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Introduction

Since Owen (1988,1990), empirical likelihood estimation
has become a popular tool for estimating the parameters in
most well known statistical models without having to
assume a known family of distributions for the data.
The idea behind this method can be depicted in the
following:

Let {xi}n
i=1 be i.i.d. p × 1 random vectors from an unknown

distribution F with mean vector µ.
The nonparametric EL function is defined by

L(F ) =
n∏

i=1

dF (xi ) =
n∏

i=1

pi , (1)

where pi = dF (xi ) = Pr(X = xi ).
( 1) is maximized by the empirical distribution function
Fn(x) = n−1∑n

i=1 1xi<x .
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Introduction

The empirical likelihood ratio (ELR, hereafter) is given by

R(F ) =
L(F )

L(Fn)
, (2)

and as a result R(F ) =
∏n

i=1 npi .
Suppose that the parameter of interest is the mean µ of F.
We may write the profile ELR function for the mean as

R(µ) = max{
n∏

i=1

npi |
n∑

i=1

pixi = µ,pi ≥ 0,
n∑

i=1

pi = 1}. (3)



Introduction Survey of Time Series Models and Related Estimation Empirical Likelihood Estimation and its Application to Econometrical Models Simulation Study And Data Analysis

Introduction

Utilizing Lagrange multipliers, we can find that the
maximizer of

∏n
i=1 npi subject to

∑n
i=1 pixi = µ, pi ≥ 0, and∑n

i=1 pi = 1 is given by

pi (µ) = n−1{1 + λ′(xi − µ)}−1, (4)

where λ = λ(µ) is defined according to the following
equation

n∑
i=1

(xi − µ)

1 + λ′(xi − µ)
= 0. (5)

Therefore the log ELR for the mean is

l(µ) = −2
n∑

i=1

log{npi (µ)} = 2
n∑

i=1

log{1 + λ′(xi − µ)}. (6)

Owen(1988,1990) proved that, under µ = µ0, l(µ0)
converges in distribution to X 2

(p) as n→∞, where µ0 is the
true parameter.
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Introduction

Inspired by the estimating equations used in Maximum
likelihood estimation (MLE), Qin and Lawless(1994,1995)
connected the theories of empirical likelihood and general
estimating equations.

Assume that θ is associated with F, and the information
about θ and F is available through r estimating equations
g1, . . . ,gr such that EF{gj (x , θ)} = 0 for j=1,. . . ,r.
When the case is p = r , the log ELR statistic becomes

l(θ) = 2
n∑

i=1

log{1 + λ′g(xi , θ)}, (7)

where g(xi , θ) = (g1(xi , θ), . . . ,gr (xi , θ))′, and the Lagrange
multiplier λ satisfies

n∑
i=1

g(xi , θ)

1 + λ′g(xi , θ)
= 0. (8)
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Introduction

Mykland(1995) generalized the definition of the empirical
likelihood for i.i.d. data to statistical models with a
martingale structure by using the concept of dual
likelihood.

It is to find a ”score function” m(θ) which is a martingale for
the true value of the parameter θ such that m(θ̂) = 0, where
θ̂ is the estimated value of θ.

Kitamura(1997) considered the empirical likelihood for
generalized estimating equation(GEE) and extended the
results of Qin and Lawless(1994) to blockwise EL for
weakly dependent processes.

The method of blockwise empirical likelihood can be used
to deal with the dependence for time series data.
The blockwise ELR has also been shown to be
asymptotically chi-squared distributed.
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Monti(1997) applied the EL method to ARMA models in
spectral domain by Whittle’s approach.
Chan and Chuang(2002) applied EL estimation to unstable
and stable AR models with innovations that form a
sequence of martingale differences.

They set the score function to be zero to be as the
estimating equation by using the conditional least squares
estimation.
They also obtain the limiting properties of the log ELR
statistic for the stable and unstable AR processes.
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Introduction

In recent decades, some econometrical models have been
exploited to modeling the volatility emerging in financial
markets.
Volatility, which stands for the conditional deviation of the
underlying asset, is an important factor in option pricing.
Since Engle (1982) proposed the celebrated ARCH
models, a lot of studies and generalizations on this models
have been developed, to name a few, the GARCH model of
Bollerslev (1986), the EGARCH model of Nelson (1991),
among others.
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Introduction

Apropos of the estimation methods, for example:
Weiss(1986) studied the asymptotic properties of
quasi-maximum likelihood estimation(QMLE) for the ARCH
model.
Brorsen(1995) adopted MLE to estimate the parameters in
a GARCH model where the residuals have a conditional
stable distribution.
Cheng and Tsay(2005) used generalized method of
moments(GMM) to estimate the parameters in EGARCH
model.

