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A Simple Nonparametric Problem

Suppose X1, X2, . . . , Xn|F ∼ F and

F ∈M(R) = { all probability measures on R}.

To tackle this nonparametric problem in a Bayesian way,
we need a class of priors on M(R) or a class of probability
measures on the space of probability measures.

The Dirichlet process and species sampling models are
probability measures on M(R) developed for this purpose.



Dirichlet Process on R (Ferguson 1973)

Let α be a finite nonnull measure on (R,B), where R is the
real line and B is the class of Borel sets.

We say that the random probability measure P on R
follows the Dirichlet process with parameter α, if for every
partition B1, . . . , Bk of R by Borel sets,

(P (B1), . . . , P (Bk)) ∼ Dirichlet(α(B1), . . . , α(Bk)).

Notation:
P ∼ DP (α).



Properties of Dirichlet process

P ∼ DP (α) and X1, . . . , Xn|P ∼ P.
Then,

(Conjugacy) P |X1, . . . , Xn ∼ DP (α+
∑n

i=1 δXi).

(Marginalization Property, Blackwell and MacQueen 1973)
marginally (X1, X2, . . .) forms a Polya urn sequence:

X1 ∼ α/α(X )

Xn+1|X1, . . . , Xn ∼
α+

∑n
i=1 δXi

α(X ) + n
, n ≥ 1.



(Sethuraman’s Representation)
Let α be a finite measure on X and let

θ1, θ2, . . .
iid∼ Beta(1, α(X ))

Y1, Y2, . . .
iid∼ α/α(X )

and they are independent of each other. Define

p1 = θ1

p2 = θ2(1− θ1)
. . .

pn = θn

n−1∏
i=1

(1− θi)

. . .

Then,

P =
∞∑
i=1

piδYi ∼ DP (α).



Historial Notes - Statistics Side

The Dirichlet process remained only as a theoretical object
until 1990s.

After MCMC appeared on the stage, the Bayesian
nonparametric statistics was popularized.

The Dirichlet process was at the center stage of the
Bayesian nonparametrics.

The main reason for this is the marginalization property of
the Dirichlet process with which the MCMC computation
of the posterior can be done easily.



Historial Notes - Probability Side

After Ferguson’s works, probabilitists (Kingman, Pitman
and more) used and extended the theory for genetic
problems.

The theory developed by probabilitists was largely
neglected by the statistics community nearly 30 years.

James and Ishwaran in early 2000s noted that this theory
could be used in Bayesian nonparametric statistics.

James, Ishwaran, Walker, Prünster, Lijoi, Mena, Müller,
Quintana, ... and many more (and perhaps Lee ) ...
developed statistical methodologies and theory for
statistics.



Species Sampling

Imagine that we land on a planet where ”no one has gone
before”. As we explore the planet, we encounter new
species unknown to us.

We record the names of species we encounter. If the species
is new, we name it by picking an element from X .



Suppose (X1, X2, . . .) is an infinite sequence of such records.

Xi : the species of the i th individual sampled.

X̃j : the jth distinct species appeared

k = kn : the number of distinct species appeared in
(X1, . . . , Xn)

nj = njn : the number of times the jth species X̃j appears
in (X1, . . . , Xn)

n = (n1n, n2n, . . .) or (n1n, n2n, . . . , nkn)



Species Sampling Sequence

We call an exchangeable sequence (X1, X2, . . .) the species
sampling sequence if

X1 ∼ ν

Xn+1|X1, . . . , Xn ∼
k∑

j=1

pj(nn)δX̃j
+ pk+1(nn)ν,

where ν is a diffuse probability measure on X , i.e.
ν({x}) = 0 ∀x ∈ X .

Remark. The Polya urn sequence is an example of species
sampling sequence.



Prediction Probability Function

A sequence of functions (pj , j = 1, 2, . . .) : C → R in the
definition of species sampling sequence is called the
prediction probability function (PPF).

The PPF (pj) satisfies

pj(n) ≥ 0

k(n)+1∑
j=1

pj(n) = 1, for all n ∈ N∗.



For a species sampling sequence (Xn), the corresponding
prediction probability functions is defined as

pj(n) = P(Xn+1 = X̃j |X1, . . . , Xn), j = 1, . . . , kn,

pkn+1(n) = P(Xn+1 /∈ {X1, . . . , Xn}|X1, . . . , Xn).



