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Example 1 (Taken from Whitehead, 2003)

A study comparing two anaesthetics A and B with respect to the
recovery times of patients undergoing short surgical procedures.

Data available from nine centers (log-transformed recovery times)

µA, µB : population mean log-recovery times for anaesthetics A
and B, respectively.

To estimate µA − µB .
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Center Anaesthetic A Anaesthetic B
(Trial) # patients Mean SD # patients Mean SD

1 4 1.141 0.967 5 0.277 0.620
2 10 2.165 0.269 10 1.519 0.913
3 17 1.790 0.795 17 1.518 0.849
4 8 2.105 0.387 9 1.189 1.061
5 7 1.324 0.470 10 0.456 0.619
6 11 2.369 0.401 10 1.550 0.558
7 10 1.074 0.670 12 0.265 0.502
8 5 2.583 0.409 4 1.370 0.934
9 14 1.844 0.848 19 2.118 0.749
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ȳAj
, ȳBj

: sample mean log-recovery times for Anaesthetic A and
Anaesthetic B for the jth center.

nAj
, nBj

: corresponding sample sizes.

σ2
j : Variability in the jth center. Can be estimated by pooling the

pair of sample variances for each center.

σ̂2
j : the estimator so obtained.

ȳAj
− ȳBj

: estimator of µA − µB from the jth center.

σ̂2
j

(
1

nAj
+ 1

nBj

)
: estimated variance of ȳAj

− ȳBj
.
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Meta-analysis estimator of µA − µB based on summary data: a
weighted combination of ȳAj

− ȳBj
.

The estimator has value 0.627, with standard error 0.0990.

Meta-analysis estimator of µA − µB based on the individual patient
data (IPD):
a weighted combination of ȳAj

− a weighted combination of ȳBj

The estimator has value 0.679, with standard error 0.0982.

95% confidence intervals for µA − µB :

The interval (0.433, 0.821) based on summary data.

The interval (0.486, 0.874) based on the IPD.
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Example 2 (Taken from Bower et al., 2003)

Data on the costs of counseling in primary care.

Data from different studies (trials) are available.

Short term costs for patients treated by counselors, and for those
who remained under the care of a general practitioner.

µ1, µ2: the population average cost for patients treated by
counselors, and for patients who remained under the care of a
general practitioner, respectively.

To estimate µ1 − µ2.
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Study Treated by Care by
(Trial) counselor general practitioner

# patients Mean SD # patients Mean SD

1 58 304 170 57 226 480
2 87 221 157 45 140 97
3 82 283 142 79 171 291
4 53 322 285 49 166 329
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Meta-analysis estimate of µ1 − µ2 based on summary data: 94.09,
with standard error 17.468.

95% confidence intervals for µ1 − µ2: (59.86, 128.33)

Meta-analysis estimate of µ1 − µ2 based on IPD: 117.050, with
standard error 15.918

95% confidence intervals for µ1 − µ2: (85.85, 148.25)

The estimates and confidence intervals are quite different.

For testing a hypothesis concerning µ1 − µ2, the conclusion based
on summary data, and that based on the IPD, can be different.
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Angelillo and Villari (2003): “One issue that merits closer scrutiny
is whether meta-analysis of published data is sufficient or whether
individual patient data are necessary”.

Olkin, I. and Sampson, A. (1998). Comparison of meta-analysis
versus analysis of variance of individual patient data. Biometrics
54, 317–322.

Mathew, T. and Nordström, K. (1999). On the equivalence of
meta-analysis using literature and using individual patient data.
Biometrics 55, 1221–1223.
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The above articles consider a two-way model without interaction,
with fixed treatment effects and fixed study effects.

Conclusion in the above articles: For estimating the treatment
contrasts, meta-analysis estimators based on summary data, and
that based on the IPD, are the same.

What if there are covariates?

What if the study effects are random?

What if there are no study effects?
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A general formulation

Consider k independent studies (or trials).

yj : vector of nj responses from the jth trial.

y1, . . . , yk : individual patient data (IPD).