In this thesis, we’ll use the empirical likelihood method to
estimate parameters in conditional heteroskedasticity
models.
We will describe how to choose the estimating equations in
( 7) for time series models.



Introduction Survey of Time Series Models and Related Estimation Empirical Likelihood Estimation and its Application to Econometrical Models Simulation Study And Data Analysis

Outline

1 Introduction

2 Survey of Time Series Models and Related Estimation

3 Empirical Likelihood Estimation and its Application to
Econometrical Models

4 Simulation Study And Data Analysis



Introduction Survey of Time Series Models and Related Estimation Empirical Likelihood Estimation and its Application to Econometrical Models Simulation Study And Data Analysis

AR(P) Models

AR(P) Models:

Let {Yt}t≥1 be an AR(p) process given by

Yt = φ0 + φ1Yt−1 + · · ·+ φpYt−p + Zt , (9)

where p ≥ 1 is a positive integer and {Zt}t≥1 is a sequence
of white noises with mean zero and variance σ2 > 0.

Set Xt = Yt − µ, where µ = φ0
1−φ1−···−φp

is the expectation
of Yt , ∀t . Then the equation (9) can be rewritten by

Xt − φ1Xt−1 − · · · − φpXt−p = Zt . (10)
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AR(P) Models

Multiplying each side of (10) by Xt−j , j = 0, . . . ,p, and
taking expectations, we obtain the Yule-walker equations,

Γpφ = γp, (11)

and
σ2 = γ(0)− φ′γp, (12)

where φ = (φ1, . . . , φp)′ and Γp is the covariance matrix
[γ(i − j)]pi,j=1 and γp = (γ(1), γ(2), . . . , γ(p))′.
To estimate φ, we obtain a set of equations for the
estimators φ̂ and σ̂2 of φ and σ2, namely

Γ̂pφ̂ = γ̂p, (13)

and
σ̂2 = γ̂(0)− φ̂′γ̂p. (14)
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AR(P) Models

Dividing each side of ( 13) by γ̂(0), we obtain

φ̂ = R̂−1
p ρ̂p (15)

and
σ̂2 = γ̂(0)[1− ρ̂′pR̂−1

p ρ̂p], (16)

where ρ̂p = (ρ̂(1), . . . , ρ̂(p))′ = γ̂p/γ̂(0) and R̂p = γ̂p/γ̂(0).
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ARMA Models

ARMA Models:

Let {Xt}t≥1 be an ARMA(p,q) process defined by

Xt−φ1Xt−1−· · ·−φpXt−p = Zt +θ1Zt−1+· · ·+θqZt−q, (17)

where{Zt} ∼WN(0, σ2).

If the distribution of {Zt} is known, we may obtain the
maximum likelihood estimates of the parameter vectors
φ = (φ1, . . . , φp)′, θ = (θ1, . . . , θq)′ and that of the white
noise variance σ2.
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ARMA Models

The one-step predictors X̂i+1 and their mean squared
errors are then given by,

X̂i+1 =

{ ∑i
j=1 θij(Xi+1−j − X̂i+1−j), 1 ≤ i < m = max(p,q),

φ1Xi + · · ·+ φpXi+1−p +
∑q

j=1 θij(Xi+1−j − X̂i+1−j), i ≥ m,
(18)

and
E(Xi+1 − X̂i+1)2 = σ2γi , (19)

where θn,n−k = ν−1
k (κ(n + 1, k + 1)−

∑k−1
j=0 θk ,k−jθn,n−jνj),

k = 0,1, . . . ,n − 1, νk =‖ Xn+1 − X̂n+1 ‖2 and
κ(i , j) = E(XiXj).
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ARMA Models

The Gaussian likelihood of the vector of observations
X = (X1, . . . ,Xn)′ is given by

L(φ, θ, σ2) = (2πσ2)−n/2(γ0 . . . γn−1)−1/2exp[−1
2
σ2

n∑
j=1

(Xj−X̂j)
2/γj−1].