Species Sampling Model

A sequence of random variables (Xn) is a species sampling
sequence if and only if X1, X2, . . . |P is random sample
from P where

P =

∞∑
i=1

PiδX̃i
+Rν (1)

for some sequence of positive random variables (Pi) and R
such that 1−R =

∑∞
i=1 Pi ≤ 1, (X̃i) is a random sample

from ν, and (Pi) and (X̃i) are independent.

We call the directing random probability measure P in
equation (1) the species sampling model (or prior) of the
species sampling sequence (Xi).



Exchangeable Random Partition on [n]

[n] = {1, 2, . . . , n}, n ∈ N = {1, 2, . . .}
(exchangeable random partition) A random partition Πn of
[n] is called exchangeable, if for any permutation σ on [n],

Πn
d
= σ(Πn),

i.e., for any partition {A1, A2, . . . , Ak} of [n],

P (Πn = {A1, A2, . . . , Ak}) = P (σ(Πn) = {A1, A2, . . . , Ak}).

Here, σ(Πn) is the partition formed from partition Πn by
applying permutation σ on [n].



Exchangeable Partition Probability Function (EPPF)

Πn is an exchangeable random partition of [n] if and only if
for any partition {A1, A2, . . . , Ak} of [n],

P (Πn = {A1, A2, . . . , Ak}) = p(|A1|, |A2|, . . . , |Ak|),

for some function p on Cn symmetric in its arguments,
where Cn is the set of all compositions of n.

(EPPF) The function p is called an EPPF of Πn.



Exchangeable Random Partition on N

A sequence of random partition Π∞ = (Πn)n≥1 is called an
exchangeable random partition on N if

I Πn is an exchangeable random partition on [n] for all n;
I Πm = Πm,n a.s. for all 1 ≤ m ≤ n <∞, where Πm,n is the

partition of [m] obtained by restricting Πn to [m].



EPPF on N

For n = (n1, n2, . . . , nk),

nj+ = (n1, . . . , nj−1, nj + 1, nj+1, . . . , nk), 1 ≤ j ≤ k,
n(k+1)+ = (n1, n2, . . . , nk, 1).

A function p : ∪∞l=1Nl → [0, 1] is called an EPPF of
Π∞ = (Πn) if

I p(1) = 1;
I for all n ∈ ∪∞l=1Nl,

p(n) =

k+1∑
j=1

p(nj+).

I pn = p|Cn is the EPPF of Πn for all n, where Cn is the set of
(n1, . . . , nk) with

∑
i ni = n.



Characterizations of SSM

The distribution of species sampling model

F =
∑
j

PjδUj + (1−
∑
j

Pj)ν,

is characterized by
I ν and the distribution of (Pj); or
I ν and the distribution of Π∞; or
I ν and the EPPF (p) of Π∞; or
I ν and the PPF (pj) of Π∞.

The species sampling model is characterized as a species
sampling sequence.



Example: Pitman-Yor Process

For a pair of real numbers (a, b) and a diffuse probability
measure with either 0 ≤ a < 1 and b > −a or a < 0 and
b = −ma for some m = 1, 2, . . ., define

Uj
ind∼ Beta(1− a, b+ ja), j = 1, 2, . . .

X̃1, X̃2, . . .
iid∼ ν

and (Uj) ⊥ (X̃j).

Construct P1, P2, . . . from Uis by the stick breaking process

P1 = U1

Pj = (1− Uj) . . . (1− Uj−1) · Uj , j = 2, 3, . . . .



The random probability measure

P =

∞∑
j=1

PjδX̃j

is called a Pitman-Yor process or P ∼ PY (a, b, ν).

Note PY (0, θ, ν) = DP (θ · ν).



(EPPF of Pitman-Yor)

pa,b(n1, n2, . . . , nk) =
(θ + a)k−1↑a

∏k
i=1(1− a)ni−1↑1

(θ + 1)n−1↑1
,

where (x)n↑c = x(x+ c)(x+ 2c) · · · (x+ (n− 1)c).



(PPF of Pitman-Yor)

pa,bj (n1, n2, . . . , nk) =

{
nj−a
n+b , j = 1, 2, . . . , k
b+ka
n+b , j = k + 1.