Assume a linear model:

E(yj) = Wjβ + Zjδj = (Wj ,Zj)

(
β
δj

)
= Xj

(
β
δj

)

Cov(yj) = Vj , j = 1, . . . , k

β, δj : vectors of unknown parameters of dimension p and qj

Xj = (Wj , Zj): design matrix

Assume Vj is completely known.
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E(yj) = Xj

(
β
δj

)
, Cov(yj) = Vj , where Xj = (Wj ,Zj).

θ = Lβ: parameter of interest.

Weighted least squares estimator of (β′, δ′j)′, based on the data
from the jth trial:

(
β̂

(j)

δ̂j

)
= (X ′

j V
−1
j Xj)

−1X ′
j V

−1
j yj .

Known to be the best linear unbiased estimator (BLUE).
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Write

I(j) = X ′
j V

−1
j Xj =

(
W ′

j V
−1
j Wj W ′

j V
−1
j Zj

Z ′j V
−1
j Wj Z ′j V

−1
j Zj

)
=



I(j)

11 I(j)
12

I(j)
21 I(j)

22




Then

Cov

(
β̂

(j)

δ̂j

)
= (X ′

j V
−1
j Xj)

−1 = I(j)−1
.

Cov(β̂
(j)

) = I(j)
11·2

−1
, where I(j)

11·2 = I(j)
11 − I(j)

12 I(j)
22

−1I(j)
21

The BLUE of θ = Lβ from the jth trial is θ̂
(j)

= Lβ̂
(j)

.

Cov(θ̂
(j)

) = Cov(Lβ̂
(j)

) = LI(j)
11·2

−1
L′.
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Summary data from the jth trial: θ̂
(j)

and its covariance matrix

LI(j)
11·2

−1
L′.

Meta-analysis estimator of θ = Lβ based on summary data:

θ̃ =




k∑

j=1

(L I(j)
11·2

−1
L′)−1



−1

k∑

j=1

(L I(j)
11·2

−1
L′)−1θ̂

(j)

Cov(θ̃) =




k∑

j=1

(L I(j)
11·2

−1
L′)−1



−1

.
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Model for the IPD:

y = (y′1, . . . , y
′
k)′,

W = (W ′
1, . . . ,W

′
k)′,

Z = diag(Z1, . . . , Zk),

δ = (δ′1, . . . , δ
′
k)′,

V = diag(V1, . . . ,Vk).

E(y) = Wβ + Zδ = (W ,Z )

(
β
δ

)
= X

(
β
δ

)

Cov(y) = V , where X = (W , Z ).

Meta-analysis estimator of θ = Lβ based on IPD: BLUE of θ
obtained from the above model.
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E(y) = X

(
β
δ

)
, Cov(y) = V , where X = (W , Z ).

(
β̂

δ̂

)
= (X ′V−1X )−1X ′V−1y, Cov

(
β̂

δ̂

)
= (X ′V−1X )−1.

θ̂ = Lβ̂ = (L, 0)

(
β̂

δ̂

)
= (L, 0)(X ′V−1X )−1X ′V−1y

Cov(θ̂) = (L, 0)(X ′V−1X )−1(L, 0)′.
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Recall: Xj = (Wj , Zj) and

I(j) = X ′
j V

−1
j Xj =

(
W ′

j V
−1
j Wj W ′

j V
−1
j Zj

Z ′j V
−1
j Wj Z ′j V

−1
j Zj

)
=



I(j)

11 I(j)
12

I(j)
21 I(j)

22




I(j)
11·2 = I(j)

11 − I(j)
12 I(j)

22

−1I(j)
21

X ′V−1X =
k∑

j=1

(X ′
j V

−1
j Xj) =

k∑

j=1

I(j)

Cov(θ̂) = (L, 0)(X ′V−1X )−1(L, 0)′

= L




k∑

j=1

I(j)
11·2



−1

L′.

17 / 40



Based on summary data:

θ̃ =




k∑

j=1

(L I(j)
11·2

−1
L′)−1



−1

k∑

j=1

(L I(j)
11·2

−1
L′)−1θ̂

(j)

Cov(θ̃) =




k∑

j=1

(L I(j)
11·2

−1
L′)−1



−1

.