(20)
Differentiating lnL(φ, θ, σ2) partially with respect to σ2 and
noting that X̂j and γj are independent of σ2, we deduce that
the maximum likelihood estimators φ̂, θ̂ and σ̂2 satisfying

σ̂2 = n−1S(φ̂, θ̂), (21)

where

S(φ̂, θ̂) =
n∑

j=1

(Xj − X̂j)
2/γj−1, (22)
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ARMA Models

and φ̂, θ̂ are the minimizer of

l(φ, θ) = ln(n−1S(φ, θ)) + n−1
n∑

j=1

lnγj−1. (23)

An alternative procedure of estimation is to minimize the
weighted sum of squares

S(φ, θ) =
n∑

j=1

(Xj − X̂j)
2/rj−1, (24)

with respect to φ and θ. The estimators obtained in this
way is referred to as the “generalized least squares” (GLS)
estimators of φ and θ.



Introduction Survey of Time Series Models and Related Estimation Empirical Likelihood Estimation and its Application to Econometrical Models Simulation Study And Data Analysis

ARMA Models

The spectral domain approach is also popular in the
estimations for ARMA models. In next section, we’ll
introduce the spectral-density approach proposed by Monti
(1997) and illustrate how to applied EL estimation
combined with Monti’s method to estimating GARCH
models.
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The ARCH Models

ARCH Models:
An ARCH(p) model is given by

at = σtεt (25)
σ2

t = β0 + β1a2
t−1 + · · ·+ βpa2

t−p (26)

where {εt}t ≥ 0 is a sequence of i.i.d.random variables
with E(εt ) = 0 and Var(εt ) = 1.
The ARCH models are designed to explain the following
facts:

The mean corrected asset return is serially uncorrelated but
not independent.
When properly transformed by a nonlinear functional, e.g.
quadratic, absolute value, or indicator function, the
dependence of the returns can be observed.
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The ARCH Models

One of the difficulties in studying volatility is that it can not
be observed directly. However, volatility has some
important characteristics:

There exist volatility clusters.
Volatility evolves over time in a continuous manner, i.e., it
rarely jumps.
Volatility does not diverge.

Therefore, it is reasonable to assume that volatility is
stationary and can be fitted into an ARMA-like model.
Set ηt = a2

t − σ2
t , then {ηt} form a sequence of martingale

difference with respect to an increasing sequence of
σ-fields Ft = σ{εs, s ≤ t}, t ∈ Z+ .
Substituting σ2

t = a2
t − ηt into ( 26), ( 26) becomes

a2
t = β0 + β1a2

t−1 + · · ·+ βpa2
t−p + ηt , (27)

It turns out that the sequance a2
t satisfies an AR(p) model

driven by the martingale differences {ηt}.
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The ARCH Models

The unknown parameter β = (β1, · · · , βp)′ can be
estimated by the conditional least squares(CLS) estimate
β̂ which maximizes the following statistics

−1
2

n∑
t=p+1

(a2
t − E(a2

t | Ft−1))2 = −1
2

n∑
t=p+1

(a2
t − β′At−1)2,

(28)
where At = (a2

t , · · · ,a2
t−p+1)′.

We denote the estimate obtained by CLS by β̂CLS and we
have

β̂CLS = (
n∑

t=p+1

At−1A′t−1)−1
n∑

t=p+1

At−1a2
t . (29)

Partial differentiating ( 28) with respect to β yields the
score function∑n

t=p+1(a2
t − β′At−1)At−1 =

∑n
t=p+1 mt ,
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The ARCH Models

where mt = (a2
t − β′At−1)At−1.

Let β0 denote the true value for β. When β = β0,
mt = ηtAt−1 forms a sequence of martingale differences,
and the score function then forms a martingale.
It can be seen by Qin and Lawless (1994,1995) that the log
ELR statistic of the autoregressive model is

l(β) = 2
n∑

t=p+1

log(1 + λ′mt ), (30)

where λ satisfies

n∑
t=p+1

mt

1 + λ′mt
= 0. (31)
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The ARCH Models

For AR(p) models, Chuang and Chan (2002) obtained
some asymptotic results for stable and unstable processes.
Moreover, they applied EL to estimate the corresponding
coefficients emerging in the general AR models disturbed
by non-i.i.d. martingale-difference noises.

Let
φ(z) = 1− β1z − · · · − βpzp (32)

denote the characteristic polynomial of the autoregressive
model ( 27).Assume that the sequence {ηt}t≥1 satisfies the
moment condition supt≥p E(|ηt |2+α | Ft−1) <∞ for some
α > 0. Similar to Chuang and Chan (2002), we may prove
the following results.
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The ARCH Models

Lemma 1.
Assume all roots of ( 32) lie outside the unit circle. Then

(i) (
∑

At−1A′t−1)
1
2 (β̂ − β) converges in distribution to a

multivariate normal distribution with mean 0 and
covariance matrix σ2Ip, where Ip is the p× p identity matrix.

