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Motivation: Try to understand LASSO

Consider orthogonal-components regression with iid normal errors.
(i.e., XT

k Xk = I for all k .)

β̂k ∼ N(βk , σ
2) and β̂k ’s are independent.

What can be achieved by Lasso can be understood easily by
spacing and order statistics of β̂k .
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Complexity of three modeling processes

Assume that βk = 0 for all k and let |β̂|(j) denote the jth order
statistic of βk ’s.
Three cases will be considered.

Case 1. Wavelet with hard thresholding: Individual pixels in
an image are marked as object pixels if their value is
greater than some threshold value and as background
pixels otherwise.

Case 2. Nested linear models with Cp in which the predictors
are pre-ordered such that the index of predictors are
pre-assigned.

Case 3. All subset selection with Cp in which the assigned
importance of predictors are data-driven.
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Case 1: Select λ with hard thresholding.

Consider Yk = βk + ϵk where βk = 0 for all k .

β̂2
k ∼ σ2χ2

1 for all k. (For simplicity, consider σ2 = 1 from
now on.)

Model selection:

|β̂k | =
{

0 if |β̂k(λ)| ≤ λ

β̂k otherwise

When we decrease λ from |β̂|(K) to |β̂|(1), the number of kept
predictors decreases from K to 1. Namely,

β̂
(m)
k = I (|β̂k | ≥ λ)β̂k , k = 1, . . . ,K ,

where I (·) is the indicator function.

Note that RSS(Mk)− RSS(Mk+1) = |β̂|2(k+1) which is not

distributed according to χ2
1.
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Fixed penalty with model selection

Consider nested linear regression models
M = {Mk , k = 1, . . . ,K}.

For model Mk , βj ̸= 0 for j ≤ k0 and βj = 0 for j > k.
β’s are estimated by the least square method and
µ is estimated by µ̂k = PkY, where Pk is the projection
matrix corresponding to model Mk .
Its residual sum of squares is defined as

RSS(Mk) = (Y − µ̂k)
T (Y − µ̂k) .

If AIC (Mallows’ Cp) is used to score models, choose the
model M̂ by minimizing

RSS(Mk) + 2|Mk |σ2

with respect to all competing models M, where |Mk | is the
size of Mk .
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Adaptive choice of penalty λ

Q: Is it possible to come up an adaptive choice of λ

min
Mk∈M

RSS(Mk) + λ|Mk |σ2

to achieve model selection consistency on flexible configuration of
n and M?

Cp: Overfitting is not severe.

When true model is among M with 1 ≤ k0 ≤ K , Woodroofe
(1982, AS) and Zhang (1992, JASA) gave a detailed analysis
on the performance of Cp.

BIC replaces 2 with log n which leads to a consistent selection.
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Unbiased risk estimate

Unbiased risk estimate, covariance inflation and GDF

What is the prediction error of the model M̂(λ) which is the
minimizer of RSS(Mk) + λ|Mk |σ2 with respect to all competing
models M = {Mk , k = 1, . . . ,K}?
Note that

1

n

{
RSS(M̂(λ)) + 2E

[
εT
(
µ̂M̂(λ) − µ0

)]}
is an unbiased risk estimator for each λ > 0. Define

g0(λ) =
2

σ2
E
[
ϵT
(
µ̂M̂(λ) − µ0

)]
= 2GDF .

g0(λ)/2 is defined as the generalized degrees of freedom
(GDF) by Ye (1998, JASA).
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Unbiased risk estimate

Covariance Inflation (Efron, 1986)

Note that

RSS = (Y − µ̂)T (Y − µ̂)

= (µ̂− µ0)
T (µ̂− µ0)− 2ϵT (µ̂− µ0) + ϵTϵ.

When µ̂ = PY, we have E
[
ϵT (µ̂− µ0)

]
= σ2tr(P).

Larger model gives a better fit for this particular realization.
Note that

(YF − µ̂)T (YF − µ̂)

= (µ0 − µ̂)T (µ0 − µ̂)− 2(ϵF )T (µ̂− µ0) + (ϵF )TϵF

and E
[
(ϵF )T (µ̂− µ0)

]
= 0.

The benefit of larger model is not realized in future prediction.
(another realization).
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Unbiased risk estimate

Adaptive penalty selection

Shen and Ye (2002, JASA) proposed to choose λ > 0 to minimize
the unbiased risk estimator

λ̂ = argminλ>0

{
RSS(M̂(λ)) + g0(λ)σ

2
}
.