Based on IPD:

θ̂ = (L, 0)(X ′V−1X )−1X ′V−1y

Cov(θ̂) = L




k∑

j=1

I(j)
11·2



−1

L′
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For θ = Lβ, θ̂ is the BLUE based on the linear model for the IPD.

θ̃ is another unbiased estimator.

Hence Cov(θ̃)− Cov(θ̂) is nonnegative definite.

That is




k∑

j=1

(L I(j)
11·2

−1
L′)−1



−1

− L




k∑

j=1

I(j)
11·2



−1

L′

is nonnegative definite.

Also follows from the concavity of the matrix function
g(A) = (LA−1L′)−1, for A p.d. (Marshall and Olkin, 1979, p. 469)

If the two matrices are equal, then the two estimators coincide,
and there is no loss of information in using the summary data.
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Result: The meta-analysis estimator based on the summary data,
and that based on the IPD coincide if and only if the matrices

(L I(j)
11·2

−1
L′)

−1

L I(j)
11·2

−1
are equal for j = 1, . . . , k.

The equality of the two estimators require a certain level of
homogeneity across the trials.

The two estimators are equal if L = I . That is, if there are no
common nuisance parameters across studies.
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Application to some special models

To estimate a single treatment-control difference µ1 − µ2:

Assume there are no other effects or covariates.

ȳ1j , ȳ2j : sample means for the treatment and the control from the
jth trial.

n1j , n2j : corresponding sample sizes.

σ2
j : variability for the jth trial (usually an estimate).

Parameters in the mean: (µ1, µ2) or (µ1 − µ2, µ2)

µ2 is a common nuisance parameter across the trials.
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The two estimators of µ1 − µ2 coincide if and only if
n1j

n1j+n2j
are all

the same for j = 1, 2, ...., k.

The fraction of observations for the treatment is the same across
the different trials.

The condition is free of the variances!
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Example 1 (continued)

A study comparing two anaesthetics A and B with respect to the
recovery times of patients undergoing short surgical procedures.

Log-transformed recovery times available from nine centers.

µA, µB : population mean log-recovery times for anaesthetics A
and B, respectively.

To estimate µA − µB .
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Center Anaesthetic A Anaesthetic B
(Trial) # patients Mean SD # patients Mean SD

1 4 1.141 0.967 5 0.277 0.620
2 10 2.165 0.269 10 1.519 0.913
3 17 1.790 0.795 17 1.518 0.849
4 8 2.105 0.387 9 1.189 1.061
5 7 1.324 0.470 10 0.456 0.619
6 11 2.369 0.401 10 1.550 0.558
7 10 1.074 0.670 12 0.265 0.502
8 5 2.583 0.409 4 1.370 0.934
9 14 1.844 0.848 19 2.118 0.749
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σ2
j : Variability in the jth center. Can be estimated by pooling the

pair of sample variances for each center.

Based on summary data, the meta-analysis estimator of µA − µB

has value 0.627, with standard error 0.099.

Based on IPD, the meta-analysis estimator of µA − µB has value
0.679, with standard error 0.0982.

95% confidence intervals for µA − µB :

The interval (0.433, 0.821) based on summary data.

The interval (0.486, 0.874) based on the IPD.
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Example 2 (continued)

Data on the costs of counseling in primary care available from four
studies.

Short term costs for patients treated by counselors, and for those
who remained under the care of a general practitioner.

µ1, µ2: population average cost for patients treated by counselors,
and for patients who remained under the care of a general
practitioner, respectively.

To estimate µ1 − µ2.
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Study Treated by Care by
(Trial) counselor general practitioner

# patients Mean SD # patients Mean SD

1 58 304 170 57 226 480
2 87 221 157 45 140 97
3 82 283 142 79 171 291
4 53 322 285 49 166 329
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Meta-analysis estimator of µ1 − µ2 based on summary data: 94.09,
with standard error 17.468.

