Multidimensional scaling as regression analysis

Okayama University Graduate School Takashi Shindo

Outline

- An overview of multidimensional scaling (MDS)
- An overview of feature matching model (FMM)
- A constrained MDS as an FMM
 - Feature matching MDS (FM-MDS)
- An FM-MDS as a regression analysis
- Further obstacles

Multidimensional scaling (MDS)

• A method of transforming (dis)similarity data into an arrangement.

- Input is a set of (dis)similarity data between objects.
- Output is coordinates of objects.

• In this presentation, only dissimilarity is considered.

Use of MDS

• The properties of objects can be inferred by searching for meaningful axes in the obtained arrangement.

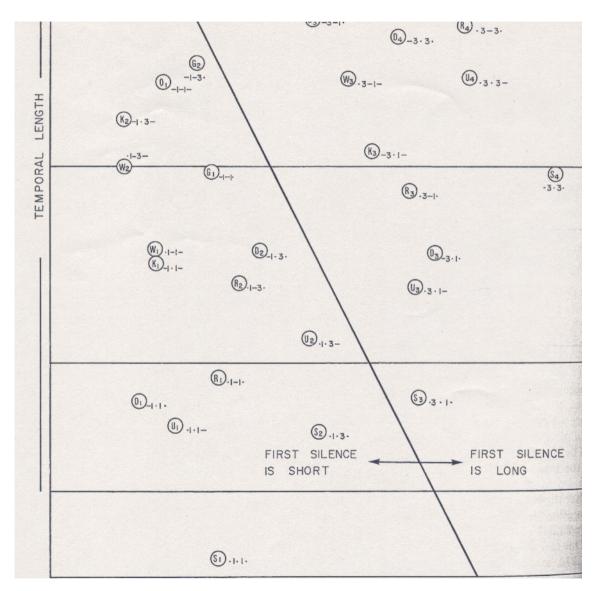
Interpretation of the arrangement may be arbitrary.

An example of MDS (input)

	1.1.1.1.1.1.1.1					Contract of the								10356187		
		s ₁	U_1	R ₁	D ₁	W ₁	к 1	°,	°1	s2	U2	R2	^D 2	w2	ĸ2	G2
• • • • •	s ₁	97	94	81	66	16	31	06	03	79	18	28	11	01	04	02
• • =	U1	63	98	86	74	91	73	23	16	57	61	49	21	13	09	06
•1-1 •	R ₁	27	73	94	50	72	62	51	22	42	52	64	49	30	11	16
-1 • 1 •	*	47	75	69	96	33	94	67	09	43	13	40	34	11	26	19
• 1 - 1 -	W1	03	40	64	42	94	76	68	70	20	51	73	40	69	49	54
-1+1-	K ₁	07	44	33	69	69	95	70	67	19	37	40	56	26	74	27
-1-1-	G1	01	08	49	50	78	78	93	82	08	14	48	80	23	53	90
-1-1-	°1	02	10	19	04	31	51	76	97	00	04	12	16	20	50	82
• 1 • 3 •	s ₂	44	54	62	56	32	41	19	04	94	84	62	54	38	22	07
• 1 • 3-	U2	03	39	44	15	66	61	29	19	63	94	39	52	77	48	14
•1-3•	R ₂	05	16	48	15	59	19	45	28	31	38	95	47	86	36	53
-1.3.	D ₂	06	14	28	46	26	51	69	43	47	39	43	94	35	79	73
•1-3-	W2	02	14	24	09	62	39	21	59	07	54	69	37	94	64	56
-1 • 3-	K.2	01	03	05	07	22	54	37	56	14	19	23	68	48	98	47
-1-3.	G2	01	05	10	08	30	28	71	73	08	07	46	57	44	42	93
-1-3-	°2	00	01	04	03	21	08	35	80	00	04	07	24	55	58	58
• 3 • 1 •	s ₃	42	38	50	48	23	22	19	06	69	53	31	33	09	03	05
•3•1-	U3	04	09	30	18	42	52	35	29	30	29	14	21	30	22	05
.3-1.	R ₃	05	05	43	08	22	24	38	20	10	17	40	31	28	31	24
-3.1.	D.													~		

Wish, M., (1967). A model for the perception of Morse code-like signals. *Human Factors*, **9**, 529-540.

An example of MDS (output)



Wish, M., (1967). A model for the perception of Morse code-like signals. Human Factors, 9, 529-540.

Feature matching model (FMM)

• A regression analysis to explain (dis)similarity with common and distinctive features.

Interpretation of the result is clear and not arbitrary.

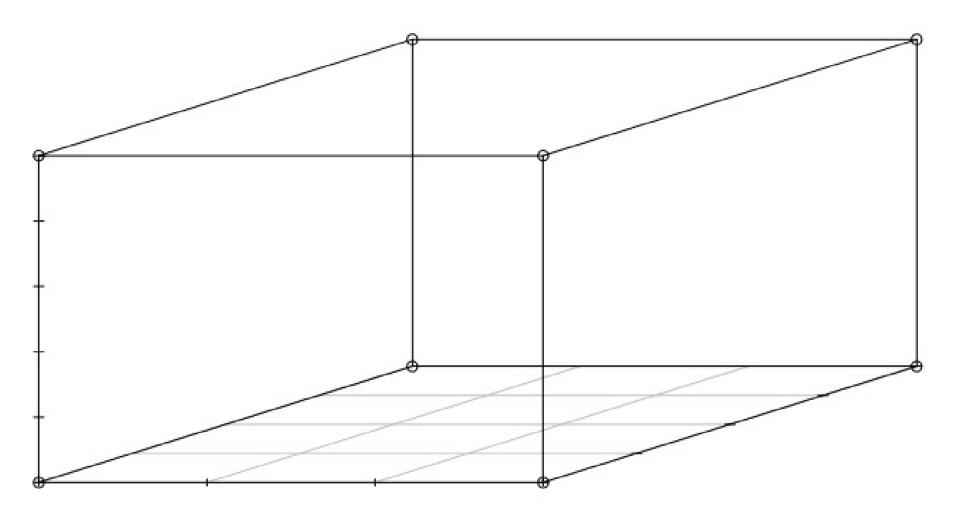
• In this presentation, we consider the case to explain dissimilarity with distinctive features.

Feature matching MDS (FM-MDS)

• We fix the dimension of an arrangement and the order of objects for each dimension.

• By this constraint, each dimension of an arrangement is forced to correspond to a feature.

Idea of FM-MDS



Use of FM-MDS for regression

- We can apply FM-MDS to differences on a scale for regression.
- If we use L1 norm, FM-MDS is equivalent to Hayashi's type I quantification method (Hayashi, 1952).
- A Minkowski norm of higher order is adequate when more contributive features are more dominant to dissimilarity.

Meaning of dominance

- If the maximum norm is used, dissimilarity between a pair of objects is determined by each own feature.
- The idea of sparseness supposes the situation in which a property is determined by a few features.
- Sparseness is assumed to be valid in the field of genetic epidemiology.

Further obstacles

• An efficient solver for FM-MDS is required.

- Risks must be estimated precisely.
 - We need to estimate risks.
 - If sample size << dimension, subjects they have the same set of genotypes will be rare.
 - We cannot use the absolute values of odds ratios.