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1. Introduction

• In recent years, there has been a new wave of work that is focused
on the forecasting of uncertainty in mortality projections.

• Conventionally, isolated (point-wise) prediction intervals (IPI) are
used to quantify the uncertainty in future mortality rates.

• A pointwise interval only reflects uncertainty in a variable at a
single time point.

• In situations when the path or trajectory of future mortality rates is
important, a band of pointwise intervals might lead to invalid
inference.

• The primary objective of this paper is to demonstrate how
simultaneous prediction bands (SPB) can be created for prevalent
stochastic models.
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What is IPI?

• Most time-series computer packages calculate and plot isolated
(point-wise) prediction intervals (IPIs) for multiple forecasts.

• The following example shows an output from a standard
forecasting package.

• 95% prediction intervals are included.
• What is the meaning of the confidence level 95% here?
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What is SPB?

• SPB is a time-simultaneous prediction band with coverage
probability 0 < 1− α ≤ 1 for a random trajectory y if

Pr(y ∈ SPB) = Pr

(
S⋂

s=1

(ls ≤ yT+s ≤ hs)

)
= 1− α.

• SPB is useful when the whole path (or trajectory) of future
mortality rates is important.

• The following graph shows a hypothetical 95% SPB.
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Why IPI 6= SPB?

• Unless all trajectories develop very orderly (say, perfectly
correlated), the probability that a trajectory lies completely inside
all ISI would be less than 1− α.

• It can be seen from an extreme example that if the forecasts are
uncorrelated to each other, the probability of S consecutive
predictions are within the ISI is (1− α)S .

• For S = 20 and α = 5%, this probability becomes 35.85%!

• In general, predictions from a stochastic mortality model are
neither perfectly correlated nor totally uncorrelated; therefore, we
cannot use IPI to replace SPB.
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2. Data

• Historic mortality data for US and Canadian (unisex) populations
from age 60 to 99 and from year 1951 to 2004.

• The required data, death counts and exposures-to-risk, are
obtained from the Human Mortality Database (2010).

• Note that the methods we propose do not require a specific choice
of a sample age range and a sample period. They are chosen just
purely for illustration purposes.

6 of 31



3. Mortality Models

• We provide a brief review of two mortality models which we use to
illustrate the concept of time-simultaneous prediction bands
(SPB).

• They are the Cairns-Blake-Dowd (CBD) model and the generalized
CBD model with a cohort effect (GCBD).

• Note that the methods we propose do not require a specific choice
of stochastic mortality models. They are chosen just purely for
illustration purposes.
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The Cairns-Blake-Dowd (CBD) Model

• Cairns et al. (2006) propose a two-factor stochastic mortality
model

ln

(
qx ,t

1− qx ,t

)
= κ

(1)
t + κ

(2)
t (x − x̄), (1)

where qx ,t is the realized single-year death probability at age x and
time t, x̄ is the average age over the age range we consider, and

κ
(1)
t and κ

(2)
t are period indexes.

• The maximum likelihood estimates (MLE) of κ
(1)
t and κ

(2)
t ,

t = 1950, . . . , 2004, for Canada and US, are shown in the following
graphs.
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MLE of the CBD Model — Canada
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MLE of the CBD Model — US
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The Cairns-Blake-Dowd (CBD) Model

• After fitting equation (1) to historic death probabilities, the period

indexes κ
(1)
t and κ

(2)
t are modeled by a bivariate random walk with

drift, that is,

κt+1 = κt + µ+ CZ (t + 1) (2)

where κt = (κ
(1)
t , κ

(2)
t )′, µ = (µ1, µ2)′ is a constant 2× 1 vector,

C is a constant 2× 2 upper triangular matrix, and Z (t) is a
2-dimensional standard normal random vector.
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The Cairns-Blake-Dowd (CBD) Model

• Trajectory of mortality predicted rates for a particular birth cohort
(age x in year T ) can be obtained by

ln

(
q̂x+s,T+s

1− q̂x+s,T+s

)
= κ

(1)
T (s) + κ

(2)
T (s)(x + s − x̄),

where κ
(1)
T (s) and κ

(2)
T (s) are the minimum sqaure error (MMSE)

forecasts of κ
(1)
T+s and κ

(2)
T+s , respectively.
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The GCBD Model

• To model cohort effects, we may consider the following
generalization of the CBD model:

ln

(
qx ,t

1− qx ,t

)
= κ

(1)
t +κ

(2)
t (x−x̄)+κ

(3)
t ((x−x̄)2−σ̂2x)+γ

(4)
t−x , (3)

where κ
(1)
t , κ

(2)
t , and κ

(3)
t are period risk factors, γ

(4)
t−x is a cohort

risk factor, and σ̂2x is the mean of (x − x̄)2 over the age range we
consider.

