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Motivation 1-2

Covariance

� A measure of uncertainty about returns;

� An input parameter in many �nancial activities such as risk

management, derivative pricing, hedging and portfolio

selection.

Remarks:

� Neither covariance nor its elements are directly observable in

markets,

� Covariance is often estimated as a latent variable based on the

historical returns.
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Motivation 1-3

Covariance models

� Multivariate ARCH/GARCH

� Multivariate stochastic volatility models

Statistical analysis of financial time series 
after the financial crisis 

Non-linear time series models

ARCH/GARCH models
Engle (1982)
Bollerslev (1986)
Taylor (1986)
Andersen, Davis, Kreiß & Mikosch(2009)

Stochastic Volatility (SV) models
Taylor (1986)
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Motivation 1-4

Ultra-high frequency (UHF) data

An increasing availability of UHF data in �nancial markets.

� Transactions or ticks are recorded at a high sampling

frequency such as secondly or minutely.

� Data contain plenty of information and can be e�ectively used

to highlight some essential features of �nancial variables.

Estimate covariance from the UHF data!
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Motivation 1-5

Univariate case

Realized variance: sum of the squared UHF returns.

� It is asymptotically consistent, see Barndor�-Nielsen and

Shephard (2002b).

� It displays a good performance.

I Variance prediction, see French, Schwert and Stambaugh

(1987); Andersen and Bollerslev (1998); Andersen, Bollerslev,

Diebold and Labys (2001).

I Portfolio optimization, see e.g. Fan, Li and Yu (2010).

For a systematic review, see McAleer and Medeiros (2008).
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Motivation 1-6

Realized covariance

Challenges:

� Asynchrony: raw data are irregularly spaced and collected at

di�erent time point with di�erent sampling frequency.

� Microstructure noises such as bid-ask bounce e�ects and price

discreteness. As the sampling frequency increases,

microstructure noises accumulate. It generates a substantial

bias in the covariance estimation.

� Semi-positive de�niteness: a covariance estimator should be

semi-positive de�nite.
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Motivation 1-7

Asynchrony
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Figure 1: Transaction prices of stocks PFE, GE, IBM, AA and T on Friday,

4th March 2005@10:10:00 � 10:11:00. Data source: TAQ database.

RPE
00 10 20 30 40 50 60

10

20

30

40

50

60

70

80

90

100

second

pr
ic

e

 

 
Transactions on 20050304@10:10

PFE
GE
IBM
AA
T



Motivation 1-8

Synchronizing techniques

� The previous tick (PT) technique speci�es a set of time points

and takes the most recent observation for each of the time

points, see e.g. Wasserfallen and Zimmermann (1985);

Dacorogna, Gençay, Müller, Olsen and Pictet (2001).

� The refresh time (RF) technique picks up the time points

when all the stocks were traded since last time. The last

transaction of each stock is then used to construct a

synchronous observation for the time point, see Hayashi and

Yoshida (2005).
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Motivation 1-9

If some stock was traded at a low frequency

...

� PT: many repetitions of a particular tick.

I A spurious jump may appear many times, which further spoils

the covariance estimation.

� RF: discard of much information that could be useful. It may

yield high discretization error in the covariance estimation.

RPE
00 10 20 30 40 50 60

10

20

30

40

50

60

70

80

90

100

second

pr
ic

e

 

 
Transactions on 20050304@10:10

PFE
GE
IBM
AA
T



Motivation 1-10

Microstructure noises

Microstructure noises generates a substantial bias in the covariance

estimation, see e.g. Andersen, Bollerslev, Diebold and Ebens

(2001); Barndor�-Nielsen and Shephard (2002a); Bandi and Russell

(2005a).

� Optimal sampling frequency, see Bandi and Russell (2005b).

� Autocorrelations correction, see Barndor�-Nielsen, Hansen,

Lunde and Shephard (2008); Zhou (1996); Hansen and Lunde

(2006).

� Multi-scaling method, see Zhang (2010); Zhang, Mykland and

Aït-Sahalia (2005).
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Motivation 1-11

Semi-positive de�niteness

� Barndor�-Nielsen et al. (2008): kernel-based estimator.

� Zhang (2010): multi-scaled estimator.

� Wang and Zou (2010): high-dimensional estimator.

Regularized estimator:

Hautsch, Kyj and Oomen (2009): blockwise kernel-based estimator,

where an eigenvalue-cleaning regularization is used to guarantee the

semi-positiveness.
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Motivation 1-12

Regularized pairwise estimator

Develop a new methodology to estimate realized covariance.

