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Multi-target localization in WSN
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Predicting wealth from age
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Parametric clustering of genes
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Motivations

 Density estimation is central first step of data
exploration in sensor network;

e Expectation-Maximization (EM) algorithm has
been extensively exploited,

« The distributed processing method has many
advantages in sensor network;

 The distributed manner of EM algorithm for
Gaussian mixtures focus on the tradeoff between
local processing and communication.
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Centralized EM Algorithm for Gaussian
Mixture Model In Sensor Network

A network with M sensor nodes;
« Each node has N_observations, denoted as

y _,m=1-,M,n=1- N

m

e oObservations are drawn form a Gaussian Mixtures
with K components probabilities: o, -, oy

K
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Continued

« Membership function
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Continued

« The estimation of i-th component's parameters for the
Gaussian mixture at step t+1
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Distributed EM algorithm for Gaussian
mixture

* Incremental strategy (R. Nowak, TSP, 2003)

— A cyclic sequential communication path between sensor
nodes is pre-determined,;

— The local statistics will be transmitted according to this path
one sensor by one sensor.

« Consensus strategy (D. Gu, TNN, 2008)

— A consensus filter will be implemented after the E-step at
each iterative step, namely C-step (consensus step);

— Each node will exchange local information with its neighbors

until the agreement is reached.
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Consensus strategy for parameter
estimation

« The centralized EM algorithm enables the
calculation of the global solution.

« Each node can implement the EM algorithm
according to its own observations.

« How can we achieve the global solution for all
nodes by transmitting the local information to the
neighbors but not all observations?
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Consensus strategy for mean estimation
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 The variance and component probabilities can be obtained in the

similar way. %
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Disadvantages of consensus strategy

« The convergence rates for consensus step will
degrade as the number of sensor nodes increase.

« The consensus of global information for all the
sensor nodes will be achieved with quite a bit of
communications to the neighbors.
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Diffusion strategy for parameter
estimation

e E-step:
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Advantages of diffusion strategy

« Each node only communicate the local statistics
to neighboring nodes at each iterative step;

« Each node update the local statistics according
to the information received from its neighbors;

e The consensus for local statistics doesn’t need
to be achieved which can save much
communications.
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Stochastic approximation

e Diffusion distributed EM algorithm (DDEM) can
be considered as Robbins-Monro stochastic
approximation;

* Notation for weighted mean:
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Continued
 Attime stept, the estimation can be written as:
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Continued
 On-line EM algorithm has the abstract form:
Opn =bn— b0 =nOIF(.07) 4,1
o =H(4)

 First order dynamics: Z(t) =—|-Z(t)
« DDEM can be formulated by the first order
dynamics in the discrete form:
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Continued

 Diffusion on-line EM algorithm can be written as:
o, =n(t) (ELF (. H(# N1, - d )+ n(1)S (V.6
- where: ¢ =E[F(y,0)],.6, =H(4,),
(Y ™) =F(y, H(g ) -
E[F(Y, H@ N, + D, @ —d")

leN
e The above formula has the same form as the

Robbins-Monro stochastic approximation/
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Nodes Topology
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Data distribution
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* In the first 30 nodes,90%
observations come from the first
component, the rest 10% evenly
from the other two components;
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* Inthe next 40 nodes,80%
observations come from the
second component, the rest 20%
evenly from the other two
components;
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e Inthefirst30 n
observations come from the third
component, the rest 10% evenly

from the other two components
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The estimated mean values

EM algorithm with and without diffusion

EM without diffusion EM with diffusion
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Estimation performance with different
communication range
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Communication overhead with
different communication range
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Conclusions and future work

« Each node only communicate the local statistics to
neighboring nodes at each iterative step while the
consensus strategy requires much more amount of
communication to achieve consensus;

e Our method can be considered as the Robbins-
Monro stochastic approximation to the maximum
likelihood estimation for Gaussian Mixture;

e Is there exist some simple estimation method can
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