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1. Introduction

e In recent years, there has been a new wave of work that is focused
on the forecasting of uncertainty in mortality projections.

e Conventionally, isolated (point-wise) prediction intervals (IPI) are
used to quantify the uncertainty in future mortality rates.

e A pointwise interval only reflects uncertainty in a variable at a
single time point.

e In situations when the path or trajectory of future mortality rates is
important, a band of pointwise intervals might lead to invalid
inference.

e The primary objective of this paper is to demonstrate how
simultaneous prediction bands (SPB) can be created for prevalent

stochastic models. 7 1ASC-ARS
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What is IPI?
e Most time-series computer packages calculate and plot isolated
(point-wise) prediction intervals (IPls) for multiple forecasts.
e The following example shows an output from a standard
forecasting package.
e 95% prediction intervals are included.
e What is the meaning of the confidence level 95% here?
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What is SPB?

e SPB is a time-simultaneous prediction band with coverage
probability 0 < 1 — a < 1 for a random trajectory y if

s=1

S
Pr(y € SPB) = Pr (ﬂ(ls <yris < hs)) =1-o.

e SPB is useful when the whole path (or trajectory) of future
mortality rates is important.

e The following graph shows a hypothetical 95% SPB.
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B —
Why IPI £ SPB?

e Unless all trajectories develop very orderly (say, perfectly
correlated), the probability that a trajectory lies completely inside
all ISl would be less than 1 — a.

e |t can be seen from an extreme example that if the forecasts are
uncorrelated to each other, the probability of S consecutive
predictions are within the ISl is (1 — a)°.

e For S =20 and o = 5%, this probability becomes 35.85%!

e In general, predictions from a stochastic mortality model are
neither perfectly correlated nor totally uncorrelated; therefore, we

cannot use IPI to replace SPB.
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2. Data

e Historic mortality data for US and Canadian (unisex) populations
from age 60 to 99 and from year 1951 to 2004.

e The required data, death counts and exposures-to-risk, are
obtained from the Human Mortality Database (2010).

e Note that the methods we propose do not require a specific choice
of a sample age range and a sample period. They are chosen just
purely for illustration purposes.
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3. Mortality Models

e We provide a brief review of two mortality models which we use to
illustrate the concept of time-simultaneous prediction bands
(SPB).

e They are the Cairns-Blake-Dowd (CBD) model and the generalized
CBD model with a cohort effect (GCBD).

e Note that the methods we propose do not require a specific choice
of stochastic mortality models. They are chosen just purely for
illustration purposes.
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e
The Cairns-Blake-Dowd (CBD) Model

e Cairns et al. (2006) propose a two-factor stochastic mortality

model

In <L> = nﬁl) + ng)(x —X), (1)
1—gxt

where g, ; is the realized single-year death probability at age x and

ti?;)e t, X iz;che average age over the age range we consider, and

Kt t

and k;~’ are period indexes.

® The maximum likelihood estimates (MLE) of ;#) and m?),

t = 1950, ...,2004, for Canada and US, are shown in the following

graphs.
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MLE of the CBD Model — Canada
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MLE of the CBD Model — US
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The Cairns-Blake-Dowd (CBD) Model

e After fitting equation (1) to historic death probabilities, the period
(1) ()

indexes x; 7 and k;
drift, that is,

are modeled by a bivariate random walk with

Kt+1 :K/t‘i‘,uz‘i‘ CZ(t+1) (2)
1) (2

where ky = (k; 7, ky '), = (p1, p2) is a constant 2 x 1 vector,
C is a constant 2 X 2 upper triangular matrix, and Z(t) is a
2-dimensional standard normal random vector.
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The Cairns-Blake-Dowd (CBD) Model

e Trajectory of mortality predicted rates for a particular birth cohort
(age x in year T) can be obtained by

. (%):w(s)m#(s)( +5—X),

1- Ox+s5,T+s

where /@(Tl)( ) and K(Tz)(s) are the minimum sqaure error (MMSE)

(1 ) )

. and KT

forecasts of k- respectively.
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T —
The GCBD Model

e To model cohort effects, we may consider the following
generalization of the CBD model:

" (%) = 1+ 58 (x=%) 4+ (x—%)2-52)+21,. (3)
- Ux,t

where mgl), /@&2), and m( ) are period risk factors, 'y,gi)x is a cohort
risk factor, and &2 is the mean of (x — x)? over the age range we
consider.

e The maximum likelihood estimates (MLE) of ngl), m§2), H§3) and

754))(, t = 1950, ...,2004, for Canada and US, are shown in the
following graphs. 7" IASC-ARS
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MLE of the GCBD Model — Canada
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MLE of the GCBD Model — US
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The GCBD Model

