasons (2006 - 2010), or 10 half seasons
t = 1, 2, · · · , 10.

◮ Linear dynamic EB via linear mixed models (LMM)

Xit = β1X̄t−1 + β2X̄t−2 + bi (t ≥ 3),

where Xit is same as Brown’s, X̄t is the average for Xit , bi is the
subject-specific random effects ∼ N(α, σ2).

◮ Training set is half seasons 3 to 9, test set is half season 10. To be
comparable to Brown, require players to have both history in t = 9, 10
and at bats Nit > 10 for t = 3, · · · , 10.

◮ Bayesian information criterion (BIC) selects

Xit = β1X̄t−1 + bi (t ≥ 3), t = 3, · · · , 9.

◮ Use Henderson’s BLUP for one-step ahead predictions δ = X̂i,10.
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Evaluation of the Predictive Performance

◮ For different predictors δ of Xi,10, Brier score calculates
∑n

i=1(δ − Xi,10)
2/n and we also calculate the Kullback-Leibler divergence

loss function (Lai, Gross, Shen 2011) given by

KL(δ) =
∑

i

{Yi,10 log(Yi,10/p̂i (δ)) + (1− Yi,10) log[(1− Yi,10)/(1− p̂i(δ))]},

where Yi,10 is the batting average of batter i at t = 10, and
p̂i(δ) = [(sin δ)2(Ni,10 + 1/2)− 1/4]/Ni,10 is the predictor of Yi,10 using δ.
A smaller KL(δ) indicates better predictive performance for the group
under consideration.

LMM Naive Mean EB(MM) EB(ML) JS

Brier 0.0045 0.0067 0.0074 0.0068 0.0060 0.0064

KL 4.45 7.03 6.90 6.32 5.68 5.99

◮ By making use of the longitudinal aspect of the data, the dynamic EB
modeling approach implemented via LMM gives a markedly better
prediction performance.
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Generalized Linear Mixed Models (GLMM) & Dynamic EB

◮ A widely used model for longitudinal data Yit in biostatistics is the
generalized linear model that assumes Yit with density of the form

f (y ; θit , φ) = exp{[yθit − g(θit)]/φ+ c(y , φ)},

in which h is a smooth increasing function (the link function) and xit is a
d−dimensional vector of covariates s.t.

h(µit) = β
′

xit , where µit =
dg

dθ
(θit)

◮ For the case d = 1 (so that µit = µt), Zeger and Qaqish (1988)
introduced the model

h(µt) =

p
∑

j=1

θjh(Yt−j).

◮ Suppose the prior distribution specifies that for each 1 ≤ t ≤ T , µit are
i.i.d. with mean µt . Note that µs can be consistently estimated by Ȳs .
This suggests h(µt) =

∑p

j=1 θjh(Ȳt−j ) as an EB extension of the
Zeger-Qaqish model.
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Generalized Linear Mixed Models (GLMM) & Dynamic EB

◮ We can include fixed and random effects and other time-varying
covariates of each subject i , thereby removing the dependence of
h(µit)− h(µt) on t in the GLMM

h(µit) =

p
∑

j=1

θjh(Ȳt−j) + ai + β
′

xit + b
′
izit ,

in which θ1, · · · , θp and β are the fixed effects and ai and bi are
subject-specific random effects.

◮ We assume ai and bi to be independent normal with zero means. Lai and
Shih (2003) have shown by asymptotic theory and simulations that the
choice of a normal distribution, with unspecified parameters, for the
random effects bi in GLMM is innocuous.
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Generalized Linear Mixed Models (GLMM) & Dynamic EB

◮ Predicting the response of subject i at the next period entails estimating

µi,t+1 = h
−1(

p
∑

j=1

θjh(Ȳt+1−j ) + ai + β
′
xi,t+1 + b

′
izi,t+1)

◮ In general, we want to estimate some future function ψt+1 of the
unobserved bi . If we do not know φ,α,β and θ = (θ1, · · · , θp)

′, we can
estimate them by MLE using all the observations up to time t. The
future value ψt+1(bi ) can then be estimated by

ψ̂t+1,i = Eφ̂t ,α̂t ,β̂t ,θ̂t
[ψt+1(bi )|data of the ith subject up to time t].
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Application: Workers’ compensation insurance

◮ The data set in Klugman (1992) contains workers’ compensation losses
for n = 121 occupation classes over 7 years. It relates loss to exposure
(coverage), called “payroll”, which is not adjusted for inflation. Also, the
loss per dollar of payroll, called “pure premium”, is included in the data.