Consistency Issue

The class of species sampling models is a huge class of
nonparametric priors with more flexibilities than the
Dirichlet process and potentially the same computational
ease.

But, the asymptotic properties with the species sampling
models are not well understood.

In the simplest possible nonparametric model, does the
species sampling model pass the test of the posterior
consistency?



True Distribution

We assume
X1, X2, . . . ∼ iid P0,

where
P0 =

∑
j

qjδzj + λµ,

where zj ∈ X , q1 ≥ q2 ≥ · · · ≥ 0, λ = 1−
∑

j qj ≤ 1 and µ is a
diffuse probability measure.

Let Z = {z1, z2, . . .}.



Model

In this talk, we consider the following model:

X1, . . . , Xn|P ∼ P,

P ∼ P,

where P is a species sampling prior.



Consistency of PY Process

Theorem
When the prior is PY (a, b, ν), the posterior is weakly consistent
at P0 if and only if any of the followings holds

(i) a = 0, that is, a Dirichlet process prior,

(ii) when a > 0, P0 is discrete or µ = ν,

(iii) a < 0 and P0 is a mixture of at most m = |b/a| degenerated
measures.



Some Remarks

If P0 is discrete, all the Pitman-Yor process priors with
0 ≤ a < 1 entail the consistent posteriors.

If P0 is continuous, the Dirichlet process is the only prior
among the Pitman-Yor process priors which renders
posterior consistency.

The second part of condition (ii) means that the diffuse
probability measure ν should be proportional to the
continuous part µ of the true probability measure P0.
Thus, in order to get the consistency we should know the
continuous part of the true measure a priori, which is
unlikely in practical situations.

The same result has been obtained by James (2008)
independently.



Mixture Models

The story is different in the mixture models. Consider the
following normal mixture model

Xi|θi, h∼ ind N(θi, h
2), i = 1, . . . , n,

θi|P ∼ iid P, i = 1, . . . , n,

P ∼ P,
h2 ∼ µ,

where P and h are independent a priori.

Under certain conditions, the posterior is weakly (and strongly)
consistent.



More Assumptions for General Theorem

(Smoothness condition for predictive probability function)
As n→∞,

Sn = Sn(n) = max
1≤i≤k

k∑
j=1

∣∣∣pj(n)− pj(ni+)
∣∣∣→ 0, P∞0 − a.s.

(Separability condition for Z, the support of the discrete
part of P0) There exists ε > 0 such that for all i 6= j

d(zi, zj) > ε,

where d is the metric of X .



General Theorem

Assume the separability condition and the smoothness
condition. The posterior is weakly consistent at P0 if and only if

lim
n→∞

k∑
j=1

|pj(n)− nj/n|I(X̃j ∈ Z) = 0, P∞0 − a.s. (2)

and one of the followings holds

(i) pk+1(n)→ 0 as n→∞, P∞0 − a.s.

(ii) P0 is a mixture of a discrete probability measure and the
diffuse measure ν.



Remarks

Condition (2) says essentially that the conditional
distribution of Xn+1 given X1, . . . , Xn behaves like the
empirical distribution of X1, . . . , Xn.

The smoothness condition for the predictive probability
function pj(n) ensures a small change in n does not change
pj(n) much.

The condition pk+1(n)→ 0 as n→∞ is natural in the
following sense. Since pk+1(n) is the predictive probability
that Xn+1 is sampled from ν, we expect that pk+1(n)→ 0
as n→∞, if the posterior consistency holds.

Condition (ii) is satisfied by all discrete probability
measures. Thus, all species sampling priors satisfying (2)
are weakly consistent at every discrete probability measure.



Consistency Results for other Subclasses

The N-IG process prior (Lijoi, Mena and Prünster, 2005) is
consistent at all the discrete distributions, but inconsistent
at all the continuous distributions except ν.

The the prior with Poisson-Kingman partition, PK(ρa,b,c),
is consistent at all discrete distributions, but inconsistent at
all continuous distributions except a = 0 (DP case), where
ρa,b,c(x) = cx−a−1e−bx with 0 ≤ a < 1, b ≥ 0 and c > 0.

Under certain conditions, the Gibbs type prior is also
consistent at all discrete distributions but inconsistent at
all continuous except DP.