* Having fitted equation (3) to historic data, the period indexes are
modeled by a trivariate random walk with drift:

Kiy1 = ke + p+ CZ(t + 1), (4)

where k; = (ngl), /i(tz), /££3))’, w = (p1, p2, 13)" is a constant 3 x 1
vector, C is a constant 3 x 3 upper triangular matrix, and Z(t) is a
3-dimensional standard normal random vector.
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T —
The GCBD Model

e Trajectory of mortality predicted rates for a particular birth cohort
(age x in year T) can be obtained by

In <—qu+s,T+s ) = /i(-,:-l)(S) + n(ﬁ)(s)(x +5—X)
1- Ax+s,T+s

D)0+ s = %) - 62) 45 (5)
where /f.;(Ti)(s) = R(Ti) + spi, i =1,2,3, is the MMSE forecast of
oy
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4. Simulation-Based SPB

e Consider the cohort of individuals who are aged x at the forecast
origin T. Assuming that the forecast horizon is S, the trajectory of
interest would be m = (my1,741,..., Myts5 7+5). From the
stochastic components of the mortality models, we simulate a
learning sample of size N (we use N = 5000 in this paper):

= {mM}L, = {( x+1 T4 " x+S T+S)}n 1

* Note that CBD models is based on g, ; rather than m, ;. To
obtain central death rates, we apply the constant force of mortality
(CFM) assumption:

myt+ = — In(]- - qx,t)a »
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Method 1: Adjusted Intervals

e Our goal is to construct a time-simultaneous prediction band such
that [(1 — )| of the trajectories in M are completely inside the
band at every time point, while |/ | are outside the band at one
or more points of time.

* Let Pls = [Is, hs] be a pointwise prediction interval for my s 745
with coverage probability 1 — . Then the limits /s and hs are set to
the |«/2]th lowest and highest values in the sample, respectively.

 Kolsrud (2007) proposes a three-step iterative method, which he
calls ‘adjusted intervals,’ to construct a time-simultaneous
prediction band from a learning sample.
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Method 1: Adjusted Intervals

e The iterative algorithm:

o Step 1: For each s =,1,...,S, widen the interval uniformly to include
the nearest sample point above and the nearest sample point below.

PI = [ls — ds, hs + d¢]

o Step 2: Check the simultaneous coverage of all intervals in the
learning sample M.

o Step 3:If the simultaneous coverage is less than the prescribed level
1 — «, go to Step (1). Otherwise, terminate the algorithm.

e The resulting band of intervals would contain no less than 1 — « of
the trajectories in the learning sample.
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[llustration of Adjusted Intervals — Canada

Cairns—-Blake-Dowd
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Generalized Cairns—Blake-Dowd

Mean forecast
0.6F| — — — 95% time-simultaneous band N
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lllustration of Adjusted Intervals — US

Cairns—-Blake-Dowd
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Generalized Cairns—Blake-Dowd

Mean forecast
0.6F| — — — 95% time-simultaneous band N
95% pointwise interval
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Method 2: Chebyshev Bands

® The envelope of a (sub)sample is defined as the tightest band that
contains all trajectories in the (sub)sample.

e As an example, the envelope of the Iearning sample M can be

max, m

X+s T+s])

expressed as ([min, mi’?s Tisr

e The idea behind Chebyshev bands is that we construct a
time-simultaneous prediction band as the envelope of a subsample
M* that contains [(1 — «)N| trajectories with the shortest
distance to the mean trajectory

M = (M1, 7415 - - - Myt S, T45)-
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Method 2: Chebyshev Bands

e |t is suggested that we measure the distant by the the weighted
Chebyshev distance, which can be expressed as:

’mx-l-s,T—i-s - ﬁ7x+s,T+s|
Os ’

where

N
_ |1 3 . 2
Os = N (mx+s,T+s - mx+s,T+s)
=1

is the pointwise standard deviation s steps beyond the forecast
origin.
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lllustration of Chebyshev Bands — Canada

Cairns—Blake-Dowd
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Generalized Cairns—Blake—Dowd

— Mean forecast .
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lllustration of Chebyshev Bands — US

Cairns—Blake-Dowd

— Mean forecast
0.6} | — — — 95% time-simultaneous band R
95% pointwise interval
05} *  Envelope of the learning sample 4

Central death rate for the cohort

Time from forecast origin (s) 7 JASC-ARS

>, joint 2011

Taipel Symposium
29 of 31 i



Generalized Cairns—Blake—Dowd

— Mean forecast
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5. Further Research

* Model Risk: Denuit (2009)
e Parameter Method: Li and Chan (2011)

* Non-linear Model: Azais et al. (2010)

Thank You!

7" TASC-ARS

>, joint 2011

31 of 31 Taipel Sympuosivm
of



