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1. Detection of Differentially Expressed Genes

Gene Expression Value

Xi : i = 1, . . . , n.
Yi : i = 1, . . . , m.

Null Hypothesis

H : μX = μY

Test Statistic

T (Z) =
|X̄ − Ȳ |√

{(n − 1)S2
X + (m − 1)SY }/(N − 2)

X = (X1, . . . , Xn)′, Y = (Y1, . . . , Ym)′ and Z = (X′, Y ′)′
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P -value

p = Pr(T (Z) > t | H) t = T (z)

P -value estimation

1

B

B∑
b=1

I(T (Z
#
b ) > t)

I(A) = 1 when A is true, I(A) = 0 when A is false.

Z
#
b : bth permutation sample drawn from Z

Problem

When n = m = 4, we have B = 8!/(4!4!) = 56．B is too small!

The smallest P -value is about 0.02 (except for 0).

4



2. Incorporation of Data From Other Genes

p-value estimation 

P -value Estimation

p̂
(
T (Z#); tg

)
=

1

BG

B∑
b=1

G∑
g′=1

I(T (Z
#
bg′) > tg)
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p-value estimation 

Problem

Two types of genes are combined.
The null hypothesis is true on some genes, but not on the other
genes.
The P -value should be calculated under the null hypothesis
from the definition.

P -value

p = Pr(T (Z) > t | H) t = T (z)
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3. Devised Testing Procedure

Pan (2003)

X(1) = (X1, . . . , Xn1)
′, X(2) = (Xn1+1, . . . , Xn)′, n2 = n − n1.

Y (1) = (Y1, . . . , Ym1)
′, Y (2) = (Ym1+1, . . . , Ym)′, m2 = m − m1.

Test Statistic

TPan(Z) =

∣∣∣∣X̄(1) + X̄(2)

2
− Ȳ(1) + Ȳ(2)

2

∣∣∣∣
/√√√√1

4

(
S2

X(1)

n1

+
S2

X(2)

n2

+
S2

Y (1)

m1

+
S2

Y (2)

m2

)
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Test Statistic

TPan(Z) =

∣∣∣∣X̄(1) + X̄(2)

2
− Ȳ(1) + Ȳ(2)

2

∣∣∣∣
/√√√√1

4

(
S2

X(1)

n1

+
S2

X(2)

n2

+
S2

Y (1)

m1

+
S2

Y (2)

m2

)

Null Statistic
T null

Pan (Z) = TPan

(
X(1), −X(2), −Y (1), Y (2)

)
=

∣∣∣∣X̄(1) − X̄(2)

2
+

Ȳ(1) − Ȳ(2)

2

∣∣∣∣
/√√√√1

4

(
S2

X(1)

n1

+
S2

X(2)

n2

+
S2

Y (1)

m1

+
S2

Y (2)

m2

)

Device
If the underlying distribution is symmetric around mean param-
eter, then the distribution of the null statistic does not depend
on the mean parameters. This property has no relation on
whether the null hypothesis is true or not. The distribution of
the test statistic under the null hypothesis is the same as the
distribution of the null statistic.
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Test Statistic

TPan(Z) =

∣∣∣∣X̄(1) + X̄(2)

2
− Ȳ(1) + Ȳ(2)

2

∣∣∣∣
/√√√√1

4

(
S2

X(1)

n1

+
S2

X(2)

n2

+
S2

Y (1)

m1

+
S2

Y (2)

m2

)

Null Statistic

T null
Pan (Z) = TPan

(
X(1), −X(2), −Y (1), Y (2)

)
=

∣∣∣∣X̄(1) − X̄(2)

2
+

Ȳ(1) − Ȳ(2)

2

∣∣∣∣
/√√√√1

4

(
S2

X(1)

n1

+
S2

X(2)

n2

+
S2

Y (1)

m1

+
S2

Y (2)

m2

)

Relation Between Test Statistic and Null Statistic

pPan = Pr(TPan(Z) > t | H) = Pr(T null
Pan(Z) > t)

We need that the underlying distribution is symmetry around
mean parameter.
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Realation Between Test Statistic and Null Statistic

pPan = Pr(TPan(Z) > t | H) = Pr(T null
Pan(Z) > t)

We need that the underlying distribution is symmetry around

mean parameter.

P -value Estimation

p̂
(
TPan(Z

∗); tg
)

=
1

BG

B∑
b=1

G∑
g′=1

I
(
T null

Pan(Z∗
bg′) > tg

)

Z∗
bg: bth restricted permutation sample on gth gene

Z∗
bg = (X

#
b′g, Y

#
b′′g)
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General Viewpoint

Condition that the empirical P -value estimation is possible

when the observations on the other genes are incorporated.