(ii) l(β) given by ( 30) converges in distribution to X 2
p .

Lemma 2.
Assume all roots of ( 32) lie either on or outside the unit circle.
Let σ̂2 = n−1∑(a2

t − β̂′At−1), then σ̂2 −→ σ2 a.s.
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The ARCH Models

Lemma 3.
Let 0 < α′ < α.

(i) maxp+1≤t≤n |ηt | = o(n
1

2+α′ ) a.s.
(ii) n−1∑ η2

t −→ σ2 a.s.

(iii)
∑
|ηt |3 = o(n1+ 1

2+α′ ) a.s.
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The ARCH Models

Lemma 4.
(i) Let Mtn, t = 1, · · · , kn, be a p × 1 martingale difference

array adapted to a sequence of filtrations Gtn for each n.
Let Unn =

∑kn
t=1 MtnM ′tn and Vnn =

∑kn
t=1 E(MtnM ′tn | Gt−1,n).

Suppose that supn P(‖Vnn‖ > a)→ 0 when a→∞ and for
all δ > 0,

∑kn
t=1 E(‖Mtn‖21(‖Mtn‖ > δ) | Gt−1,n)→ 0 in

probability. Then Vnn − Unn → 0 in probability.
(ii) Let Xt be random variables and Ft be a filtration. Suppose

supt E(|Xt |p | Ft−1) <∞ a.s. for p > 1. If
max1≤t≤n P(St | Ft−1)→ 0 a.s., then
max1≤t≤n E(|Xt |1{St} | Ft−1)→ 0 a.s.
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The ARCH Models

Follow Chan and Wei (1988) and Chuang and Chan (2002)
factorizing ( 32), we have
φ(z) = (1− z)a(1 + z)b∏l

k=1(1− 2 cos θkz + z2)dkψ(z),
where a + b + 2d1 + · · ·+ 2dl = p. Let (1− B)jut (j) = ηt ,
j = 1, · · · ,a, (1 + B)jvt (j) = ηt , j = 1, · · · ,b,
(1− 2 cos θkB + B2)dk y(dk )t (j) = ηt , j = 1, · · · ,dk , and
ψ(B)zt = ηt .
Let y(dk )t =
(n−1y(dk )t (1),n−1y(dk )t−1(1), · · · ,n−dk y(dk )t (dk ),n−dk y(dk )t−1
(dk ))′ for k = 1, · · · , l . Define the matrices Gn and Q, as in
Chan and Wei (1988), so that (GnQ)At = Yt , where
Yt = (n−aut (a), · · · ,n−1ut (1),n−bvt (b), · · · ,
n−1vt (1),y(d1)′t , · · · ,y(dl)

′
t ,n
− 1

2 zt , · · · ,n−12zt−q+1)′.
Multiplying At by the matrix GnQ transforms the AR(p)
model into its individual components and simplifies the
analysis.
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The ARCH Models

Let λ̃ = (Q′G′n)−1λ, and rewrite ( 31) as

n∑
t=p+1

nt

1 + λ̃′nt
= 0, (33)

where nt = (GnQ)mt = Yt−1ηt .
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The ARCH Models

Lemma 5.

(i) maxp≤t≤n ‖Yt‖ = O(n−
1
2 (loglogn)

1
2 ) a.s.

(ii) maxp+1≤t≤n ‖nt‖ = o(1) a.s.
(iii)

∑
Yt−1Y ′t−1 converges in distribution to a nonsingular limit

and
∑
‖Yt−1‖2 = Op(1).

(iv)
∑

ntn′t −
∑

Yt−1Y ′t−1σ
2 converges in probability to 0.

(v) Let σn be the smallest eigenvalue of
∑

ntn′t . Then σn
converges in distribution to a strictly positive random
variable.
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converges in distribution to a strictly positive random
variable.
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The ARCH Models

Lemma 5.

(i) maxp≤t≤n ‖Yt‖ = O(n−
1
2 (loglogn)

1
2 ) a.s.

(ii) maxp+1≤t≤n ‖nt‖ = o(1) a.s.
(iii)

∑
Yt−1Y ′t−1 converges in distribution to a nonsingular limit

and
∑
‖Yt−1‖2 = Op(1).