The resulting selected model is denoted as M̂(λ̂).
As an attempt to understand their proposal, consider the situation

BIC is consistent (no underfitting).

nested competing models

λ ∈ [0, log n]
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Adaptive model selection with nested linear regression
models

Is
M̂(λ̂) = M̂(log n) = Mk0

or λ̂ = log n?

Will the adaptive penalty selection in Shen and Ye (2002,
JASA) increase the penalty (λ = 2) with Cp to BIC so that
the probability of overfitting is reduced?

Note that

β̂2
k ∼ σ2χ2

1

RSS(Mk)− RSS(Mk+1) = β̂2
k+1 which is distributed

according to σ2χ2
1

How do we compute g0(λ)?
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Calculate g0(λ).

It follows from the results of Spitzer (1956), Woodroofe (1982)
and Zhang (1992) that, for all λ ∈ [0, log n],

g0(λ) = 2

K−K0∑
j=1

[
P(χ2

j+2 > jλ)
]
+ 2K0.

We just do a simulation study when K − K0 = 20.

Similar conclusion hold for K − k0 > 20 by using theorem of
approximation type instead of asymptotics.

How big is the following item?

2

K−k0∑
j=21

[
P(χ2

j+2 > jλ)
]

x[
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Probability of correct selection: URE is not a cure.

When λ increases from 1.0 to 1.5, g0(λ) decreases from 25.35 to
11.22. (Drop rate is too fast).

|M̂(λ̂)| λ ∈ [0, log n] λ = 2 |M̂(λ̂)| λ ∈ [0, log n] λ = 2

k0 0.5402 0.7130 k0 + 11 0.0143 0.0022
k0 + 1 0.0603 0.1120 k0 + 12 0.0165 0.0020
k0 + 2 0.0360 0.0565 k0 + 13 0.0157 0.0015
k0 + 3 0.0268 0.0348 k0 + 14 0.0167 0.0012
k0 + 4 0.0217 0.0236 k0 + 15 0.0185 0.0012
k0 + 5 0.0179 0.0154 k0 + 16 0.0196 0.0010
k0 + 6 0.0166 0.0114 k0 + 17 0.0202 0.0006
k0 + 7 0.0157 0.0080 k0 + 18 0.0240 0.0004
k0 + 8 0.0155 0.0062 k0 + 19 0.0310 0.0005
k0 + 9 0.0146 0.0046 k0 + 20 0.0433 0.0004
k0 + 10 0.0149 0.0036
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Probability of correct selection:

M̂(λ̂) = Mk0+ [0, log n] [0.5, log n] [1, log n] [1.5, log n] [2, log n]
0 0.5457 0.5457 0.5457 0.6483 0.7539
1 0.0565 0.0565 0.0565 0.0681 0.0807
2 0.0312 0.0312 0.0312 0.0386 0.0474
3 0.0262 0.0262 0.0262 0.0320 0.0348
4 0.0239 0.0239 0.0239 0.0283 0.0249
5 0.0188 0.0188 0.0188 0.0227 0.0166
6 0.0156 0.0156 0.0156 0.0190 0.0103
7 0.0134 0.0134 0.0134 0.0169 0.0071
8 0.0136 0.0136 0.0136 0.0157 0.0051
9 0.0140 0.0140 0.0140 0.0151 0.0041
10 0.0155 0.0155 0.0155 0.0132 0.0039
11 0.0155 0.0155 0.0155 0.0107 0.0022
12 0.0153 0.0153 0.0153 0.0106 0.0018
13 0.0163 0.0163 0.0163 0.0097 0.0018
14 0.0177 0.0177 0.0177 0.0080 0.0015
15 0.0185 0.0185 0.0185 0.0074 0.0012
16 0.0210 0.0210 0.0210 0.0070 0.0008
17 0.0242 0.0242 0.0242 0.0074 0.0005
18 0.0212 0.0212 0.0212 0.0069 0.0006
19 0.0307 0.0307 0.0307 0.0065 0.0005
20 0.0452 0.0452 0.0452 0.0079 0.0003
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Some heuristics:

Consider the case that K − k0 = 20 and λ = 2.

For one realization, we have 3 observations which are greater
than 2 and 2 observations fall between 1.5 and 2.
(i.e. V1 = 4.7, V9 = 2.6, V13 = 1.8, V14 = 7.2, and
V15 = 1.7.)

Minimum of random process {Sj(2), 0 ≤ j ≤ 20} occurs at

ĵ(2) = 1 for this realization.