There exists a null statistic h(Z) such that

(∗) p = Pr(T (Z) > t | H) = Pr(h(Z) > t).

P -value Estimation

p̂
(
TPan(Z

∗); tg
)

=
1

BG

B∑
b=1

G∑
g′=1

I
(
h(Z∗

bg′) > tg

)

Z∗
bg: bth restricted permutation sample on gth gene

Z∗
bg = (X

#
b′g, Y

#
b′′g)
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4. Optimal Testing Procedure

General Viewpoint

Condition that the empirical P -value estimation is possible

when the observations on the other genes are incorporated.

There exists a null statistic h(Z) such that

(∗) p = Pr(T (Z) > t | H) = Pr(h(Z) > t).

Optimal Testing Procedure

Consider the optimal test (UMP unbiased test) in a class of

tests satisfying the above condition.
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Summary of Result

Consider a class of tests, (∗A), derived from the case where
the underlying distribution is symmetric around mean parame-
ter. The UMP unbiased test under normality is similar to that
proposed by Pan.

Consider a class of tests, (∗B), derived from the case where
both underlying distributions for X and Y belong to the same
location-family. The UMP unbiased test under normality is
different from that proposed by Pan.

The latter test statistic has a one more degree-of-freedom than
the former one.
But, the effect is very large for microarray data, because the
sample size is small.
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Theorem. Consider a class of test statistics expressed as (∗A)
(derived from the case where the underlying distribution is sym-
metric around mean parameter). Assume that X and Y are nor-
mally distributed with means μX and μY and common variance
σ2. The UMP unbiased test for the null hypothesis H : μX = μY
against K : μX �= μY is obtained from the test statistic

Ts(Z) = |Qs|/
√

S2

where

Qs =

(
X̄(1) + X̄(2)

2
− Ȳ(1) + Ȳ(2)

2

)/√
1

4

(
1

n1

+
1

n2

+
1

m1

+
1

m2

)
(N − 4)S2 = (n1 − 1)S2

X(1) + (n2 − 1)S2
X(2) + (m1 − 1)S2

Y (1) + (m2 − 1)S2
Y (2).

The threshold c at significance level α is determined from
Pr(Ts(Z) ≥ c | H) = α. The power is maximized when n1 and m1
are the closest integers to n/2 and m/2, respectively.
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Theorem. Consider a class of test statistics expressed as (∗B)
(derived from the case where both underlying distributions for X
and Y belong to the same location-family). Assume that X and
Y are normally distributed with means μX and μY and common
variance σ2. The UMP unbiased test for the null hypothesis
H : μX = μY against K : μX �= μY is obtained from the test
statistic

Tp(Z) =
|Qp|√{

(N − 4)S2 + Q2
0

}
/(N − 3)

,

where

Qp =

{
n1m1

n
(X̄(1) − Ȳ(1)) +

n2m2

m
(X̄(2) − Ȳ(2))

}/√
n1m1

n
+

n2m2

m

Q0 =

√
n1m1n2m2/nm

n1m1/n + n2m2/m

{
(X̄(1) − Ȳ(1)) − (X̄(2) − Ȳ(2))

}
.

The threshold c at significance level α is determined from
Pr(Tp(Z) > c | H) = α. The power is maximized when n2 and
m1 are the same closest integer to 1/(1/n + 1/m).
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5. Example (Golden Spike data)

Choe et al. (2005) presented a control dataset.

This data include 14,010 probe sets with 195,994 probes. They
constructed 3,866 probe sets with various known fold changes
by using spiked-in cRNAs. There were 1,331 probe sets whose
fold changes were larger than one. They provided two samples
(control and spiked-in samples) with three replicates (n = m =
3).

They discussed a lot of combinations of pre-treatments and
then recommended some combinations of pre-treatments.

We then analyzed the Golden Spike data with the optimal sam-
ple division size where n1 = 2 and m1 = 1.
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Performance with Golden Spike data.

α 10−2 10−3 10−4 10−5 Bon*
# of detected genes

Ts 340 9 0 0 0
Tp 1013 525 161 16 16

# of truly detected genes
Ts 317 8 0 0 0
Tp 890 508 158 16 16

Bon*: Bonferroni correction based on significance level 0.01.
α = 0.01/3866 ≈ 2.59 × 10−6.
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6. Simulation

6.1. Accuray of P -value Estimation

TPan: Pan’s statistic

Ts: Optimal test statistic in a class of (∗A)

Ts2: Modified test statistic of Ts

Tp: Optimal test statistic in a class of (∗B)

Perm: Standard permutation method without device
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p-value estimation 

Random Number Genreration

X: Normal with mean zero and variance one.
Y : Normal with mean μY and variance one.