• The maximum likelihood estimates (MLE) of κ
(1)
t , κ

(2)
t , κ

(3)
t and

γ
(4)
t−x , t = 1950, . . . , 2004, for Canada and US, are shown in the

following graphs.
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MLE of the GCBD Model — Canada
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MLE of the GCBD Model — US
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The GCBD Model

• Having fitted equation (3) to historic data, the period indexes are
modeled by a trivariate random walk with drift:

κt+1 = κt + µ+ CZ (t + 1), (4)

where κt = (κ
(1)
t , κ

(2)
t , κ

(3)
t )′, µ = (µ1, µ2, µ3)′ is a constant 3× 1

vector, C is a constant 3× 3 upper triangular matrix, and Z (t) is a
3-dimensional standard normal random vector.
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The GCBD Model

• Trajectory of mortality predicted rates for a particular birth cohort
(age x in year T ) can be obtained by

ln

(
q̂x+s,T+s

1− q̂x+s,T+s

)
= κ

(1)
T (s) + κ

(2)
T (s)(x + s − x̄)

+κ
(3)
T (s)((x + s − x̄)2 − σ̂2x) + γ

(4)
T−x , (5)

where κ
(i)
T (s) = κ

(i)
T + sµi , i = 1, 2, 3, is the MMSE forecast of

κ
(i)
T+s .
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4. Simulation-Based SPB

• Consider the cohort of individuals who are aged x at the forecast
origin T . Assuming that the forecast horizon is S , the trajectory of
interest would be m = (mx+1,T+1, . . . ,mx+S ,T+S). From the
stochastic components of the mortality models, we simulate a
learning sample of size N (we use N = 5000 in this paper):

M = {m(n)}Nn=1 = {(m(n)
x+1,T+1, . . . ,m

(n)
x+S ,T+S)}Nn=1

• Note that CBD models is based on qx ,t rather than mx ,t . To
obtain central death rates, we apply the constant force of mortality
(CFM) assumption:

mx ,t = − ln(1− qx ,t),
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Method 1: Adjusted Intervals

• Our goal is to construct a time-simultaneous prediction band such
that d(1− α)Ne of the trajectories in M are completely inside the
band at every time point, while bαNc are outside the band at one
or more points of time.

• Let PIs = [ls , hs ] be a pointwise prediction interval for mx+s,T+s

with coverage probability 1−α. Then the limits ls and hs are set to
the bα/2cth lowest and highest values in the sample, respectively.

• Kolsrud (2007) proposes a three-step iterative method, which he
calls ‘adjusted intervals,’ to construct a time-simultaneous
prediction band from a learning sample.
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Method 1: Adjusted Intervals

• The iterative algorithm:
◦ Step 1: For each s =, 1, . . . ,S , widen the interval uniformly to include

the nearest sample point above and the nearest sample point below.

PI ∗s = [ls − δs , hs + δs ]

◦ Step 2: Check the simultaneous coverage of all intervals in the
learning sample M.

◦ Step 3:If the simultaneous coverage is less than the prescribed level
1− α, go to Step (1). Otherwise, terminate the algorithm.

• The resulting band of intervals would contain no less than 1− α of
the trajectories in the learning sample.

20 of 31



Illustration of Adjusted Intervals — Canada

5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

Time from forecast origin (s)

C
en

tr
al

 d
ea

th
 r

at
e 

fo
r 

th
e 

co
ho

rt

Cairns−Blake−Dowd

Mean forecast
95% time−simultaneous band
95% pointwise interval

5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

Time from forecast origin (s)

C
en

tr
al

 d
ea

th
 r

at
e 

fo
r 

th
e 

co
ho

rt

Generalized Cairns−Blake−Dowd

Mean forecast
95% time−simultaneous band
95% pointwise interval

21 of 31



5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

Time from forecast origin (s)

C
en

tr
al

 d
ea

th
 r

at
e 

fo
r 

th
e 

co
ho

rt

Cairns−Blake−Dowd

Mean forecast
95% time−simultaneous band
95% pointwise interval

5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

Time from forecast origin (s)

C
en

tr
al

 d
ea

th
 r

at
e 

fo
r 

th
e 

co
ho

rt

Generalized Cairns−Blake−Dowd

Mean forecast
95% time−simultaneous band
95% pointwise interval

22 of 31



Illustration of Adjusted Intervals — US
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Method 2: Chebyshev Bands

• The envelope of a (sub)sample is defined as the tightest band that
contains all trajectories in the (sub)sample.

• As an example, the envelope of the learning sample M can be

expressed as ([minn m
(n)
x+s,T+s ,maxn m

(n)
x+s,T+s ])Ss=1.

• The idea behind Chebyshev bands is that we construct a
time-simultaneous prediction band as the envelope of a subsample
M∗ that contains d(1− α)Ne trajectories with the shortest
distance to the mean trajectory

m̄ = (m̄x+1,T+1, . . . , m̄x+S ,T+S).
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Method 2: Chebyshev Bands

• It is suggested that we measure the distant by the the weighted
Chebyshev distance, which can be expressed as:

D = max
s=1,...,S

(
|mx+s,T+s − m̄x+s,T+s |

σs

)
,

where

σs =

√√√√ 1

N

N∑
n=1

(mx+s,T+s − m̄x+s,T+s)2

is the pointwise standard deviation s steps beyond the forecast
origin.
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Illustration of Chebyshev Bands — Canada
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Illustration of Chebyshev Bands — US
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5. Further Research

• Model Risk: Denuit (2009)

• Parameter Method: Li and Chan (2011)

• Non-linear Model: Azäıs et al. (2010)

Thank You!
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