Include one extra predictor xk0+1. (Note that S0(2) = 0.)

Let N(λ) denote the number of Vj which are greater than λ.

Note that N(2) ∼ Bin(20, 0.1573)

Sj(2): positive drift

ĵ(2) cannot be large.

AMS improves when λ ≥ 2.
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Adaptive choice of λ with GDF over [0, log n]: K − k0 = 20

When λ = 1, it is expected that it leads an overfitting model
with lots of superfluous covariates as comparing a χ2

1 random
variable) to 1 repeatedly.

Finding by simulation: Adaptive penalty selection of λ over
[0, log n] not only cannot improve over Cp but decreases the
probability of selecting Mk0 to about 54% as shown in
previous slides.
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Adaptive choice of λ with GDF over [2, log n]: K − k0 = 20

λ̂ is defined as follows:

λ̂ = min
λ∈[2,log n]

{
RSS(M̂(λ)) + g0(λ)σ

2
}
.

Refer to the table presented in next slide.

Adaptive penalty selection improves Cp but not much.

Improves over Cp by increasing the probability of correct
selection in the range of 3% to 4%.
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Probability of correct selection

The reduction from 0.1120 to 0.0838 can be supported by an
approximation type of theorem. (It is around 0.0340.)

|M̂(λ̂)| λ ∈ [2, log n] λ = 2 |M̂(λ̂)| λ ∈ [2, log n] λ = 2

k0 0.7484 0.7130 k0 + 11 0.0022 0.0022
k0 + 1 0.0838 0.1120 k0 + 12 0.0020 0.0020
k0 + 2 0.0505 0.0565 k0 + 13 0.0015 0.0015
k0 + 3 0.0341 0.0348 k0 + 14 0.0012 0.0012
k0 + 4 0.0233 0.0236 k0 + 15 0.0011 0.0012
k0 + 5 0.0153 0.0154 k0 + 16 0.0010 0.0010
k0 + 6 0.0113 0.0114 k0 + 17 0.0006 0.0006
k0 + 7 0.0080 0.0080 k0 + 18 0.0004 0.0004
k0 + 8 0.0062 0.0062 k0 + 19 0.0005 0.0005
k0 + 9 0.0046 0.0046 k0 + 20 0.0004 0.0004
k0 + 10 0.0036 0.0036
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Issue: Data perturbation with τ/σ = 0.1

Probability of correct selection:

|M̂(λ̂)| λ ∈ [0, log n] λ = 2 |M̂(λ̂)| λ ∈ [0, log n] λ = 2

k0 0.8015 0.7092 k0 + 11 0.0022 0.0019
k0 + 1 0.0758 0.1103 k0 + 12 0.0016 0.0016
k0 + 2 0.0355 0.0584 k0 + 13 0.0014 0.0012
k0 + 3 0.0223 0.0359 k0 + 14 0.0010 0.0009
k0 + 4 0.0138 0.0247 k0 + 15 0.0008 0.0009
k0 + 5 0.0097 0.0165 k0 + 16 0.0013 0.0008
k0 + 6 0.0065 0.0119 k0 + 17 0.0016 0.0007
k0 + 7 0.0053 0.0090 k0 + 18 0.0027 0.0008
k0 + 8 0.0027 0.0055 k0 + 19 0.0042 0.0005
k0 + 9 0.0036 0.0054 k0 + 20 0.0042 0.0001
k0 + 10 0.0023 0.0038
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GDF, data perturbation, and Stein’s lemma

How do we compute GDF for general modeling process?
.
Definition
..

.

. ..

.

.

The GDF for a modeling procedure M are given by
GDF (M) =

∑n
i=1 h

M
i (µ), where

hMi (µ) =
∂Eµ[µ̂M

i (Y)]

∂µi
= lim

δ→0
Eµ

[
µ̂M
i (Y + δei )− µ̂M

i (Y)

δ

]
=

1

σ2
E
[
µ̂M
i (Y)(Yi − µi )

]
=

1

σ2
cov(µ̂M

i (Y),Yi − µi ),

where ei is the ith column of In.
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Data perturbation

Shen and Ye (2002) propose to compute 2GDF (λ) by data
perturbation method. The procedure is as follows:
Repeat t = 1, . . . ,T .

Generate the perturbed dataset y + δt where
δt = (δt1, . . . , δtn) ∈ Rn, 1 ≤ t ≤ T , from a normal
distribution N(0, τ2).

Evaluate µ̂M(y + δ) based on the modeling procedure M.