μY = 0 for equally expressed genes
μY ∼ N(0, 42) for differentially expressed genes

# of simulations: 50.
# of genes: 1,000．
The proportion of differentially expressed genes: 0.1.
Genes: independent.
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P -value estimation

p̂
(
T (Z∗); tg

)
=

1

BG

B∑
b=1

G∑
g′=1

I
(
T null(Z∗

bg′) > tg

)

Threshold

Pr (T (Z) > tα | H) = α (= 0.01)

α̂ =
1

BG

B∑
b=1

G∑
g′=1

I
(
T null(Z∗

bg′) > tα

)
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TPan. Ts. Ts2. Tp. Perm.

(a) (n, m) = (4, 4).
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(b) (n, m) = (10, 5).
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The following cases were also investigated.

The underlying distribution was skew-normal.

The scale varied according to gene.

Similar behaviors were observed.

The test statistic Tp was the best.
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6.2. Comparison of Power： TPan. Ts. Ts2. Tp.

Random Number Generation

X: Normal with mean zero and variance one.

Y : Normal with mean μY and variance σ2
Y .

The power was estimated by 10,000 simulations.
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Power of test when σ2
Y = 1.

TPan Ts Ts2 Tp

(a) n = 4, m = 4, n1 = 2, m1 = 2
α = 0.01

μY = 1 0.049 0.049 0.049 0.058
μY = 3 0.497 0.497 0.497 0.610
μY = 5 0.920 0.920 0.920 0.974

α = 0.001
μY = 1 0.007 0.007 0.007 0.008
μY = 3 0.100 0.100 0.100 0.163
μY = 5 0.395 0.395 0.395 0.605
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Power of test when σ2
Y = 1.

TPan Ts Ts2 Tp

(b-i) n = 10, m = 5, n1 = 5, m1 = 3
α = 0.01

μY = 1 0.133 0.152 0.134 0.156
μY = 2 0.592 0.688 0.602 0.709
μY = 3 0.916 0.973 0.933 0.980

α = 0.001
μY = 1 0.029 0.032 0.028 0.032
μY = 2 0.233 0.302 0.246 0.325
μY = 3 0.654 0.780 0.650 0.831
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Power of test when σ2
Y = 1.

TPan Ts Ts2 Tp

(b-ii) n = 10, m = 5, n1 = 7, m1 = 3
α = 0.01

μY = 1 0.108 0.138 0.123 0.158
μY = 2 0.522 0.644 0.580 0.710
μY = 3 0.886 0.966 0.933 0.981

α = 0.001
μY = 1 0.023 0.029 0.025 0.034
μY = 2 0.182 0.301 0.237 0.329
μY = 3 0.537 0.765 0.638 0.833

26



Power of test when σ2
Y = 2.

TPan Ts Ts2 Tp

(a) n = 4, m = 4, n1 = 2, m1 = 2
α = 0.01

μY = 1 0.040 0.040 0.040 0.042
μY = 3 0.342 0.342 0.342 0.424
μY = 5 0.785 0.785 0.785 0.887

α = 0.001
μY = 1 0.006 0.006 0.006 0.006
μY = 3 0.064 0.064 0.064 0.094
μY = 5 0.253 0.253 0.253 0.403
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Power of test when σ2
Y = 2.

TPan Ts Ts2 Tp

(b-i) n = 10, m = 5, n1 = 5, m1 = 3
α = 0.01

μY = 1 0.094 0.141 0.091 0.142
μY = 2 0.389 0.546 0.390 0.563
μY = 3 0.729 0.906 0.743 0.915

α = 0.001
μY = 1 0.021 0.034 0.022 0.034
μY = 2 0.141 0.231 0.138 0.257
μY = 3 0.393 0.612 0.368 0.623
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Power of test when σ2
Y = 2.

TPan Ts Ts2 Tp

(b-ii) n = 10, m = 5, n1 = 7, m1 = 3
α = 0.01

μY = 1 0.089 0.134 0.090 0.146
μY = 2 0.348 0.526 0.371 0.564
μY = 3 0.696 0.892 0.738 0.915

α = 0.001
μY = 1 0.018 0.032 0.018 0.034
μY = 2 0.106 0.184 0.134 0.230
μY = 3 0.319 0.582 0.387 0.647
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7. Summary

p-value estimation 

Incorporation of Data From Other Genes
Devised Testing Procedure by Pan
Generalization of Device
Optimal Testing Procedure

Symmetry Case and Location-family Case

Example: Golden Spike Data
Simulation

Accuray of P -value Estimation. Comparison of Power.
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THANK YOU
p-value estimation 

Hironori Fujisawa

The Institute of Statistical Mathematics
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