� Asynchrony: high frequency �ltering (HFF) technique. X
I HFF is a data-driven synchronizing technique that learns from

the dependence structure of raw data.

� Microstructure noises: covariance is pairwise estimated via the

multi-scaling method. X

� Semi-positive de�niteness: a regularization. X
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Motivation 1-13

Outline

1. Motivation X

2. Methods: HFF, multi-scaling and regularization

3. Numerical analysis

4. Conclusion
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Methods 2-14

Notation

Underlying log prices P∗t =
(
P∗
1t , · · · ,P∗dt

)>
, t ∈ [0,T ].

� The e�cient log prices follow a semi-martingale process:

P∗t =

∫ t

0

µsds +

∫ t

0

ΘsdWs

where µt is a drift vector, Θt is an instantaneous co-volatility

process and Wt is a Brownian motion.

� Integrated covariance: Σ =
∫ T

0
ΘtΘ

>
t dt.

Raw data: P = (P
1t(1) , · · · ,Pdt(d)), with t(j) ∈ F :

F =
{
t(j)|Pjt is available at t, t ∈ [0,T ], j = 1, · · · , d .

}
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Methods 2-15

Synchronization: HFF technique

Let X∗t = P∗t − P∗t−1 denote the returns of the underlying

synchronous series.

Suppose the covariance Σ of the synchronous returns is given:

Σ = UΛU>

where Λ and U = (U1, · · · ,Ud )> are eigenvalue and eigenvector

matrices respectively, U−1 = U>.

Linear transformation: project into the direction along which the

underlying return series has maximum variation:

X∗t = UZt , or Zt = U>X∗t .
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Methods 2-16

Synchronization: HFF technique

The observed log returns of the jth stock can be computed:

Xjt =
Pjt − Pjs

t − s
, where s ≤ t and s, t ∈ F .

The HFF technique is to �lter out Zt that minimizes the Euclidean

distance between the �ltered synchronous returns and the actual

values

min
d∑

j=1

∑
t∈F

{
|Xjt − UjZt |2

}
.

No unique solution!
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Methods 2-17

Synchronization: HFF technique

Assumption: the linear �lter Zt is smooth,

Z̃t = argmin
d∑

j=1

∑
t∈F

{
|Xjt − UjZt |2

}
+ δ

d∑
j=1

T∑
s=1

{Zjs − Zj ,s−1}2/λj ,

� the �rst part measures the Euclidean distance;

� the second part penalizes non-smoothness, measured by an

instantaneous variations of Zj standardized by its variance �

the corresponding eigenvalues λj ;

� δ controls the smoothness of the �ltered series. The larger the

value, the smoother the �ltered series.
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Methods 2-18

Synchronization: HFF technique

Remarks:

� The HFF technique �lters out Zt iteratively by learning from

the past �ltration.

� The HFF technique bene�ts from the usage of covariance.

� In practice, covariance is unobservable. However, an estimator

based on low sampling frequency data or other covariance

proxies can be used.
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Methods 2-19

Removing impact of microstructure noises

Now the synchronous log prices Pt ∈ IR
d are available.

Under the presence of microstructure noises, we have:

Pt = P∗t + εt , t = 0, · · · ,T

where P∗t are the underlying e�cient log prices and εt ∼ (0,Σε).

The integrated covariance = the sum of the squared returns?

Σ̃ =
T∑
t=1

(Pit − Pit−1) (Pit − Pit−1)> = Σ + 2T E(ε2) + Op(T 1/2)

The bias increases with respect to the sample size T .
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Methods 2-20

Removing impact of microstructure noises

Multi-scaling method: splits the entire sample to Q

non-overlapping subsamples, and averages out the bias.

0 s

� �� �
2s

� �
3s

· · ·
� �

n1s
1

1 s + 1

� �� �
2s + 1

� �
3s + 1

· · ·
� �

n2s + 1

2
...

s-1 2s − 1

� �� �
3s − 1

� �
4s − 1

· · · � �
nQ s − 1

Q

Figure 2: Multi-scaling: partition
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Methods 2-21

Removing impact of microstructure noises

Let σij denote the element of covariance Σ, we have:

σ̃
(T )
ij =

T∑
t=1

(Pit − Pit−1) (Pjt − Pjt−1) = σij +2T E(ε2)+Op(T 1/2).