Calculate ĥMi as the regression slope from

µ̂M
i (y + δ) = α+ ĥMi δti , t = 1, . . . ,T .

The estimate of GDF (M) is
∑

i ĥ
M
i .
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nested regression: τ/σ = 0.01(Green),0.5(Blue), and
100(Black)
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When τ/σ → 0, what happens?

Answer:

It is equivalent to adding constraint λ ≥ 2 or do the adaptive
choice of λ over [2,∞). This is the least amount of added
penalty suggested in Mallows (1973, Technometrics).

Why? Refer to previous slide or next slide.

sensitivity analysis: For another realization of Y, are you
comfortable with your modeling procedure leading to a
different choice of model?

If not, this particular choice of λ cannot be a good one?

For subset regression with λ, it adds the penalty to achieve
unbiased risk estimate for that choice of λ.
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Replace λ ∈ [0,∞) by adaptively choice λ ∈ [2,∞)

Recall that K − k0 = 20 and λ = 1.5.

For one realization, we have the reduction of RSS for adding
one more predictor 4.7, 0.62, 0.24, 0.46, 1.2, 0.2, 0.8, 0.54, 2.6,
1.2, 0.022, 1.2, 1.8, 7.2, 1.7, 0.02, 1.3, 0.096, 0.31, 0.3.

Add up complexity with λ = 1.5. We have

−3.2,−2.32,−1.06,−0.02, 0.28, 1.58, 2.28, 3.24, · · · .

The minimum occurs at −3.2 so that one zero-coefficient
predictor will be included.

Note that (
√
4.7−

√
0.62)/0.1 ≈ 13.8.

It is equivalent to saying that this modeling procedure goes with
this particular data realization will always choose one more
predictor.

Adding GDF is equivalent to replacing λ = 1.5 by λ = 2.0.
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Research Agenda:

Choose τ/σ and the number of replications T to address the
questions raised in Shen and Ye (2002) and Breiman (1992, 1995,
1996).
Recall that Y ∼ N(µ, σ2In) and Y = µ+ ϵ.

Consider the commonly used linear estimator
µ̂(Y) = PY = (µ̂1(Y), . . . , µ̂n(Y))T where P = (pij)n×n is
not necessarily to be a projection matrix.

Those p′ijs are constants which can depend on the choice of
model but is independent of ϵ.
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Data perturbation provides an unbiased estimate of
GDF (M) for all τ .

Evaluate the derivative of the smooth estimator E [µ̂(y + δ)].

ϕτ (x): density function of N(0, τ2), ϕ
′
σ(x) = −xϕσ(x)/σ

2

lim
h→0

E [µ̂i (y + δ + hej)]− E [µ̂i (y + δ)]

h

= lim
h→0

1

h

∫
[µ̂i (y + δ + hej)− µ̂i (y + δ)]

n∏
ℓ=1

ϕτ (δℓ) dδ

= lim
h→0

1

h

∫ µ̂i (y + δ) [ϕτ (δj − h))− ϕτ (δj)]
∏
ℓ̸=j

ϕτ (δℓ)

 dδ

=

∫ µ̂i (y + δ)
−dϕ(δj)

dδj

∏
ℓ ̸=j

ϕτ (δℓ)

 dδ

=
1

τ 2

∫
[µ̂i (y + δ) · δj ]

n∏
ℓ=1

ϕτ (δℓ) dδ.
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cont.

Evaluate EY

{
limh→0

[
Eδ[µ̂i (Y + δ + hej)]− E [µ̂i (Y + δ)]

]
/h
}
.

Note that

E

[
lim
h→0

E [µ̂i (Y + δ + hej)]− E [µ̂i (Y + δ)]

h

]
=

∫
1

τ 2

[∫
[µ̂i (y + δ) · δj ]

n∏
ℓ=1

ϕτ (δℓ)
n∏

ℓ=1

ϕσ(yℓ − µℓ) dδ

]
dy

=
1

τ 2

∫ [(∫
µ̂i (y + δ)

n∏
ℓ=1

ϕσ(yℓ − µℓ) dy

)
· δj

]
n∏

ℓ=1

ϕτ (δℓ) dδ

=
1

τ 2

∫ (∫
µ̂i ((µ+ δ) + (y − µ))

n∏
ℓ=1

ϕσ(yℓ − µℓ) dy

)
· δj

n∏
ℓ=1

ϕτ (δℓ) dδ

=
1

τ 2

∫
{E [µ̂i ((µ+ δ) + (Y − µ))]} · δj

n∏
ℓ=1

ϕτ (δℓ) dδ
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cont.