◮ Klugman uses a variant of the credibility regression model

Yit |(αi , βi , σ
2) ∼ N(αi + βi t, σ

2/Pit),

in which Yit is the loss of the i th class in year t and Pit is the
corresponding exposure. He reduced the effective number of parameters
via the Bayesian model

αi |(µα, τ
2
α) ∼ N(µα, τ

2
α), βi |(µβ , τ

2
β) ∼ N(µβ , τ

2
β), cov(αi , βi |ταβ) = ταβ.
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Application: Workers’ compensation insurance

◮ Frees, Young and Luo (2001) modified Klugman’s model and applied a
logarithmic transformation to the pure premium PPit = Yit/Pit , which
they used as a response variable in the LMM

logPPit = αi + βi t + P
1/2
it ǫit ,

with ǫit ∼ N(0, σ2) The subject-specific variance in the above LMM is
weighted by Pit to account for heteroskedasticity. Letting Xit = logPit ,
this is equivalent to

log(Yit) = αi + βi t + Xit + P
1/2
it ǫit ,

◮ Plotting PPit (or logPPit) versus t does not show linear trends,
suggesting that inclusion of t in the model should involve random rather
than fixed effects.

◮ Antonio and Beirlant (2006) also used year t as a covariate in
evolutionary credibility. However, they used a gamma GLMM

Yit |bi ∼ Gamma(κ, µit/κ), log(µit) = αi + βt + Xit ,

in which αi ∼ N(α, τ 2).
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Application: Workers’ compensation insurance

◮ To compare these models, we evaluate how well they predict the losses
Yit given the observations up to year t − 1, for t = 5, 6, 7. (so the training
has at least 4 years of data.)

◮ The 5-number summaries of the absolute prediction errors |Yit − Ŷit | for
t = 5, 6, 7 indicates that Frees’ LMM has the best overall prediction
performance. This can be explained by the strong linear trend in the plot
of log(Yit) versus log(Pit).

◮ Antonio and Bierlant’s GLMM performs better when the absolute errors
are relatively small.

◮ Another important feature of the data set that has been ignored by all
these models is that 7.9% of the losses are 0, and the number of zero
losses tends to decrease with Pit .
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Application: Workers’ compensation insurance

◮ We can modify Free’s LMM to allow for different slope and drop t as a
regressor

logYit = αi + βXit + P
1/2
it ǫit .

◮ To address the issue of “excess zeros”, we can use a two-part GLMM:

◮ Represent Yit by Yit = IitZit , where Iit = 1{Yit>0} and Zit has
the conditional distribution of Yit given Yit > 0.

◮ Since Iit ∼ Bernoulli(πit), we can use the GLMM

logit(πit) = ρ1logit(Īt−1) + α0 + α1Xit + α2Ii ,t−1 + ai

to model πit , where random effects ai ∼ N(0, σ2
a).

◮ For t ≥ 2, use the gamma GLMM to model the positive losses:

Zit ∼ Gamma(κ, µit/κ),

log(µit) = ρ2 log(Z̄t−1) + β0 + β1Xit + β2Zi ,t−1 + bi ,

where bi ∼ N(0, σ2
b), Z̄t−1 = (

∑

Yi,t−1>0 Zi ,t−1)/(
∑n

i=1 Ii ,t−1).
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Application: Workers’ compensation insurance

◮ We can use a hybrid model that combines the relative advantages of the
modified LMM and the two-part GLMM. One way is to choose a cutoff
for Xit = log(Pit) using its median of 17.25.

◮ The proposed hybrid is defined by

Yit =

{

IitZit if Xit < 17.25

exp(αi + βXit + P
1/2
it ǫit) if Xit ≥ 17.25,

(1)

in which Iit ∼ Bernoulli(πit), Zit ∼ Gamma(κ, µit/κ), πit and µit are
defined as before, αi ∼ N(α, τ 2), ǫit ∼ N(0, σ2).

◮ Again, select the model for each training sample (year 1 to t − 1 for
t = 5, 6, 7) by using BIC.
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Application: Workers’ compensation insurance

Table: Five-number summaries (minimum Min, 1st quartile Q1, median
Med, 3rd quartile Q3, and maximum Max) of absolute prediction errors
for different models

LMM (Klugman) GLMM (Antonio & Beirlant)
t = 5 t = 6 t = 7 t = 5 t = 6 t = 7

Min 717 1,168 552 282 310 207
Q1 75,290 53,050 84,100 65,970 43,080 68,020
Med 206,800 207,800 261,200 218,000 152,900 199,600
Q3 570,100 552,500 1,211,000 463,900 478,800 787,200
Max 20.59e6 10.70e6 10.65e6 21.19e6 8.545e6 9.943e6