Analogously, we obtain other estimators based on the subsamples:

σ̃
(q)
ij =

nq×s+1∑
k=q+s

(Pik − Pik−s)
(
Pjk − Pjk−s

)
= σij+2nq E(ε2)+Op(n

1/2
p ).

The pairwise estimator is de�ned as follows:

σ̃ij =
1

Q

Q∑
q=1

σ̃
(q)
ij −

n̄

T
σ̃

(T )
ij , where n̄ =

1

Q

∑
nq.
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Methods 2-22

Removing impact of microstructure noises

Remarks:

� The pairwise estimator is consistent and asymptotically

unbiased, if the noise is IID, see Zhang (2010).

� It is empirically robust to the value of s or Q, see Zhang et al.

(2005).

� However, the pairwise estimator is not guaranteed to be

semi-positive de�nite.
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Methods 2-23

Regularization: semi-positive de�nition

We are looking for a well-conditioned covariance matrix Ω that is

close to the possibly not semi-positive pairwise estimator Σ̃.

min
Ω,ε

{
ε|Ω ≥ 0, wij |Ωij − Σ̃ij | ≤ ε, 1 ≤ i , j ≤ p

}
min
Ω,ε

{
ε|Ω ≥ 0,

∑p
i ,j=1

w2

ij

(
Ωij − Σ̃ij

)2
≤ ε, 1 ≤ i , j ≤ p

}
or min

Ω,ε

{
ε|Ω ≥ 0,

∑p
i ,j=1

wij |Ωij Σ̃ij | ≤ ε, 1 ≤ i , j ≤ p
}

where wij > 0. Solving the optimization problem generates a

regularized pairwise estimator.
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Numerical analysis 3-24

Simulation

Objective: investigate the performance of the HFF technique.

Asynchronous data were generated based on real life UHF data �

minutely transaction prices of PFE, GE, IBM, AA and T on March

4, 2005.

d series ∼ Nd (0,Σ), among which 1 series is re-sampled every

s > 1 time units.
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Numerical analysis 3-25

Simulation

Setup:

� dimensionality: d = 2, 3, · · · , 5;

� sampling frequency: s = 5, 10, 20;

� dependence structure: Σ

I Medium � realized covariance estimated. For example, 0.53 for

d = 2 and a range of [0.31, 0.53] for d = 5.

I Low � low correlations with 0.27 for d = 2 and a range of

[0.16, 0.27] for d = 5.

I High � high correlations with 0.80 for d = 2 and a range of

[0.59, 0.80] for d = 5.
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Numerical analysis 3-26

Simulation

Average RMSE (%) of the synchronized series

HFF PT

ρ s d = 2 d = 3 d = 4 d = 5

low 5 0.97 1.05 1.14 1.15 1.18

low 10 1.10 1.18 1.25 1.23 1.16

low 20 1.23 1.24 1.21 1.18 1.13

medium 5 0.87 0.94 1.01 1.01 1.18

medium 10 0.90 0.96 1.02 0.98 1.15

medium 20 1.01 1.03 1.04 1.00 1.13

high 5 0.71 0.75 0.78 0.76 1.18

high 10 0.65 0.67 0.67 0.63 1.15

high 20 0.69 0.70 0.69 0.67 1.12
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Numerical analysis 3-27

Simulation

In most cases, the HFF technique performs better than the previous

tick technique.

� Dependence Σ has a substantial in�uence on the HFF

technique. The higher dependence, the HFF technique delivers

more accurate results, and vice versa.

� Dimensionality d has less e�ect.

� The ratio of RMSEs between the HFF technique and the

previous tick technique decreases against the sampling

frequency s.
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Numerical analysis 3-28

Real data analysis
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Figure 3: Realized correlation estimators for assets PFE, GE, IBM, AA and

T in year 2005.
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Numerical analysis 3-29

Real data analysis
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Figure 4: Realized correlation estimators for assets PFE, GE, IBM, AA and

T in year 2005.
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Conclusion 4-30

Conclusion

Develop regularized pairwise estimator � a new methodology to

estimate realized covariance.

� Asynchrony: high frequency �ltering (HFF) technique. X
I HFF is a data-driven synchronizing technique that learns from

the dependence structure of raw data.

� Microstructure noises: covariance is pairwise estimated via the

multi-scaling method. X

� Semi-positive de�niteness: a regularization. X
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