(iv)
∑

ntn′t −
∑

Yt−1Y ′t−1σ
2 converges in probability to 0.

(v) Let σn be the smallest eigenvalue of
∑

ntn′t . Then σn
converges in distribution to a strictly positive random
variable.
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The ARCH Models

Let Q(β) =
∑n

t=p+1 m′t (
∑n

t=p+1 mtm′t )
−1∑n

t=p+1 mt and
S(β) = σ̂−2(β̂ − β)′

∑
yt−1y′t−1(β̂ − β).

Analogous to Chan and Chuang (2002), with Lemma 1 to
Lemma 5, we have the following theorem.

Theorem 1.
Assume all roots of ( 32) lie either on or outside the unit circle,
with at least one root lying on the unit circle. Then Q(β), S(β),
and l(β) all have the same limiting distribution.
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The GARCH Models

GARCH Models:
Bollerslev(1986) generalized ARCH models to the
Generalized ARCH models (GARCH).
The GARCH(p,q) model is given by

at = σtεt (34)

σ2
t = α0 +

p∑
i=1

αia2
t−i +

q∑
j=1

θjσ
2
t−j , (35)

where {εt} is a sequence of i.i.d. random variables with
mean zero and variance 1, α0 > 0, αi ≥ 0, θj ≥ 0, and∑max(p,q)

i=1 (αi + θj) < 1.
Set ηt = a2

t − σ2
t . Then {ηt} form a sequence of martingale

differences with respect to a stochastic basis
Ft = σ{εs, s ≤ t}, t ≥ 1.
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The GARCH Models

Substituting σ2
t = a2

t − ηt into ( 35), we can rewrite the
GARCH model as

a2
t = α0 +

max(p,q)∑
i=1

(αi + θi)a2
t−i + ηt −

q∑
j=1

θjηt−j . (36)

It is an ARMA form for the squared series a2
t . Thus, a

GARCH model can be regarded as an application of an
ARMA model to the squared series a2

t .
We can rewrite ( 36) as

a2
t −

max(p,q)∑
i=1

(αi + θi)a2
t−i = α0 + ηt −

q∑
j=1

θjηt−j . (37)

Let φi = αi + θi , then ( 37) can be written in the form

φ(B)a2
t = α0 + θ(B)ηt , (38)
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The GARCH Models

where B is the backward operator(Bηt = ηt−1),
φ(B) = 1− φ1B − · · · − φpBp and
θ(B) = 1− θ1B − · · · − θqBq are admissible autoregressive
and moving average operators.
Monti (1997) proposed an EL method combined with
periodogram to estimate the parameters appearing in
ARMA models.
Let z1, z2, . . . , zT be T observations of the ARMA process
and let z̄ be their sample mean. Then the periodogram
ordinate corresponding to frequency ωj = 2πj/T , for
j = 1,2, . . . ,T − 1, is given by

I(ωj) =
1

2πT
[{

T∑
t=1

(zt−z̄)sin(ωj t)}2+{
T∑

t=1

(zt−z̄)cos(ωj t)}2].

(39)
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The GARCH Models

Since I(π + λ) = I(π − λ), one can restrict his attention to
the frequencies ωj for j = 1,2, . . . ,n,n = [(T − 1)/2].
The spectral density function is given by

g(ω, β) =
σ2

2π
|θ{exp(−iω)}|2

|φ{exp(−iω)}|2
, (40)

where ω ∈ [−π, π] and β = (φ1, . . . , φp, θ1, . . . , θq, σ
2)′. Let

β = (β(1), σ
2), where β(1) is the parameter of interest. An

approximating log-likelihood function is given by
(Whittle,1953)

ln{L(β)} = −
n∑

j=1

ln{gj(β)} −
n∑

j=1

I(ωj)

gj(β)
. (41)
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The GARCH Models

ψ-functions is given by

ψj{I(ωj), β} = {
I(ωj)

gj(β)
− 1}

∂ln{gj(β)}
∂β

. (42)

Thus, after maximization of ( 41) with respect to σ2, the
spectral log-likelihood function becomes

ln{L̂(β(1))} = −nln{n−1
n∑

j=1

I(ωj)

g1
j (β(1))

} −
n∑

j=1

ln{g1
j (β(1))},

(43)
where

g1
j (β(1)) =

1
2π
|θ{exp(−iωj)}|2

|φ{exp(−iωj)}|2
. (44)
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The GARCH Models

The estimator of β(1) is the M-estimator corresponding to
the ψ-function

ψ̃j{I(ωj), β(1)} =
I(ωj)

g1
j (β(1))

[
∂ln{g1

j (β(1))}
∂β(1)

−n−1
n∑

j=1

∂ln{g1
j (β(1))}
∂β(1)

].