95% confidence intervals for µ1 − µ2: (59.86, 128.33)

Meta-analysis estimator of µ1 − µ2 based on IPD: 117.050, with
standard error 15.918

95% confidence intervals for µ1 − µ2: (85.85, 148.25)
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To estimate several treatment-control differences:

Suppose several treatments are to be compared to the same
control, in the absence of any other effects or covariates,
based on data from k trials.

µi : mean for the ith treatment (i = 1, 2, ...., m − 1),
µm: mean for the control.

To estimate the treatment−control differences µi − µm, i = 1, 2,
...., m − 1.

(µ1, µ2, ...., µm) = (µ1 − µm, µ2 − µm, ...., µm−1 − µm, µm).

µm: A common nuisance parameter across the different studies.

Meta-analysis estimator based on summary data, and the
meta-analysis estimator based on IPD coincide if and only if the
fraction of observations for the ith treatment is the same across
the different trials; i = 1, 2, ...., m.
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A model with fixed treatment effects and fixed trial effects:

yijα: the αth response on the ith treatment from the jth trial,
α = 1, . . . , nij , i = 1, 2, ...., m, j = 1, 2, ...., k. Assume nij > 0
for all i and j .

τi : ith treatment effect

αj : jth trial effect.

Assume
E(yijα) = αj + τi .
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yij .: vector of nij responses on the ith treatment in the jth trial

y·j · = (y′1j ., . . . , y
′
mj .)

′

Assume Cov(y·j ·) = Vj (known)

Let the mth treatment represent a control

To estimate θ = (τ1 − τm, . . . , τm−1 − τm)′

Write θi = τi − τm, i = 1, 2, ...., m − 1, so that τi = θi + τm.

31 / 40



E(yijα) = αj + τi = αj + θi + τm = α′j + θi .

To estimate θ = (θ1, θ2, ...., θm−1)
′.

The nuisance parameters are α′j : j = 1, 2, ...., k.

No common nuisance parameters across the studies.

Meta-analysis estimator based on summary data, and the
meta-analysis estimator based on IPD always coincide.

Result due to Olkin and Sampson (1998) and Mathew and
Nordström (1999).
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A model with fixed treatment effects and random trial
effects:

Now the trail effects will contribute to the covariance matrix.

E(yijα) = µi , i = 1, 2, ....,m.

To estimate θ = (µ1 − µm, . . . , µm−1 − µm)′

(µ1, µ2, . . . , µm)′ = (µ1 − µm, . . . , µm−1 − µm, µm)′

µm is a common nuisance parameter across the trials.

The two estimators of θ coincide if and only if the fraction of
observations for the ith treatment is the same across the different
trials; i = 1, 2, ...., m
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What if there are covariates?

Consider a simple model with one covariate, and without
treatment-covariate interaction.

The problem is that of estimating a treatment−control difference.

yij : outcome for the ith patient in the jth trial.

Consider the model

yij = β0j + β1x1ij + β2x2ij + εij ,

i = 1, . . . , nj and j = 1, . . . , k (Higgins et al., 2001, Section 3.1)

β0j : trial effects, assumed to be fixed
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x1ij : a dummy variable that indicates treatment group (treatment
or control)

x2ij : a single covariate

β1: treatment−control difference

β2: regression coefficient.

εij ’s are independent and identically distributed random variables
with mean zero and variance σ2.

To estimate β1.
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Meta-analysis estimator of β1 based on summary data: Estimate
β1 and its variance from each trial, and combine the estimators.

Meta-analysis estimator of β1 based on IPD: Estimate β1 using the
model for the entire data, consisting of all the yij ’s.

Define

x̄1j =
1

nj

nj∑

i=1

x1ij , x̄2j =
1

nj

nj∑

i=1

x2ij .
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The two estimators coincide if the quantities

nj∑

i=1

(x1ij − x̄1j)(x2ij − x̄2j)

/ nj∑

i=1

(x2ij − x̄2j)
2

are all equal, for all j = 1, . . . , k.

Requires a certain level of homogeneity with respect to the
treatment allocation and the covariates across trials.

Patient-level homogeneity of the covariate within each trial implies
the required condition.

Unrealistic in practice.

Thus equality of the two estimators is unlikely to hold when
covariates are present.
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