LMM (Frees) Hybrid Model
t = 5 t = 6 t = 7 t = 5 t = 6 t = 7

Min 451 1,057 381 2 0.5 0
Q1 67,160 35,630 41,350 52,330 43,550 43,480
Med 175,000 188,700 153,400 178,300 148,800 172,900
Q3 572,200 535,000 455,400 630,400 513,400 415,100
Max 21.28e6 5.852e6 7.487e6 21.33e6 2.491e6 5.746e6

23 / 29



Baseball Batting Average Revisited

◮ We note that the realized batting average Yit = Hit/Nit is an unreliable
estimate of the batter’s hitting probability pit when Nit is not large
enough. Therefore Brown (2008) requires Nit ≥ 11 and Ni,t−1 ≥ 11.

◮ Evaluation of the probability forecasts by Lai, Gross and Shen (2011):
Estimate m−1 ∑m

t=1 L(pt , p̂t).

◮ To estimate the batter’s hitting probabilities when Nis is small, there is
even more need to rely on other batters. On the other hand, Nis being
small may have implications on the batter’s ability.

◮ Binomial GLMM: Random effects bi ∼ N(α, σ2).

Hit ∼ Bin(Nit , pit), logit(pit) = β2logit(Ȳt−2) + β1logit(Ȳt−1) + bi .

◮ Infrequent batters: Nit ≤ 32 = 20th percentile. Brown requires Nit ≥ 11
to transform to normal Xit .
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Baseball Batting Averages for Infrequent Batters
t = 10 Diff Brier Loss Diff KL Loss Adjusted Brier

EB(MM) 800e-6 333e-5 252e-5
EB(ML) 991e-6 404e-5 271e-5

JS 848e-6 349e-5 257e-5
LMM 164e-6 227e-6 188e-5
Bin 172e-5

t = 8 Diff Brier Loss Diff KL Loss Adjusted Brier

EB(MM) 747e-6 295e-5 302e-5
EB(ML) 814e-6 322e-5 309e-5

JS 877e-6 344e-5 315e-5
LMM 394e-6 167e-5 267e-5
Bin 228e-5

t = 6 Diff Brier Loss Diff KL Loss Adjusted Brier

EB(MM) 359e-4 148e-1 348e-4
EB(ML) 429e-6 174e-5 0

JS 575e-6 239e-5 0
LMM 288e-6 138e-5 0
Bin 0
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Default Modeling of Corporate Loans

◮ “Frailty” model for loan default: a “frailty” covariate varies over time
according to an autoregressive time-series specification; using MCMC
methods to perform ML estimation and to filter for the conditional
distribution of the frailty process.

◮ Default intensity Yit = exp(β0 +αUit + βVt + ηFt), where Uit are
firm-specific covariates (Moodys distance to default, 1-year stock return)
and Vt macroeconomic covariates (Treasury bill rate, 1-year return on
S&P 500).

◮ Ft is an unobservable common economic factor “frailty”) that follows an
Ornstein-Uhlenbeck (continuous AR(1)) process.

◮ The unobservable state Ft leads to a HMM for which nonlinear filtering
(via Gibbs sampler) is used to estimate Ft and MCMC is needed to
estimate the parameters of the HMM (Duffie et al., 2009). EM algorithm
is used to estimate the other parameters.
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Default Modeling of Corporate Loans

◮ A simpler alternative to the HMM is the proposed dynamic EB model.

◮ Let πit denote the probability of default of firm i in the time interval
[t, t + 1).

◮ We model the default indicator function Yit as

Yit ∼ Bernoulli(πit),

logit(πit |Yi,t−1 = 0) = ρ logit(Ȳt−1) + ai + β′
Uit + b

′
iVt ,

where Ȳt−1 =
∑nt−1

i=1 Yi,t−1/(nt − 1) and ai and bi are random effects.

◮ This model captures the key features of Duffie’s model
λit = exp(β0 +αUit + βVt + ηFt) and is much simpler to implement.
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Default Modeling of Corporate Loans

◮ Data generated from the Frailty Model of Duffie et al.; 1 month-ahead
prediction. 500 companies; 24-months rolling window.
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Conclusion

◮ We have proposed a dynamic EB model which provides flexible and
computationally efficient methods for modeling panel data

◮ The EB approach pools the cross-sectional information over individual
time series to replace an inherently complicated HMM by a much simpler
GLMM.

◮ Replacing µt−1 by the cross-sectional mean Ȳt−1 in our dynamic EB
model (and thereby converting an HMM to a GLMM) is similar to using
GARCH instead of SV models.

◮ Empirical studies in the baseball batting average and workers’
compensation as well as simulation studies in corporate defaults
demonstrate that our proposed model compares favorably with other
models.
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