(45)
Thus, it can be seen that the empirical likelihood ratio
statistic of the ARMA model is

l(β(1)) = 2
n∑

j=1

ln[1 + ξ̂(β(1))
′ψ̃j{I(ωj), β(1)}], (46)

where ξ̂(β(1)) satisfies

n∑
j=1

ψ̃j{I(ωj), β}
1 + ξ̂(β(1))′ψ̃j{I(ωj), β(1)}

= 0, (47)
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The GARCH Models

After estimating the parameter vector
β(1) = (φ1, . . . , φp, θ1, . . . , θq)′, we can use the
unconditional mean of an ARMA model

E(a2
t ) =

α0

1−
∑max(p,q)

i=1 (αi + θi)
(48)

to obtain an estimate of α̂0.

Thanks to Qin and Lawless’s (1994) idea, we may have
another option on estimating the parameters in the
GARCH models. The crucial step is to find the estimating
equations.
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The GARCH Models

Consider the GARCH(1,1) model which can be written as
below:

a2
t = α0 + (α1 + θ1)a2

t−1 + ηt − θ1ηt−1. (49)

First, we estimate the coefficients of the AR part in an
ARMA model by constructing instrumental variables.
( 49) can be rewritten as

a2
t − (α1 + θ1)a2

t−1 − α0 = ut , (50)

where ut = ηt − θ1ηt−1.
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The GARCH Models

By utilizing the MA(1) structure of ut , we have the following
moment conditions

Efi(a2
t , α0, φ1) = 0, for i = 1,2,

, where φ1 = α1 + θ1 and

f1(a2
t , α0, φ1) = (a2

t − φ1a2
t−1 − α0)at−m,

f2(a2
t , α0, φ1) = (a2

t − φ1a2
t−1 − α0)at−n,

for m 6= n and m,n ≥ 2. With the estimating equations,
we can adopt EL estimation to obtain estimates φ̂1, α̂0 of
φ1 and α0.
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The GARCH Models

After estimating the AR coefficients, we can estimate the
MA coefficients in model ( 49). Consider

yt = ηt − θ1ηt−1,

where yt = a2
t − φ̂1a2

t−1 − α̂0 and ηt ∼ i .i .d .(0, σ2). We may
also obtain two moment conditions

Efi(yt , θ1, σ
2) = 0, for i = 1,2,

where

f1(yt , θ1, σ
2) = ytyt−1 + σ2θ1,

f2(yt , θ1, σ
2) = y2

t − σ2(1 + θ2
1).

The above equations provide themselves as being the
estimating equations for estimating θ1 and σ2.
Unfortunately, according to our simulation results, such an
approach is not good compared with EL estimation.
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The EGARCH Models

EGARCH Models:
Nelson (1991) proposed the EGARCH models.
Consider the EGARCH(1,1) model :

at = σtεt (51)
ln(σ2

t ) = α0 + β0ln(σ2
t−1) + g(εt−1), (52)

where {εt} is a sequence of i.i.d. random variables with
E(εt ) = 0 and E(ε2

t ) = 1, g(εt ) = ω0εt + φ0[|εt |+ E(|εt |)], and
α0, β1, ω, and φ are real numbers.
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The EGARCH Models

Let θ = [α, β, ω, φ]T and the true value be θ0 = [α0, β0, ω0, φ0]T .
The four moment conditions for the EGARCH(1,1) model are
E [ft ,1(θ0)] = 0, E [ft ,2(θ0)] = 0, E [ft ,3(θ0)] = 0, E [ft ,4(θ0)] = 0,
where

ft ,1(θ) = lna2
t − βlna2

t−1 − α− E(lnε2
t ) + βE(lnε2

t ), (53)

ft ,2(θ) = (lna2
t − βlna2

t−1 − α)2 − (1 + β2)E(lnε2
t )2

−E(g(εt ))2 + 2βE(g(εt )lnε2
t ) + 2β[E(lnε2

t )]2,(54)
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The EGARCH Models

ft ,3(θ) = (lna2
t − βlna2

t−1 − α)3 − (1− β3)E(lnε2
t )3

−3β(β − 1)E(lnε2
t )2E(lnε2

t ) + 6βE(lnε2
t )E(g(εt )lnε2

t )