E

[
lim
h→0

E [µ̂i (Y + δ + hej)]− E [µ̂i (Y + δ)]

h

]
=

1

τ 2
E {E [µ̂i ((µ+ δ) + (Y − µ))]} δj

= E

[
lim
h→0

E [µ̂i ((µ+ δ) + (Y − µ) + hej)]− E [µ̂i ((µ+ δ) + (Y − µ))]

h

]
= E

[
lim
h→0

E [µ̂i (Y + δ + hej)]− E [µ̂i (Y + δ)]

h

]
= lim

h→0
E

[
E [µ̂i (Y + δ + hej)]− E [µ̂i (Y + δ)]

h

]
= lim

h→0
E

[
µ̂i (Y∗ + hej)− µ̂i (Y∗)

h

]
.

Here Y∗ = Y + δ and Y∗ ∼ N(µ, (σ2 + τ 2)In).
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cont.

By the same argument, we have

Cov(µ̂M
i (Y), ϵj) =

∫
µ̂M
i (y)(yj − µj)

n∏
ℓ=1

ϕ(yℓ − µℓ) dy

= lim
h→0

E [µ̂M
i (Y + hej)]− E [µ̂M

i (Y)]

h
.

It states that Stein’s lemma can be applied to covariance inflation
and the feasibility of data perturbation for giving an unbiased
estimate of covariance inflation occurred in model selection.

Address the effect that Var(Yi ) = σ2 while
Var(Y ∗

i ) = σ2 + τ2. Consider

argminMk∈M

{
(y + δ)T (In − Pk)(y + δ) + λ|Mk |(σ2 + τ2)

}
where |Mk | denotes the number of unknown parameters in
model Mk .
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GDF (unbiased risk estimate) or Data Perturbation?

For any given τ > 0, data perturbation method gives an
unbiased estimator of GDF when µ is a zero vector.

Otherwise, it gives a biased estimator of GDF unless the
fitting procedure is overfitting.

For nested regression with adaptive penalty selection, we can use a
two-stage procedure.

Stage 1: Apply tiny bootstrap (τ/σ is close to 1).

T must be large to find a proper range of λ.

Stage 2: Apply little bootstrap (τ/σ − 1 ∈ [0.5, 1]).
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Summary: daptive penalty selection for nested regression

When λ ∈ [2, log n], there are about 75% to choose the true
model.

The probability of selecting correct model decreases to 55% if
λ ∈ [1, 2) ∪ [2, log n].

Just adding GDF won’t work for adaptive penalty selection.

For data perturbation method with small τ/σ, it gives a
measure on the stability of selected model to the small error
added to the responses.

It is equivalent to force the range of λ should be at least 2 as
Cp does.

Choice of τ/σ needs more investigation.

Data perturbation is more than a computational tool for
calculate GDF or covariance inflation.
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Unsettled Issues

Issue 1: How should I pick up right τ and T?

Define

ek =
(In − Pk−1)xk
∥(In − Pk−1)xk∥

and ξk =
β̂k

∥(In − Pk−1)xk∥
= YTek

for all k = 1, . . . ,K .
Denote (ξK0+1, . . . , ξK )

T by ξ where ξ ∼ N(0, IK−K0σ
2).

Least-squares estimate based on the perturbed data:
β̂
∗
= (β̂∗

1 , . . . , β̂
∗
K )

T . Then

β̂∗
k

∥(In − Pk−1)xk∥
= (Y+δ)Tek and ζk =

β̂∗
k − β̂k

∥(In − Pk−1)xk∥
= δTek
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Unsettled Issues

Two Markov chains:

Chain associated with perturbed data:

M̂(λ)(ξ + ζ)

= argmaxMj∈M


K∑

i=K0

[(
ξi√

σ2 + τ2
+

ζi√
σ2 + τ2

)2

− λ

]
small perturbation

It loses symmetry. (noncentral χ2)

Original chain:

M̂(λ)(ξ) = argmaxM∈M


K∑

i=K0

[(
ξi√
σ2

)2

− λ

]
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Issue 2: hard thresholding: smoothing µτ
λ(·) with τ = 0.1

and λ = 1
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hard thresholding: generalized derivative of µλ(·) with
τ = 0.1σ and λ = 1
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Red: τ = 0.01, Yellow: τ = 0.1, Green: τ = 0.5, Blue:
τ = 0.8, Black: τ = 1, n = 1000, T = 1000
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