−β2E(g(εt )(lnε2
t )2) + E(g(εt ))3 − 3E(g(εt ))2E(lnε2

t )

+3βE((g(εt ))2lnε2
t ), (55)

ft ,4(θ) = (lna2
t − βlna2

t−1 − α)4 − (1 + β4)E(lnε2
t )4

+4β(1 + β2)E(lnε2
t )3E(lnε2

t )− 4E(lnε2
t )3E(g(εt ))

−6E(lnε2
t )2E(g(εt ))2 − E(g(εt ))4 − 4E(lnε2

t )E(g(εt ))3

+12βE(lnε2
t )2E(g(εt lnε2

t ))− 12βE(lnε2
t )E(g(εt )lnε2

t )

+4βE((g(εt ))3lnε2
t )− 12β2E(lnε2

t )E(g(εt )(lnε2
t )2)

−6β2E(g(εt lnε2
t ))2 − 6β2[E(lnε2

t )2]2

+4β3E(g(εt )(lnε2
t )3). (56)
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The EGARCH Models

( 53)∼( 56) can then be treated as estimating equations and we
can apply EL method to the underlying EGARCH(1,1) model.
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The TGARCH Models

TGARCH Models:
Zakoian(1994) introduced the TGARCH models.
A TGARCH(p,q) is defined by

σ2
t = α0 +

q∑
i=1

(αi + γiNt−i)a2
t−i +

p∑
j=1

βjσ
2
t−j , (57)

where Nt−i is an indicator for negative at−i , that is,

Nt−i =

{
1 if at−i < 0,
0 if at−i ≥ 0,

and αi , γi , and βi are nonnegative parameters.
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The TGARCH Models

We consider a TGARCH(1,1) model:

at = σtεt ,

σ2
t = α0 + (α1 + γ1Nt−1)a2

t−1 + β1σ
2
t−1.

If we assume that {εt}t=1,...,T , is t distributed with degree ν,
then the likelihood function can be written as

L(α0, α1, γ1, β1) =
T∏

t=1

Γ(ν+1
2 )

Γ(ν2 )

1√
νπ

(1 +
ε2

t
ν

)−(ν+1)/2. (58)

Taking the logarithm on both sides of ( 58) and differentiating
log L(α0, α1, γ1, β1) with α0, α1, γ1, and β1 respectively, we
obtain four estimating equations. Thus, we can estimate the
parameters, by EL estimation, in the TGARCH model.
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300 replicates of random samples each with size N=1000
are generated for each Example 1∼4.
In Example5, we’ll model the volatility of WTI crude oil
prices by a GARCH model.
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Example 1.

Model–ARCH(2)
at = σtεt ,

σ2
t = α0 + α1a2

t−1 + α2a2
t−2,

where α0 = 0.2, α1 = 0.28, and α2 = 0.12.



Introduction Survey of Time Series Models and Related Estimation Empirical Likelihood Estimation and its Application to Econometrical Models Simulation Study And Data Analysis

Table 1. Estimated parameters of an ARCH(2) model by
empirical likelihood estimation

Parameter value Estimated value 95% confidence interval

α0 (0.02) 0.0199 (0.0197, 0.0201)
α1 (0.28) 0.2774 (0.2714, 0.2834)
α2 (0.12) 0.1206 (0.1156, 0.1257)

Table 2. Estimated parameters of an ARCH(2) model by least
squares estimation

Parameter(value) Estimated value 95%confidence interval

α0 (0.02) 0.0199 (0.0198, 0.0200)
α1 (0.28) 0.2798 (0.2784, 0.2813)
α2 (0.12) 0.1201 (0.1187, 0.1216)
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Example 2.

Model–GARCH(1,1)
at = σtεt ,

σ2
t = α0 + α1a2

t−1 + θ1σ
2
t−1,

where α0 = 0.05, α1 = 0.37, and θ1 = 0.18.
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Table 3. Estimated parameters of a GARCH(1,1) model by EL estimation without

knowing the distribution of the innovations

Parameter(value) Estimated value 95% confidence interval

α0 (0.05) 0.0505 (0.0496, 0.0513)
α1 (0.38) 0.3735 (0.3679, 0.3791)
θ1 (0.18) 0.1784 (0.1740, 0.1827)

Table 4. Estimated parameters of a GARCH(1,1) model by MLE provided that

the innovations are i.i.d. normally distributed

Parameter(value) Estimated value 95% confidence interval

α0 (0.05) 0.0497 (0.0494, 0.0500)
α1 (0.38) 0.3703 (0.3691, 0.3715)
θ1 (0.18) 0.1809 (0.1797, 0.1821)
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Example 3.

Model–EGARCH(1,1)
at = σtεt ,

ln(σ2
t ) = α0 + β0ln(σ2

t−1) + ω0εt−1 + φ0[|εt−1|+ E(|εt−1|)],

where α0 = 0.05, β0 = 0.63, ω0 = 0.07, and φ0 = 0.15.
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Table 5. Estimated parameters of a EGARCH(1,1) model by EL estimation without

knowing the distribution of the innovation

Parameter(value) Estimated value 95% confidence interval

α0 (0.05) 0.0486 (0.0465, 0.0507)

β0 (0.63) 0.6280 (0.6226, 0.6334)

γ0 (0.07) 0.0705 (0.0685, 0.0726)

φ0 (0.15) 0.1540 (0.1496, 0.1584)

Table 6. Estimated parameters of a EGARCH(1,1) model by MLE provided that the

innovations are i.i.d. normally distributed

Parameter(value) Estimated value 95% confidence interval

α0 (0.05) 0.0499 (0.0496, 0.0501)

β0 (0.63) 0.6298 (0.6296, 0.6301)

γ0 (0.07) 0.0700 (0.0697, 0.0702)

φ0 (0.15) 0.1500 (0.1497, 0.1502)
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Example 4.

Model–TGARCH(1,1)
at = σtεt ,

σ2
t = α0 + (α1 + γ1Nt−1)a2

t−1 + β1σ
2
t−1,

where α0 = 0.05, α1 = 0.33, γ1 = 0.15, and β1 = 0.2,
and we assume {εt} is a student-t distribution with
degree ν = 5.
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Table 7. Estimated parameters of a TGARCH(1,1) model by empirical likelihood estimation

Parameter(value) Estimated value 95% confidence interval

α0 (0.05) 0.0515 (0.0489, 0.0541)

α1 (0.33) 0.3339 (0.3237, 0.3442)

γ1 (0.15) 0.1488 (0.1364, 0.1613)

β1 (0.20) 0.1995 (0.1850, 0.2140)

Table 8. Estimated parameters of a TGARCH(1,1) model by MLE

Parameter(value) Estimated value 95% confidence interval

α0 (0.05) 0.0499 (0.0497, 0.0502)

α1 (0.33) 0.3297 (0.3289, 0.3304)

γ1 (0.15) 0.1499 (0.1491, 0.1507)

β1 (0.20) 0.1998 (0.1991, 0.2006)
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From the above outcomes, although the confidence
intervals obtained by the empirical likelihood method are
wider than those by MLE or OLS, the estimates by EL are
also close to true parameters.
The best advantage using EL estimation is that it only
exploit some moment conditions which are easier to obtain
than the distributional information required for MLE.
Moreover, OLS is intractable in many situations, e.g. in
GARCH, EGARCH or TGARCH models.
Therefore, EL approach provides itself as an option to
estimate parameters in more complicated models.
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Example 5.

We use the data from the West Texas Intermediate Crude
Oil (WTI) Prices.
The WTI data was collected from 2007 to 2008.
Let Pt be the price of WTI at time index t.The simple return
is defined by Rt =

Pt−Pt−1
Pt−1

.

An GARCH(1,1) model is used to model the volatility of the
return sequence derived by the WTI crude oil prices.
We estimate the parameters in GARCH(1,1) model by
using MLE (provided that the innovations are i.i.d. normally
distributed) and EL estimation (without knowing the
distribution of the innovations), respectively .



Introduction Survey of Time Series Models and Related Estimation Empirical Likelihood Estimation and its Application to Econometrical Models Simulation Study And Data Analysis

Table 9. Estimated parameters of a GARCH(1,1) model for the WTI data(2007/1/3∼

2008/12/31) by maximum likelihood estimation

Parameter value Standard Error T Statistic

α0 7.3384e-006 5.5186e-006 1.3298
α1 0.90922 0.023712 38.3452
θ1 0.090776 0.02142 4.2379

Log Likelihood Value: 1161.37

Table 10. Estimated parameters of a GARCH(1,1) model for the WTI data(2007/1/3∼

2008/12/31) by empirical likelihood estimation

Parameter Value

α0 4.7817e-007
α1 0.8993
θ1 0.0877
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The estimates by these two distinct methods are quite
close.
The outcomes show that the fitted model might have a unit
root.
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Thank you for your listening!
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